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Abstract

Within the field of superconducting circuits, bosonic qubits have emerged as an exciting
avenue for research. As compared to qubits, the higher lifetimes and larger Hilbert space
inherent to bosonic modes serve as an ideal playground to explore new quantum protocols
for physics experiments. In this thesis, I outline a platform that couples superconducting
qubits to a high coherence bosonic mode.

I developed additional experimental capabilities and expanded the library of experimental
tools in the Kirchmair lab. The two main new features are a new generation of magnetic
flux hose that allows for the threading of magnetic flux into a 3D superconducting cavity
and a modular 3D Purcell filter with an integrated SMA pin for driving and readout. With
this platform, I realised three main experiments.

First, I performed a closed-looped optimisation on a bosonic mode. I showed that it was
possible to use a proxy measurement as feedback to the optimisation routine instead of
the traditionally resource-intensive state tomography approach. The proxy measurement
focused on the important features of the prepared state, such as the interference fringes
and Gaussian distributions in a Schrödinger cat state. I report an overall increase in the
preparation of the state characterised by a figure of merit increase from 0.50 to 0.74. While
the optimisation was carried out on a cat state in a circuit quantum electrodynamics (QED)
platform, the novel and general method can also be used to prepare many other complex
states and can be adapted to other platforms.

Second, I generated a quantum superposition of a thermal state. Thermal states are highly
mixed states with low purity. The experimental results demonstrate that thermal states,
up to a mean thermal photon number of eight, a purity of 0.062 and a mode temperature
of 1.8 K, which is sixty times hotter than its physical temperature, can still be used to
form quantum states. Such hot cat states are a resource for quantum computation and
quantum meteorology and can also be realised in other bosonic systems, such as levitated
optomechanical setups. The existence of hot cat states shows that reaching the ground state
is not a strict condition for quantum features. Importantly, it is coherent dynamics and not
purity that determines the "quantum-ness" of a state. While the experiment was limited by
instrument power, fundamentally the theoretical results do not place a fundamental limit
on how hot the initial thermal state can be.

Finally, I demonstrate a proof of principle experiment to realise a flexible multi-qubit
gate. This method uses the high Q cavity as a quantum bus to apply conditional qubit
operations. The main strength of this novel gate comes from its flexibility to apply any
target unitary needed. One of the most exciting applications of such a gate is the quantum
switch gate. A superposition of the order of quantum gates is a novel method that opens
new research areas for exploration and improvement such as quantum causality, quantum
communication, quantum computation, and quantum error mitigation experiments.
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CHAPTER 1
Introduction

A famous thought experiment in the field of quantum physics is Schrödinger’s cat [1].
In the 1935 thought experiment, a cat is placed in a box with a jar of poison and a
radioactive atom. The poison is then released if the radioactive atom decays. As radioactive
decay is a quantum phenomenon, to an observer outside of the box, the atom is in a
superposition of decayed and not decayed at the same time. The superposition of the atom
becomes entangled with the cat being dead and alive at the same time. This thought
experiment demonstrated the quantum property of entanglement between the state of
the atom and the state of the cat. Analogous to the entangled Schrödinger cat state,
quantum superposition states also have special quantum properties. Since the thought
experiment, many experiments in varied platforms have demonstrated the creation and
measurement of Schrödinger cat states using coherent states in a bosonic mode as the cat
[2–4]. These experiments and many others use the quantum properties of entanglement
and superposition to demonstrate the non-intuitive ways of the quantum world. This has
led to an increasing interest in using these properties to gain an advantage over classical
computers.

The huge potential of quantum computers in tackling computational problems that are
classically prohibitive has driven research in the quantum computing field. Such problems
are called bound quantum polynomial (BQP) time problems and have wide-ranging im-
plications. Notable examples include breaking RSA encryption with Shor’s algorithm [5],
finding solutions to optimisation problems such as the travelling salesman problem [6] or
simulation in quantum chemistry [7]. The basis of quantum computers is qubits, whose
quantum properties give the "quantum advantage". Superconducting circuits have been one
of the promising platforms to realise such qubits. This comes from the complementary-
metal-oxide-semiconductor (CMOS) like fabrication techniques for the scalability and engi-
neerability of the circuits. The combination of different elements gives rise to engineerable
Hamiltonians in the field of circuit quantum electrodynamics (QED).

The increasing attention on quantum computers with superconducting circuits is also ev-
ident in the billions of dollars being invested by big tech companies and governments [8].
The impressive roadmaps and big promises from the likes of Google [9], IBM [10], Amazon
[11] and many more brought ever-growing attention to the progress of the field. Even on
the academic front in the superconducting circuits field, larger research groups such as
those from Yale University, MIT Lincoln labs or ETH Zurich have grown and are pushing
the boundaries of the circuit QED field. Many startup companies like Rigetti [12], Al-
ice and Bob [13], and Oxford Quantum Circuits have also spawned from research groups,
each having their expertise area in this highly competitive market. Aside from the quan-
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tum physics research front, a growing support industry of hardware companies has risen
around the quantum computing field. These include Quantum Machines, Zurich Instru-
ments, Qblox or Delft Circuits that handle a wide range of hardware, from measurement
and control instruments to cryogenic input drive lines. These large research groups and
bigger companies have led the way in terms of progress of increasing qubit lifetimes, and
improvements in software and hardware used in the experiments. Thus, the role of smaller
research groups has to be redefined and must find a niche area in this ever-changing field.

Within the field of superconducting circuits, bosonic qubits have emerged as a compelling
avenue. There have been many exciting experimental results from hardware-efficient
bosonic quantum error correction [14, 15], to the quantum simulation of the vibrational
modes of a molecule [16] and even gates between two bosonic modes [17]. Improving
understanding and control of such bosonic modes are thus of great importance.

In the Kirchmair lab, one research direction has been in the field of coupling supercon-
ducting qubits to high coherence cavities (Fig. 1.1). The cavities have long lifetimes and
high quality factors and are also known as high Q cavities. Such a setup allows us to
manipulate the quantum systems and perform fundamental science research on a smaller
scale. I built a flexible platform that couples qubits to a bosonic mode. This platform has
been designed with the consideration of the flexibility of different experimental require-
ments. I demonstrate the optical control of a bosonic mode (chapter 5), the superposition
of classical states (chapter 6), and a flexible multi-qubit gate (chapter 7).

Figure 1.1: Artistic drawing of high Q post cavity coupled to a qubit.
Also shown is a Wigner function of a Schrödinger cat state. Drawing done by
Dr. Mathieu L. Juan.
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1.1 Overview of thesis

The thesis is divided into four main parts.

Part 1: Concept and Characterisation. In the first part, I introduce the theoretical
concepts and characterisation measurements required to understand the superconducting
circuits field and experiments later. In chapter 2, I cover the theory used in quantum in-
formation processing and the platform used to realise the qubits. Chapter 3 introduces the
design, simulation, fabrication and setup process used in the lab. Chapter 4 elaborates on
the circuit QED toolbox and demonstrates the basic measurements done to characterise the
setup. I show the progress made in improving the existing platform used in the Kirchmair
lab. In particular, this includes the first measurements of two prototype devices. A new
generation of magnetic flux hose was used to thread magnetic fields into a superconducting
cavity and a modular 3D Purcell filter with an integrated SMA pin.

Part 2: Quantum Superpositions. In the next part (Chapter 5), I demonstrate different
ways to form a Schrödinger cat state in a bosonic mode. This includes the first main
experiment where closed-looped optimisation is done on a bosonic mode with an infinite
Hilbert space.

Part 3: Quantum Superpositions of Thermal States. In chapter 6, the methods de-
scribed in part 2 are used to generate a quantum superposition of a classical state. The
results are closer to the original Schrödinger’s thought experiment, the cat — a hot and
out-of-equilibrium system — is prepared in a superposition of two mixed states dominated
by classical fluctuations [1].

Part 4: Flexible Multi-qubit Gate. In the last experiment, shown in chapter 7, I demon-
strate a proof of principle experiment to realise a flexible multi-qubit gate. This method
uses the high Q cavity as a quantum bus to effectively perform flexible conditional qubit
operations.

Finally in chapter 8, I conclude and give my thoughts on the applications of the experi-
mental results and outlook on anticipated results.
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1.2 Work not covered in this thesis

Being part of an experimental group, I had the honour of helping out with many other
projects such as the setting up of a new lab space in the Kirchmair group. These projects
are beyond the scope of the thesis, but I would like to briefly mention one here.

The project utilises the non-linear dispersion of a waveguide to focus microwave pulses to
individually address spatially separated qubits. Maximilian Zanner and Romain Albert
headed this project in the lab. My small part was in assisting in the qubit fabrication
process. In a non-linear dispersion medium, such as above the cut-off frequency of a
waveguide, pulses at different frequencies will have different group velocities. This results
in the dispersion of a microwave pulse [18]. The non-linear dispersion enables to spatially
focus a microwave pulse onto a qubit [19]. The efforts led to a paper in the publication
process [20].



CHAPTER 2
Theory

This chapter serves as a theoretical framework to discuss the research conducted in the
later chapters. Parts of the chapter can also be found in many textbooks [21–23], reviews
and theses including [24–28]. The first section begins with the theoretical concepts of quan-
tum information processing. Next, I cover the platform to realise such quantum systems,
superconducting circuits and the experimental toolbox of circuit Quantum Electrodynam-
ics (cQED). Finally in Sec. 2.3, I discuss the question of manipulation and control of a
quantum system.

2.1 Quantum Information Processing

2.1.1 Qubits and Qubit States

In classical digital computers, the basic unit is the binary digit (bit). Each bit can only
hold one of two different values (0 or 1). In contrast, quantum bits (qubits) can hold any
linear combination of the two states. Mathematically, the state of the qubit |ψ⟩ can be
represented by a vector in a 2-dimensional Hilbert space

|ψ⟩ = α |0⟩ + β |1⟩ . (2.1)

The complex coefficients α and β represent the probability of finding the qubit in state
|0⟩ or |1⟩ in a classical measurement. The probability to find a quantum state |ψ⟩ in some
state |ϕ⟩ is given by

Pϕ = |⟨ϕ|ψ⟩|2 . (2.2)

In addition to the probabilistic property in quantum mechanics, classical systems also have
stochasticity. A quantum state that can be expressed as a state vector is called a pure
state. A pure state can also be a coherent superposition of some basis states. Conversely,
quantum states that are a statistical ensemble of pure states are known as mixed states. It
is important to distinguish between coherent superpositions and an incoherent mixture. A
useful mathematical tool is the density matrix ρ [21, 29]. For a pure state in Eq. (2.1),

ρ = |ψ⟩ ⟨ψ| =
(

|α|2 αβ∗

α∗β |β|2

)
.

15



16 2.1 Quantum Information Processing

The diagonal terms represent the population of the quantum state and the off-diagonal
terms represent coherences of a qubit. For mixed states, the statistical mixture is rep-
resented by ρ = ∑

i Pi |ψi⟩ ⟨ψi|, where Pi are the classical probabilities of the different
quantum states |ψi⟩. In such cases, the purity, P, is used to measure how much a state is
mixed

P = Tr{ρ2}. (2.3)

It is important to note that in many real physical realisations of the qubit, the actual
quantum system has multiple excitation levels and is not a true two-level system. This
key difference is often an avenue for experimental difficulties but can also lead to potential
advantages. The concept of two levels of the qubit can be extended to even higher levels
giving a qudit [30].

A useful visualisation tool for the evolution and transformation of the qubit state is the
Bloch vector on the Bloch sphere [21, 31]. Eq. (2.1) can be written as

|ψ⟩ = cos θ2 |0⟩ + eiϕ sin θ2 |1⟩ (2.4)

where θ ∈ [0;π] and ϕ ∈ [0; 2π] are the polar and azimuthal angles on the Bloch sphere.
The quantum state is visualised as a Bloch vector pointing in the direction given by the
spherical coordinates. Pure states have unit length on the Bloch sphere while mixed states
will have a length smaller than the radius of the Bloch sphere.

A B C

Figure 2.1: Bloch sphere examples. (A) The Bloch sphere is a useful visualisa-
tion tool to represent a qubit state. The Bloch vector is a state with azimuthal
angle, ϕ, and polar angle θ. Operations are rotations about the relevant axis.
(B) The natural evolution of a qubit state is a rotation about the z-axis at a rate
of the frequency of the qubit ω. Stochastic variations of the qubit frequency,
δω, will cause a variation of the qubit rotation rate and thus over multiple iter-
ations, the Bloch vectors have a spread in the angle ϕ. (C) Decay of the qubit
state. An initially excited qubit will decay over time to the ground state. This is
through energy relaxation where the qubit loses information to its surrounding
environment.
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2.1.2 Time Dynamics of Quantum systems

Manipulation and control of a quantum state is an essential ingredient in experiments.
The natural evolution of quantum states follow the Time Dependent Schrödinger equation
[22]

iℏ
d |ψ⟩
dt

= Ĥ(t) |ψ⟩ ,

|ψ(t)⟩ = Û(t) |ψ(t = 0)⟩

= e−i
Ei
ℏ t |ψ(t = 0)⟩ =

∑
i

cie
−iωit |ϕi⟩ ,

(2.5)

where the third equation follows for states that are an eigenstate given by Ĥ |ψ⟩ = E |ψ⟩ =
ℏω |ψ⟩. The third equation shows the state will undergo a phase evolution at a rate e−iωit.
For superpositions of initial states |ϕi⟩, the quantum state can be decomposed into a linear
mix of the eigenstates weighted by the initial amplitudes ci and will each evolve according
to the eigenstate’s energy.

To realise operators on quantum systems, we can consider the effect of turning on a Hamil-
tonian for Ĥ(t) a length of time which results in an operator Û(t) acting on the quantum
state. A common set of operators on a qubit state are the R̂X , R̂Y and R̂Z rotation

R̂X(θ) = e−i θσ̂x
2 =

(
cos θ

2 −i sin θ
2

−i sin θ
2 cos θ

2

)
, (2.6)

R̂Y (θ) = e−i
θσ̂y

2 =
(

cos θ
2 sin θ

2
sin θ

2 cos θ
2

)
, (2.7)

R̂Z(θ) = e−i θσ̂z
2 =

(
e−i θ

2 0
0 e−i θ

2

)
. (2.8)

A rotation about any axis n̂ = (nx, ny, nz) is given by: R̂n̂(θ) = e−i θn̂
2 = cos θ

2I −
i sin θ

2(nxσ̂X +nyσ̂Y +nzσ̂Z). These rotation matrices are often written in the Pauli matrix
basis. The Pauli matrix often appears naturally in many Hamiltonians and are used as
gate operations on qubits. Some common rotations are shown in table 2.1.

Operation Rotation Matrix Matrix

X̂(π) iR̂X(π)
(

0 1
1 0

)

X̂(±π
2 ) e±iπ/4R̂X(π

2 ) e±iπ/4
√

2

(
1 ∓i

∓i 1

)

Ŷ (π) iR̂X(π)
(

0 −i
i 0

)

Ŷ (±π
2 ) e±iπ/4R̂Y (π

2 ) e±iπ/4
√

2

(
1 ∓1

±1 1

)

Table 2.1: Rotation matrix of commonly used single qubit rotations.

These operations differ from the respective rotation matrix by a phase factor. For single
qubit systems or global rotations, this global phase is not important and is often neglected.
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However, it is crucial to remember such factors when dealing with rotations on a subset of
a quantum element in the system.

Equivalently, operations on density matrices can be written as ρ(t) = Û(t)ρ(t = 0)Û †(t).

Operations and evolution of the Bloch vector can be viewed as rotations about the relevant
axis as seen in Fig. 2.1A. As a static offset in energy does not influence the dynamics, we
can define the ground state energy E|0⟩ = 0. Quantum states with a |1⟩ component will
have that component evolve at e−iωt, where ω = E|1⟩ − E|0⟩. On the Bloch sphere, this
corresponds to an azimuthal rotation about the z-axis as seen in Fig. 2.1B.

The final piece of manipulation of a quantum system is measurement. In quantum me-
chanics, a measurement operator, M̂ , is defined as the projection of the quantum state into
an eigenstate of the measurement operator |m⟩ ⟨m|. For example, a measurement operator
|1⟩ ⟨1| acting on a quantum state Eq. (2.1) will give M |ψ⟩ = |1⟩ with probability |β|2. The
expected value of a measurement observable on an ensemble average is

⟨M̂⟩ = ⟨ψ|M̂ |ψ⟩ = Tr{ρM̂}. (2.9)

In realistic experiments, an initially pure qubit state can decohere. This occurs through
environmental energy loss, thermal excitation or other sources of noise. Information on
the quantum state is lost and any further processing on it will become meaningless. Deco-
herence is the loss of a quantum state over time and is described by two processes: energy
relaxation over a time scale T1 or dephasing over a time scale of T ∗

2 .

Energy relaxation occurs when the qubit decays into the ground state and loses all state
and phase information. This can occur due to noise at the qubit frequency or coupling
with the surrounding lossy environment. On the Bloch sphere, the Bloch vector will evolve
towards the North pole, the |0⟩ state, as seen in Fig. 2.1C.

Conversely, dephasing events are characterised by the loss of a well-defined phase on the
Bloch sphere. This can be seen as moving towards the center of the Bloch sphere. De-
phasing occurs due to stochastic shifts in the qubit frequency or reference drive source that
lead to a variation in qubit evolution (Fig. 2.1B). Over many iterations, the Bloch vector
will point in different directions on the plane. The ensemble average of the qubit state is
a Bloch vector with a smaller length. The qubit lifetime T1 and coherence time T2 can be
related via a pure dephasing time Tϕ

1
T ∗

2
= 2
T1

+ 1
Tϕ
. (2.10)
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2.1.3 Bosonic Modes

As compared to the two-level qubit system, the quantum harmonic oscillator (QHO) is
an infinite-level system. Similar to classical harmonic oscillators, QHO can be used to
describe many real-world scenarios such as vibrations in a phonon lattice or molecular
bonds to experimental setups such as mechanical cantilevers or LC resonators. These
bosonic modes are governed by the Hamiltonian:

Ĥ = ℏω
(
â†â+ 1

2

)
(2.11)

where â† and â are the creation and annihilation operators and ℏω is the energy difference
between energy levels. 1
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Figure 2.2: Quantum harmonic oscillator (QHO) energy levels and ex-
amples of Fock state distributions. (A) The QHO is a very common system
with a parabolic potential well. The energy levels are equally spaced by ℏω. (B)
Examples of different bosonic states are represented in the Fock basis. In blue,
an equal superposition of the ground and fourth Fock state. In green, the pho-
ton number distribution of a coherent state with a mean of 9 photons. Finally,
in red, a thermal state with a mean of two photons in the bosonic mode.

Fock states and Thermal States

A common basis state to use for the quantum system is the photon number basis. This is
known as the Fock basis

|ψ⟩ =
∞∑

n=0
cn |n⟩ (2.12)

with probability amplitudes cn. The number operator is n̂ = â†â with eigenstates given as
Fock states |n⟩ and corresponding eigenvalue n. In Fig. 2.2B, the Fock state distribution
of a thermal state with mean photon number nth = 2 is plotted (red).

1Similar to the qubit states, we often drop the zero point energy 1
2ℏω.
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An important operator on the QHOs is the parity operator

Π̂ = (−1)n. (2.13)

This operator is useful during state reconstruction of the bosonic mode and is also used in
quantum error correction codes. For example, in the binomial code, logical states have the
same parity. Thus, an error such as the loss of a photon is detectable without destroying
any superposition of the logical states [32].

In realistic experiments, bosonic modes will have some loss rate κ. The loss rate will scale
with each fock state: κn = nκ. For a state with n photons, each photon can independently
decay. Thus, the overall Fock state has a reduced lifetime by a factor n [33, 34].

Another important bosonic state is the thermal state. Such states are a generalisation
of classical thermodynamics in the language of quantum mechanics. Thermal states are
often considered to be classical states as the photon number distribution follows Boltzmann
statistics [22]. They can be described by a density matrix with Boltzmann factors ℏω

kBT

ρ(nth) =
(

1 − exp
(

− ℏω
kBT

)) ∞∑
n=0

exp
(

−nℏω
kBT

)
|n⟩ (2.14)

= nth

∞∑
n=0

exp
(

−(n+ 1) ℏω
kBT

)
|n⟩ (2.15)

nth = 1
exp

(
ℏω

kBT

)
− 1

(2.16)

where nth is the mean number of photons in the bosonic mode with mode frequency ω, ℏ
is the reduced Planck constant, kB is the Boltzmann constant and mode occupation tem-
perature T . The photon number probability distribution follows a thermal distribution

P (nth, n) = nn
th

(nth + 1)n+1 . (2.17)

This is a super-Poisson distribution as the variance of the distribution is greater than the
mean of the distribution, ∆n2 = ⟨n⟩ + ⟨n⟩2 > ⟨n⟩. Due to the classical fluctuations of
photon number, the quantum state has a reduced purity given by

P = 1
2nth + 1 . (2.18)

While it is not immediately obvious that such classical thermal states can still show quan-
tum properties, in chapter 6, a coherent superposition of thermal states is shown. This
was done using only coherent dynamics and without changing the entropy of the system
by cooling or measurement.
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Coherent States

Due to the equal energy spacing of the harmonic oscillator, if a classical drive is applied to
a QHO, the quantum state would start to occupy higher energy levels depending on the
strength of the drive. The resulting state is called a coherent state. Coherent states have
evolution dynamics that resemble a classical harmonic oscillator and have the minimum
Heisenberg-limited quantum fluctuations [22, 35]. The coherent state written in the Fock
basis is

|α⟩ = e− |α|2
2

∞∑
n=0

αn

√
n!

|n⟩ (2.19)

where α relates to the amplitude and phase of the drive. The coherent state is an eigen-
state of the annihilation operator â |α⟩ = α |α⟩. Coherent states have a photon number
distribution

Pα(n) = |⟨n|α⟩|2 = e−|α|2 |α|2n

n! (2.20)

which is a Poissonion distribution with standard deviation ∆n = n̄, for a mean number of
photons n̄ = |α|2.

The evolution of coherent states with time is only a change of the phase of α

|α(t)⟩ = e− |α|2
2
∑

n

αne−i(ω(n+ 1
2 ))t

√
n!

|n⟩

= e−iωt/2e− |α|2
2
∑

n

(αe−iωt)n

√
n!

|n⟩

≡ |αe−iωt⟩ .

(2.21)

The global phase factor e−iωt/2 is due to the non-zero ground state energy and can be
neglected. Similarly, for a mode with an energy loss rate κ, a coherent state will decay as:
|α(t)⟩ = |α(t0)e− κ

2 t⟩.

The classical drive on a harmonic oscillator can be written as a unitary operation called
the displacement operator

D̂(α) = eαâ†−α∗â (2.22)
D̂(α) |0⟩ = |α⟩ (2.23)

Similar to the Fock basis, an arbitrary bosonic mode can be represented by a distribution
of coherent states. The set of coherent states is an overcomplete basis that can represent
any state in the QHO [24]. The basis change moves from the discrete Fock basis to a
continuous variable (CV) system. Some quantum error correction codes [36] use this CV
basis as the logical states. As an experimentalist, it is enlightening to view quantum circuit
protocols from these two equivalent bases.



22 2.1 Quantum Information Processing

2.1.4 Visualising Continuous Variable Systems

To fully describe a given quantum state, we need to perform quantum state tomogra-
phy. Quantum state tomography is a method to reconstruct a given quantum state using
measurements on an ensemble of the input quantum state.

For the two-level qubit, this involves measurements along x, y and z axes to reconstruct
the general qubit state. The different bases are required to reveal differences between a
classical mixture or a quantum superposition of states [37]. However, the infinite Hilbert
space of bosonic modes requires a different measurement method.

Similar to the qubit, bosonic modes can also have correlations between different bosonic
states. A mathematical tool used to study such quantum features for bosonic modes is the
Wigner function [38]. The Wigner function W (β), where β is a complex-valued phase space
location in the coherent state basis and W (β) is real-valued, is a complete representation
of the state of a bosonic quantum-mechanical system. It is a probability distribution as
the function is normalised,

∫
W (β)d2β = 1. However, the probability distribution can take

negative values which have no classical analogue and reveal the quantum nature of a state.
The Wigner function can be written as [39]

W (β) = 2
π

Tr
{
D̂(β)Π̂D̂†(β)ρ

}
. (2.24)

This is equivalent to doing a displaced parity measurement over the entire phase space of
the bosonic mode.

Another equivalent description of the bosonic mode is the generalised Husimi-Q function.
The generalised Husimi-Qn measurement gives the probability of finding n photons at a
given point in phase space. The two functions are related by

Qn(β) = 1
π

Tr
{

⟨n|D̂†(β)ρD̂(β)|n⟩
}
, (2.25)

W (β) =
∞∑

n=0
(−1)nQn(β). (2.26)

The Wigner function can be calculated by taking the difference between the even and
odd photon probabilities. Similar to viewing the bosonic mode with a different basis,
some experimental setups would naturally prefer one measurement method or the other to
reconstruct the bosonic quantum state.
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Figure 2.3: Examples of Wigner distribution of different bosonic states.
(A) A Fock state with a single photon |1⟩. It is useful to note that the parity
of the state at P (β = 0) = −1. (B) The ground state of the cavity is plotted.
The parity of the state at P (β = 0) = 1 and the ground state has a standard
deviation of 1

2 . (C) Thermal state with a mean of two photons in the bosonic
mode. Compared to the ground state, the thermal state has a bigger phase
space extent that scales as 1/(nth) and a smaller parity and purity value (D)
An equal superposition of the |0⟩ and |4⟩ Fock state is plotted. This state is
also one of the logical states used in the binomial code [40]. (E) An entangled
cat with state |ψ⟩ = 1√

2(|e,−α⟩ + |g, α⟩). Here, the parity of the |−α⟩ coherent
state is flipped to reflect the experimental method used to measure parity shown
in Sec. 4.3.1. The qubit in the |e⟩ state will have an opposite mapping of the
parity value. (F) Wigner Function of a Schrödinger cat state 1√

2(|α⟩ + |−α⟩))

In Fig. 2.3, examples of Wigner functions of several bosonic states are plotted. Comparing
Fig. 2.3A and Fig. 2.3B, we see that fock states have a well-defined photon number but
the phase is undefined. Conversely, the coherent states have a well-defined phase up to the
Heisenberg uncertainty but have a distribution of photon numbers.

Behind every QHO, we have a physical Hamiltonian that is expressed in some conjugate
position x̂ and conjugate momentum p̂ coordinates. These are then expressed in terms of
the raising and lowering operator â† and â with some zero point fluctuation. This is shown
explicitly for the LC resonator case in Sec. 2.2.1. It is important to note that the zero-
point fluctuation is not uniquely defined. Different normalisations can lead to different axis
scaling factors between the generalised coordinate space W (x, p) and expressing in terms
of the coherent states W (β). However, this is merely a scaling factor and does not change
the underlying physics. In Fig. 2.3B, the ground state has a standard deviation of 1/2.
This is due to a choice of the normalisation X̂ = 1

2(â† + â) (see appendix A.2 for a detailed
explanation).
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2.1.5 Schrödinger Cat States

In the original Schrödinger cat state thought experiment [1], a cat is placed in a box with
a jar of poison and a radioactive atom. Depending on the decay state of the atom, the
poison is released and the cat is killed. In this experiment, the cat state is entangled
with the decay state of an atom. This experiment highlights the quantum properties of
entanglement between classical and quantum objects.

The quantum state of the system can be written as: |ψ⟩ = |atom, cat⟩ ∝ |nodecay, alive⟩ +
|decay, dead⟩. As shown in Fig. 2.3E, with a qubit and a bosonic mode, this is equivalent
to |qubit, bosonicmode⟩ ∝ |0, α⟩ + |1,−α⟩. By measuring the qubit state in |0⟩ or |1⟩ will
also project the bosonic mode to |α⟩ or |−α⟩ respectively. In this case, the qubit and the
bosonic modes are entangled.

Analogous to the Schrödinger cat state, the bosonic mode can also be in a superposition of
two coherent states. In Fig. 2.3F, the bosonic mode is in the state |ψ⟩ ∝ |α⟩ + |−α⟩. The
qubit is disentangled from the bosonic mode and we see fringes between the two bosonic
states in the Wigner function. These negativities reveal the quantum nature of the bosonic
state. To distinguish between the entangled Schrödinger cat states, these superposition
states are sometimes called cat states.

In chapter 5, I show methods to generate cat states with the superconducting circuits
platform. In chapter 6, I demonstrate the generation of hot Schrödinger cat states by
creating a coherent superposition of thermal states.

2.2 Superconducting circuits

Superconducting circuits are a promising platform for realising well-controlled quantum
systems for quantum information processing, quantum optics and quantum simulation
experiments. While every platform has its advantages and drawbacks, superconducting
circuits have two main advantages. Firstly, the samples can be fabricated with methods
used in the existing complementary-metal-oxide-semiconductor (CMOS) industry. This
compatibility allows for ease of scalability and design of many circuit elements. Secondly,
using different circuit elements, we can build engineered Hamiltonians with a wide range
of parameters. A detailed review of superconductors can be found in [41, 42].

Superconductors are non-dissipative materials where currents can flow without any elec-
trical resistance. In superconducting materials, electrons pair up via phonon interactions
with the lattice to form Cooper pairs. These Cooper pairs experience no resistance while
carrying the charge through the material. The electric field mode of such superconductors
can be used as storage for quantum information.



2 Theory 25

These circuit elements can have large dipole strengths which gives strong coupling and
interaction energies in the Hamiltonian. These interactions can be used to protect and
control the quantum system. With such a coupled system, we have access to the rich
circuit Quantum Electrodynamics (cQED) toolbox.

2.2.1 LC resonators

The simplest circuit is made up of a capacitor and inductor in parallel (Fig. 2.4A). Anal-
ogous to the mechanical pendulum, the energy oscillates between the electrical energy in
the capacitor C which can be associated with "kinetic energy" and the magnetic energy in
the inductor L associated with "potential energy" (Fig. 2.4B).

C L

E B

Figure 2.4: Schematic of an LC circuit. The parallel inductor L and capacitor
C make a harmonic oscillator. In this system, the oscillations are between the
electric field stored in the capacitors and the magnetic field in the coil.

To derive the Hamiltonian of the system, we consider the energy associated with the mode
and the inductor and capacitor current relationships [43]

E(t) =
∫ t

−∞
I(τ)V (τ)dτ (2.27)

IC = C
dVC

dt
(2.28)

IL = 1
L

∫ t

−∞
VL(τ)dτ. (2.29)

The circuit is then considered at different nodes. A node is a region between two circuit
elements that are connected by ideal wires. Expressing these equations in terms of a
node fluxes Φ(t) =

∫ t
−∞ V (τ)dτ and node charges Q(t) =

∫ t
−∞ I(τ)dτ . We can write the

Lagrangian L of the system and thus the Hamiltonian H as

L = CΦ̇2

2 − Φ2

2L (2.30)

H = Q2

2C + Φ2

2L. (2.31)
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We consider the system in terms of the photon excitation numbers. Writing the Hamilto-
nian can be written with photon number formalism by "second quantisation" of the flux Φ̂
and charge Q̂. We introduce creation â† and annihilation â operators

Φ̂ = ΦZPF(â† + â) (2.32)
Q̂ = iQZPF(â† − â) (2.33)

where zero point fluctuations of flux and charge are ΦZPF =
√

ℏZ
2 and QZPF =

√
ℏ

2Z .
The characteristic impedance of the circuit mode is Z =

√
L
C . Doing the expansion of

the Hamiltonian, we arrive at the same QHO equation Eq. (2.11), with mode frequency
ω = 1√

LC
.

2.2.2 Josephson Junctions, Transmons and SQUIDs

Quantum harmonic oscillators have a linear energy level separation. This leads to unwanted
transitions to higher excited states that leave the computational subspace when the system
is coherently driven. A solution is to build a non-linear system with anharmonicity, meaning
that the transition frequency from the state |0⟩ to |1⟩ (ω01) and that from |1⟩ to |2⟩ (ω12)
are sufficiently different. In superconducting circuits, such non-linear systems, are created
from Josephson junctions.

The junctions are made by sandwiching an insulating layer (an oxide) between two su-
perconducting layers (aluminium) (Fig. 2.5A). The insulating layer acts as a potential
barrier for the Cooper pairs to tunnel through. This results in a relation between the tun-
nelling current and phase across the Josephson junction known as the Josephson relations
[44, 45]

I = Ic sin(ϕ) (2.34)
dϕ

dt
= 2eV

ℏ
(2.35)

where IC , ϕ and V are the critical current, phase difference and potential difference across
the junction. The voltage and current across the junction are given by taking the time
derivative of Eq. (2.34) and the time integral of Eq. (2.35)

V = Φ0
2π

1
IC cosϕİ = LJ İ (2.36)

I = IC sin 2πV
Φ0

t+ δ0 (2.37)

where Φ0 = h
2e is the magnetic flux quantum and LJ = Φ0

2π
1

IC cos ϕ is a non-linear induc-
tance of the Josephson junction and δ0 is some offset phase which can be neglected. The
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Hamiltonian of the Josephson junction can be given by calculating the energy due to the
tunnelling of the Cooper pairs and the capacitance of the Josephson junction

H =
∫
IV dt+ UC (2.38)

=
∫
IC sinϕ(t) ℏ

2e
dϕ

dt
dt+ 1

2
Q2

CJ
(2.39)

= −EJ cosϕ+ 4ECN
2 (2.40)

where we have used Q = N×2e for an excess of N Cooper pairs with charge 2e on one side
of the junction. The Josephson energy EJ = Φ0IC

2π is the characteristic coupling energy and
charging energy EC = e2

2CJ
is the energy needed to transfer one electron across the junction.

Equation 2.40 has a constant energy offset after the integration which can be neglected.
Thus, we can view the Josephson junction as a capacitor in parallel with a non-linear
inductor (Fig. 2.5B) which results in a energy levels in a cosine potential (Fig. 2.5C).

CJ

A C

B

Figure 2.5: Josephson Junction schematic, circuit and energy lev-
els. (A) The Josephson junction is made out of a superconductor-insulator-
superconductor (SIS) sandwich. The superconducting islands will have a macro-
scopic phase difference which results in a non-linear inductance. Figure taken
from [46]. (B) Electrical circuit representation of the SIS junction. (C) The co-
sine potential from the junction inductance results in an anharmonic potential
with different energy level spacings.

Similar to the QHO, we can introduce occupation number formalism by quantising the
phase ϕ and number N operators to arrive at the Cooper pair box Hamiltonian [47]

ĤCPB = 4ECN̂
2 − EJ cos ϕ̂. (2.41)
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Transmon regime

For the Hamiltonian Eq. (2.41), small fluctuations of charge number N will cause large
changes in the energy level [48, 49]. This is known as charge noise. To circumvent this
problem, the qubits are designed to be in the so-called transmon regime [50] such that
EJ
EC

≫ 1. These qubits have already shown coherence times that are orders of magnitude
larger than single qubit gate times, T ∗

2 /tgate ≈ 105 [51].

Drawing parallels to an LC harmonic circuit, the first term in Eq. (2.41) represents the
kinetic energy of the "particle" and the second term represents a cosine potential well.
Thus, the energy levels have different gaps because of this non-linear junction inductance
LJ .

In this limit, the "particle" is confined towards the minimum of the cosine potential2 and
thus we can expand the cosine term: cosϕ ≈ 1 − 1

2ϕ
2 + 1

4!ϕ
4 +O(ϕ4). Introducing creation

and annihilation operators for the qubit

ϕ̂ = ϕZPF(â† + â) (2.42)
N̂ = iNZPF(â† − â) (2.43)

where ϕZPF = 4
√

2EC
EJ

and NZPF = 1
2

4
√

EJ
2EC

are the respective zero point fluctuations. Using
the rotating wave approximation (RWA), where non-energy conserving and fast oscillation
terms, such as â†â† are removed. These fast oscillation terms average to zero over one
oscillation period, leaving the slower rotating terms â†â that determines the dynamics.
The transmon Hamiltonian is

Ĥ = ℏωqâ
†a− α

2 â
†â†ââ (2.44)

ℏωq =
√

8EJEC − EC (2.45)

where the frequency of the qubit is ωq and the anharmonicity of the qubit is α = EC . The
anharmonicity between energy levels sets the speed and selectivity of qubit operations.
Fast qubit gates will have a broad frequency spectrum. This combined with a small an-
harmonicity, will lead to leakage to higher excited states. The default operating regimes
are EC ≈ 100 − 400 MHz and EJ

EC
≈ 20 − 200 with higher transmon ratio meaning a qubit

localised in the cosine potential well but lower selectivity in the qubit transition frequency
[50].

The transmon qubit allows us to build artificial atoms with various parameters. Such
systems are also easily extended to qudit algorithms with each successive energy level
being different from the previous [30].

2One should note that this can be broken during a measurement process that causes the qubit to be
excited out of the potential well and lead to excessive measurement-induced dephasing [52].
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2.2.3 Circuit QED

There are two methods to obtain the Hamiltonian that describes the coupling of two
elements (resonators or qubits) in a system. The first method describes the coupling of a
qubit to a cavity in a semi-classical treatment of the system. The Hamiltonian obtained
is known as the Jaynes-Cumming (JC) Hamiltonian [53] and will be explained in this
section. Alternatively, the system Hamiltonian can also be derived via the linearisation of
the system into the dressed frequencies and calculating the coupling between the modes.
This is known as black box quantisation and is shown in Sec. 3.2.3.

The JC Hamiltonian describes an atom interacting with a bosonic mode [53]. This can
also be used to describe our transmons as artificial atoms and resonators as QHO. This
is a semi-classical method by taking the quantum nature of the atom interacting with a
classical electric field from the bosonic mode.

The electric field from a mode can be written as E(ĉ† + ĉ). Thus, the dipole interaction of
the qubit mode, d(q̂† + q̂), with the bosonic electric field E(ĉ† + ĉ) is

ĤJC−interaction = E · d(ĉ† + ĉ)(q̂† + q̂) (2.46)
≈ ℏg(ĉ†q̂ + ĉq̂†) (2.47)

where the coupling strength ℏg is proportional to the inner product of the electric field of the
qubit and bosonic mode and the specific transition matrix between the qubit and bosonic
energy levels. For superconducting circuits, we can design large dipole lengths leading to
strong coupling strengths of g/2π ≈ 100 − 600 MHz with small loss rates γ ≪ 1 MHz.

In the regime where the coupling strengths are smaller than individual element frequencies,
g ≪ ωc, ωq, we can use the RWA to arrive at the second equation which describes the
interaction between the bosonic mode and the qubit. For a simplified two-level qubit, the
eigenfrequencies for a coupled state |qubit, cavity⟩ = |±, n⟩ are

ωn,± = nωc ± ℏ
2

√
∆2 + Ω2

n (2.48)

where ∆ = ωc − ωq is the detuning between the modes and Ωn = 2g
√
n+ 1 is the Rabi

frequency of the system for a specific cavity transition level. Near resonances, the frequen-
cies will have an avoided crossing feature and experience vacuum Rabi oscillations between
the two eigenstates. In this interaction regime, the two modes are highly hybridised and
we can only call them "cavity-like" and "qubit-like" modes. An example of the feature is
shown in Fig. 2.6 where a gap between the qubit and cavity frequency opens up. If the two
modes are not coupled, the cavity and qubit frequencies will follow the dashed green and
black lines respectively. The avoided crossing feature is used to determine the coupling
strength g in simulations Sec. 3.2.1.
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The vacuum Rabi oscillations result in excitation swapping from one mode to another and
can be used as a two qubit gate [54]. The excitation swapping can be observed when we
tune a qubit near another mode. Firstly, the far-detuned qubit is tuned near the resonance
of a cavity and the system is allowed to evolve for a delay time. After which the qubit is
tuned far away from resonance, the final population of the qubit is then a function of the
delay time.

4.0 4.5 5.0 5.5 6.0
Qubit Frequency (GHz)

4.0

4.5

5.0

5.5

6.0
Fr

eq
ue

nc
y 

(G
Hz

)
gap = /

qubit

Figure 2.6: Calculated eigenfrequencies on avoided crossing feature.
Away from the avoided crossing, we see the cavity mode at 5GHz. As the
qubit is tuned near to the cavity frequency, we see a splitting of the two
frequencies due to the hybridisation of the two modes. In this regime of
∆/2π = fcavity − fqubit = ±g/2π, the modes are only "cavity-like" and "qubit-
like". For this calculation, g/2π = 200 MHz.

Strong Dispersive Limit

In the strong dispersive limit, the detuning between coupled modes is much greater than
their coupling strength, ∆ ≫ g. Using pertubation theory, we can derive the dispersive
Hamiltonian via a unitary transformation of the JC Hamiltonian [28]

Ĥdispersive = ℏω̃cĉ
†ĉ+ ℏω̃q q̂

†q̂ − χĉ†ĉq̂†q̂ − α

2 q̂
†q̂†q̂q̂ (2.49)

Ĥresonator−shifted = (ℏω̃c − χq̂†q̂)ĉ†ĉ+ ℏω̃q q̂
†q̂ − α

2 q̂
†q̂†q̂q̂ (2.50)

Ĥqubit−shifted = ℏω̃cĉ
†ĉ+ (ℏω̃q − χĉ†ĉ)q̂†q̂ − α

2 q̂
†q̂†q̂q̂ (2.51)

where the dressed frequencies of the qubit ω̃q and resonator ω̃c are renormalised due to a
Lamb shift induced by the vacuum Rabi interactions. Importantly, the resonator frequency
is shifted by χ for each excitation q̂†q̂ of the qubit mode as seen in Eq. (2.50). Alternatively,
the qubit frequency is shifted by χ for each photon ĉ†ĉ in the cavity. The two ways of
viewing the dispersive Hamiltonian is shown in Fig. 2.7.
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Figure 2.7: Dispersive readout and number splitting view of the disper-
sive Hamiltonian. (A) Dispersive readout where the qubit state shifts the
readout resonator by χ/2π. Thus, readout resonator reflection measurements
will show different frequency values. (B) Each photon in the resonator will shift
the qubit frequency by χ/2π. Thus, qubit spectroscopy will show a distribution
of qubit frequencies according to the cavity photon number state.

By determining the frequency of the cavity, the state of the qubit can be inferred. This is
known as dispersive readout, in which the qubit state is inferred by coupling the qubit to a
low Q resonator and letting the photons of the readout resonator leak into its environment
(the measurement device). The dressed frequencies and dispersive interaction are given by
[28]

ω̃c = ωc − g2

∆ − EC
ℏ

(2.52)

ω̃q = ωq + g2

∆ (2.53)

χ = 2g
2

∆
1

1 − ∆
EC

(2.54)

where ω̃c,q and ωc,q are the dressed and bare frequencies of the cavity and the qubit
respectively.

Considering, the JC Hamiltonian and the coupling strength of the bosonic mode to the
qubit gn ∝ 2g

√
n. To be in the dispersive limit for all occupied levels, we need to stay

below the limit where gn < ∆. This gives an upper bound of the critical number of photons
in the cavity mode ncrit = (∆/2g)2.

As mentioned in the beginning, the dispersive Hamiltonian can also be derived by consider-
ing the dressed modes of the system. In this view, each mode induces a current flow through
each junction. From the Josephson relation Eq. (2.34), we can relate the phase across the
junction being the sum of the contributions from the different modes, ϕ̂∑i ϕ

i
ZPF(̂i† + î).

This is shown in Sec. 3.2.3.
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2.2.4 SQUIDs and Flux Tuning

The transmon qubits considered are fixed-frequency qubits. To allow for in-situ tuning
of qubit frequencies, two Josephson junctions are placed in parallel, producing a DC Su-
perconducting Quantum Interference Device (SQUID) [55]. This geometry allows for the
Josephson energy to be adjusted by a magnetic flux through the SQUID loop

ESQUID
J (Φ) = 2EΣ

J

∣∣∣∣cos
(
π

Φloop
Φ0

)∣∣∣∣2
√

1 + α2
I tan2

(
π

Φloop
Φ0

)
(2.55)

where EΣ
J = E1

J +E2
J is the sum of the individual Josephson junctions, Φloop is the magnetic

flux through the SQUID loop and αI is the asymmetry factor between the junction induc-
tances, or equivalently, the ratio of junction sizes. Examples of SQUID frequency tuneabil-
ity with different asymmetry factors are plotted in Fig. 2.8. By tuning the qubit frequency,
we can also tune the strength of the dispersive interaction χ between the modes.

Figure 2.8: SQUID frequencies with threaded flux. A SQUID element is
made by placing two Josephson junctions in parallel. Inset: circuit represen-
tation of the SQUID element. By threading a magnetic flux through the loop
created by the Josephson junctions (grey area), we can tune in-situ the SQUID
frequency. The degree of tuneability can be adjusted by the relative Josephson
energies of the individual junctions (denoted by the different colours in the leg-
end). Due to stochastic fabrication processes, we have d > 0.1.

While SQUIDs allow the fine in-situ tuning of the qubit frequency, this extra control knob
comes at a cost. The qubit is exposed to flux noise which will cause variations in the
qubit frequency and cause a faster dephasing rate. To avoid excessive dephasing, extra
care needs to be considered in filtering such flux bias lines.

For full qubit frequency range tuneability, these flux bias lines must deliver at least a full
flux quantum. For fast qubit frequency tuning, we might need to account for the response
of the coil loops and thus might need as much as 5Φ0. This can be done by scaling up
the SQUID loop size or increasing the current in the flux bias line. However, the former
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is undesirable as the additional dephasing rate with flux will grow as a function of SQUID
loop size [56]. The latter is limited by the amount of current we can put into the cryostat
before the experiment warms up. Thus, the flux bias lines need to be as efficient as possible.
In Sec. 3.5, I describe the fabrication of a new generation of flux hoses that allows magnetic
fields to be guided into a superconducting 3D cavity.

2.2.5 Purcell Decay and Filters

For dispersive readout, we drive the readout resonator with photons and measure its re-
sponse. The rate of the resonator photons leaking out is the linewidth of the cavity κ. For
a high measurement fidelity, we want the total measurement time to be much faster than
the lifetime of the qubit. Thus, one might assume that we want as large a κ as possible.

However, the dispersive coupling between the qubit and low Q readout resonator will
provide a decay channel for the qubit [57]. The Purcell effect is the enhancement of the
spontaneous decay of an atom when the cavity and atom are on resonance. In our case,
our artificial atoms have large dipole moments and will naturally have strong couplings to
their environment. The qubit is limited by a decay rate of [58]

ΓPurcell = κ

(
g

∆

)2
(2.56)

where κ is the decay rate of the resonator, g and ∆ is the coupling strength and detuning
between the resonator and qubit. The g

∆
2 factor comes from the Lorentzian shape of the

resonator. Thus, to suppress the Purcell rate of the qubit, we need to decrease the qubit
resonator coupling, increase the detuning between the qubit and the resonator, reduce the
energy damping rate of the resonator or change the Lorentzian shape of the resonator.

However, the first three methods lead to longer readout times. This ultimately reduces
readout fidelity due to the finite lifetime of the qubit. For fast readout of the resonator, we
desire a large κ for faster leakage of resonator photons and a strong coupling between the
qubit and readout resonator χ ≈ g2

∆ . But this comes at a cost of increased Purcell decay
of the qubit. Thus, there is a balance between these competing requirements. It has been
shown that the optimal readout is when κ = χ [59, 60].

In the dispersive limit, the large detunings between the qubit and the resonator provide an
opportunity to break the trade-off between fast readout and protection. This is done with
Purcell filters that suppress the qubit frequencies in the measurement line. Some methods
are shown in Fig. 2.9. These methods work by reducing the transmission probability into
the environment at the qubit frequency.

Firstly, another resonator can be coupled to the qubit. The two qubit-resonator decay paths
destructively interfere at the measurement line. This can be seen as adding a notch filter
at the qubit frequency in the spectrum [61]. Alternatively, a bandpass filter can be added
that only allows the transmission of frequencies around the readout resonator [62–64]. Or if
possible, the experiment can be placed in a waveguide that suppresses transmission below
the waveguide cut-off frequency. The cut-off of the waveguide will protect the qubit from
decaying to its environment [65].
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Figure 2.9: Comparision of decay rates of the qubit for different setups.
Due to the coupling to the readout cavity, the qubit will have a Purcell rate
given by the blue line. Accounting for higher modes of the cavity, the multi-
mode Purcell effect (purple dashed line) results in an even lower limit of the
maximum qubit T1 time. Different methods show the Purcell protection from a
notch filter at the qubit frequency (red dashed line) and a bandpass filter that
only allows the transmission near the cavity frequencies (yellow dashed line).
The notch filter can be achieved by a simple addition of another resonator and
provides Purcell protection at a specific qubit frequency (in this example, at
5.5 GHz). Conversely, the bandpass filter is more complicated to design but
provides Purcell protection for a range of qubit frequencies (in this example,
below 6 GHz). Not shown are methods such as using a waveguide, careful posi-
tioning of the readout pin or a saturable filter.

A passive Purcell protection method works by placing the measurement pin at the node of
the electric field of the qubit mode. At such a location, the qubit electric field is not able
to excite a mode in the coaxial measurement line and thus the decay is suppressed [66].

While these methods have been shown to beat the readout trade-off problem, for control
lines used to address both the qubit and cavity modes, Purcell filters introduce a qubit
control problem. In the ideal case, complete suppression of the coupling between the
measurement line and qubit mode leads to sacrificing control of the qubit. Experimentally,
this means more power is needed in qubit signals or a separate qubit control line is required.
Saturable or non-linear Purcell filters have been suggested to overcome this limitation
[67, 68].

In Sec. 3.6, I describe the fabrication of a modular bandpass Purcell filter that is integrated
into a coupling pin for 3D cavity architectures.
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2.3 Quantum Control

To perform operations on the quantum systems, the relevant qubit or cavity mode d has to
be coupled to an external drive E. For superconducting circuits, the drive is a microwave
drive at frequency ωd introduced by an external coupling pin. This adds another term in
the Hamiltonian d · E(t)(â†e−iωdt + âeiωdt). For cavity modes, such on-resonant classical
drives are described by the displacement operator

Ûcavity control = e−i 1
ℏE(t)(â†+a)t ∝ D̂(E(t)t). (2.57)

By turning on a drive E(t) for a certain time t, we can apply a displacement on the cavity.
The phase of the drive will also determine the phase of the displacement.

For qubit modes with sufficiently large anharmonicities, we can consider the simplified
picture of a two-level system and reduce the drive operators â† → σ̂+ and â → σ̂−. By
doing a frame transformation ˜̂

Hd = Û(t)ĤdÛ
† − iℏÛ(t)∂Û†

∂t into the rotating frame of the
drive and performing the rotating wave approximation, the drive Hamiltonian is

˜̂
Hd ∝ E(t)(cosωqtσ̂y − sinωqtσ̂x). (2.58)

The electric field applied can be written as: E(ω, t, ϕ) = V (t)(cosϕ sinωdt+ sinϕ cosωdt).
Considering this drive, Eq. (2.58) is

˜̂
Hd ∝ V (t)(cosϕ sinωdt+ sinϕ cosωdt)(cosωqtσ̂y − sinωqtσ̂x) (2.59)

≈ −1
2V (t)(cos (∆t+ ϕ)σ̂x) + sin (∆t+ ϕ)σ̂y) (2.60)

where ∆ = ωq − ωd and we have used the RWA for the second equation. Thus, for on-
resonance pulses, the Hamiltonian is

˜̂
Hd = −Ω

2 (Iσ̂x +Qσ̂y) (2.61)

for some Rabi frequency Ω that is determined by the overlap between the electric field
of the drive and the mode, and the qubit level transition matrix element. Here, we have
adopted the electrical engineers’ definition for the "in-phase" I = cosϕ and "out-of-phase"
Q = sinϕ components. By changing the drive phase, we can apply σ̂X or σ̂Y operations
giving us universal control on the qubit. σ̂Z rotations can be done by changing the frame
of the drive by changing the phase ϕ. The probability of finding the qubit in the excited
state for a drive with Rabi frequency Ω and detuning ∆ is [31]

P (e) = Ω2

Ω2 + ∆2 sin2
(√

Ω2 + ∆2

2

)
t. (2.62)

By changing the amplitude of the pulse or the length of the pulse we can Rabi flop the
qubit from the ground to the excited state. For off-resonant pulses, the qubit is not fully
flipped to the excited state 3.

3Due to the multi-level nature of the transmon, a drive will also induce AC Stark shifts that change the
frequency of the mode. For the case ∆ ≫ Ω, the AC Stark shift is approximated by Shift ≈ Ω2

∆ [69, 70].
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2.3.1 Conditional Qubit Control

The number splitting Hamiltonian Eq. (2.51) allows for conditional qubit control. Since
the qubit frequency is shifted by χ for each photon in the cavity, we can apply selective
pulses on the different number split qubit peaks, by shaping the spectral content of the
pulse. As illustrated in Fig. 2.10, this is done by defining a Gaussian pulse with a certain
linewidth σt. The linewidth of the Fourier transform of the Gaussian is then given by
σf = 1/(2πσt) (green dashed line).
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Figure 2.10: Calculated qubit spectroscopy of a number split qubit and
frequency spectrum of a cavity photon number selective Gaussian
pulse. In this setup, a qubit is coupled to a cavity in the strong dispersive
regime. Due to the cavity photon state, the qubit frequency is split into many
peaks that correspond to the cavity photon number Here, α = 1.5. By choosing
the spectrum of our qubit pulse (green dashed line), we can perform operations
that affect the qubit at certain frequencies. As these frequencies correspond to
the cavity photon state, this is effectively a qubit operation conditioned on the
number of photons in the cavity.

By choosing a longer pulse length 1
2πσt

< χ/2π, the pulse will be selective on one number
of qubit peaks. This allows qubit operations condition on the number of photons in the
cavity. This can be extended to playing a multi-frequency pulse conditional on an even or
odd number of photons in the cavity.

2.3.2 Two qubit operations

For more complex algorithms, multi-qubit operations are required. There are many possible
schemes of realising operations between two qubits. A good summary can be found in
[28].
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These gates can then be transformed into any two qubit unitary by the addition of other
single-qubit unitaries. Each gate has its own advantages and drawbacks, but in general re-
quires purpose-built hardware and have limited flexibility in applying any target unitary.

Beyond the fixed-design two qubit gates, a scheme to implement a flexible controlled unitary
was proposed by Friis et al [71]. The scheme uses qubits that are coupled via a high
coherence cavity acting as a quantum bus. The multi-qubit gate is realised by mapping the
state of one qubit onto the cavity and playing operations on the second qubit conditioned
on the cavity states. Effectively, this is a controlled operation between the two qubits with
the cavity acting as a quantum bus.

In chapter 7, I explain a proof-of-principle experiment that demonstrates the realisation of
a modular, flexible multi-qubit gate protocol.

2.3.3 Quantum Optimal Control

The generation of high-fidelity quantum states and multi-qubit gate operations is a funda-
mental requirement for quantum physics experiments. With the ability to do displacements
on the cavity and conditional or unconditional rotations on the qubit, we have full univer-
sal control of the quantum system and can produce any target state. However, in reality,
we need to consider imperfections in the system that limit the fidelity of the operation.
These include decoherence, experimental limitations of qubit pulses, stochastic variations of
Hamiltonian parameters, and unknown transfer functions of the qubit and cavity pulse.

Fidelity is a measure of the distance between two states or two gates. When preparing a
final state |ψfinal⟩ from an initial state |ψinitial⟩ using a unitary Û , the state fidelity with
the target state |ψtarget⟩ is

Fst =
∣∣∣⟨ψtarget|Û |ψinitial⟩

∣∣∣2 = |⟨ψtarget|ψfinal⟩|2 . (2.63)

Similarly, the gate fidelity of a unitary Û with Ûtarget is

Fg = 1
N

N∑
i

∣∣∣⟨ψi|Û †Ûideal|ψi⟩
∣∣∣2 (2.64)

= 1
N

N∑
i

|⟨ψfinal,i|ψtarget,i⟩|2, (2.65)

where Ûideal is the ideal state of the target unitary for an input state |ψi⟩, and the sum is
over all possible input states N . Fidelities are often described in the context of quantum
channels and more information can be found in [21, 38].

One can see that optimising a gate is more difficult as the set of all possible input states
needs to be considered. For single qubit unitaries, this entails measuring the overlap
between the final state and the ideal output state when the gate Û is applied to the 6
cardinal states on the Bloch sphere. For example, the gate fidelity of a pulse that realises
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the X̂ operation needs to include the following terms F(Û) = 1
6(
∣∣∣⟨1|Û |0⟩

∣∣∣2 +
∣∣∣⟨0|Û |1⟩

∣∣∣2 +∣∣∣⟨+|Û |+⟩
∣∣∣2 +

∣∣∣⟨−|Û |−⟩
∣∣∣2 +

∣∣∣⟨−i|Û |i⟩
∣∣∣2 +

∣∣∣⟨i|Û | − i⟩
∣∣∣2). For two qubit unitaries, the set of all

possible input states is much larger and grows with the number of qubits n as 6n [72].

Quantum Optimal Control (QOC) is a toolbox to design pulses to improve quantum opera-
tions by dynamically changing the control fields. A good overview of the QOC field can be
found in [73, 74]. The unitary between some initial state and target state need not be only
discrete cavity displacements and qubit rotations. Instead, we can consider a "continuous"
quantum trajectory. This is done by shaping the pulses applied to the quantum system to
dictate the evolution of the system. The optimal unitary ÛQOC is defined as

|ψfinal⟩ = ÛQOC(t,E(t)) |ψinitial⟩ (2.66)

ÛQOC(t,E) = Te−
∫ T

0 Ĥdrivedt. (2.67)

where E(t) is the control fields for each quantum system (qubit and high Q cavity), T is
the total time of the drive Hamiltonian Ĥdrive.

Open-Loop Optimisation

In open-loop optimal control, the quantum system is first characterised and then numeri-
cally simulated. Pulses are applied to the simulated system and the fidelity is maximised.

In the language of computer science, the optimisation problem is to maximise or minimise
an objective function, some fidelity F , that is given by some cost function under some
constraint functions

max
E

F(E) −
∑

i

λigi(E).

where λi is the associated multiplier (weight) for a particular constraint function gi(E).
Constraint functions are used to guide the optimisation towards desired experimental needs,
such as a constraint on the maximum pulse voltage or bandwidth of the pulses applied.

In appendix B, the open-loop optimisation problem is outlined with examples of constraint
functions used and a brief explanation of the different search routines. One notable search
method is gradient descent [75] in which parameters are changed and the direction of search
in the parameter space is guided by the gradient of the objective function with respect to
the change in the control field.
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Closed-Loop Optimisation

Most experiments are guided by Hamiltonians containing terms that are either neglected
in corresponding models or imperfectly characterised. Stochastic variations of the Hamil-
tonian or in the instrument setup exacerbate these imperfections. A method that aims to
mitigate these problems is called closed-loop optimisation.

Closed-loop optimisation works by giving the final state of the operation as feedback to
the optimisation routine. A larger fidelity rewards the routine in a method similar to a re-
inforcement learning algorithm. The main advantage compared to open-loop optimisation
is this feedback mechanism back into the optimisation routine. The optimiser can iterate
over a few control parameters to learn about the objective function "landscape". Then
based on the search method, find the next iteration of pulses to apply to find the optimal
control pulses.

If the repetition rate of experiments is fast, this feedback method can help find optimised
pulses quickly. However, measuring the state or gate fidelity of a quantum process is com-
putationally expensive, especially for a high number of qubits. This problem is even worse
for bosonic modes. The infinite Hilbert space of the bosonic mode requires measurements
across the entire phase space for full-state reconstruction.

However, a carefully chosen figure of merit (FOM) can approximate the final state fidelity.
Two examples of choices for a FOM are

FOM =
∑

iWdata(i)∑
iWideal(i)

, (2.68)

FOM =
∑

iWideal(i)Wdata(i)∑
i |Wideal(i)|2

(2.69)

where the sum is over some chosen distribution of points over the bosonic mode Wigner
function. The first FOM puts equal weights on all distribution points, while the second
FOM has more emphasis on the parts of the Wigner function with larger values. Depending
on the desired target state, one can extend this idea by a prefactor k on the sample points
that should be weighted heavier.

In my work, we collaborated with Dr. Marco Rossignolo and Dr. Phila Rembold from
the group of Prof. Simone Montangero at the University of Padova. A QOC protocol
was used, known as dressed Chopped Randomised Basis (dCRAB) [76, 77] algorithm. In
the dCRAB algorithm, the optimal pulses are defined over some basis and the coefficients
in the basis are optimised. The algorithm then changes the basis in which the optimal
pulses are defined and the optimisation is continued in the new basis. This way, a global
maximum or minimum in the objective function can be found without the need to search
a large control parameter search space.

In Sec. 5.4, a proof of principle experiment demonstrates an improvement of state prepara-
tion fidelity of a cat state. This was done in a closed-looped optimisation routine without
full-state reconstruction. This method applies to any platform and can also be used for
more complex bosonic states [78, 79].
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CHAPTER 3
Experimental Platform

"a little quantum physics"

Apart from the superconducting circuits and quantum physics field, the physical realisa-
tion of the experiment covers many different areas. We operate in the radio frequency
(RF) regime, which uses many proven classical methods to design and simulate our elec-
trical circuits. Many RF instruments can also be commercially bought and directly used.
Likewise, cryogenic systems have become increasingly automated. The fabrication of the
samples uses nano- and micro-fabrication techniques adapted from the complementary-
metal-oxide-semiconductor (CMOS) industry. Finally, machining and polishing methods
are used to build the cavities and mounting clamps. The work of an experimentalist is
to then integrate these different fields according to the needs of each experiment to do a
"little quantum physics".

Information in this chapter will briefly cover these many different aspects of the experi-
mental setup. I had the fortunate opportunity to expand the Kirchmair lab to a new space
and set up a new cryostat. This allowed me to learn more about the finer details of the
instruments behind the experiments. A full in-depth description of each section can be
expanded to cover a chapter on its own, as can be found in many good textbooks and the-
ses [18, 80–83]. However, the goal of this chapter is to outline the working principles used
for the measurements presented in this thesis and the rules of thumb for the experimental
design.

The experimental setup consists of qubits coupled to a high coherence cavity with indi-
vidual readout resonators. These cavities have long lifetimes and high quality factors and
are also known as high Q cavities. The high Q cavity acts as a quantum information
storage mode or a quantum bus between qubits. The qubits provide the non-linearity and
quantum properties required for the experiment. The individual readout resonators are
for qubit state measurements. Finally, the transmons can be embedded in a loop forming
a SQUID for in-situ qubit frequency tuning. The platform shown in Fig. 3.1 was built to
accommodate the different requirements of various experiments.

In the first section, I discuss the design of qubits and resonators. Next, I cover how the
specific geometries are simulated in a finite-element simulation. Section 3.3 and 3.4 cover
the fabrication and treatment of the qubits and cavities in the cleanroom and mechanical
workshop. In Sec. 3.6 and Sec. 3.5, I briefly cover the fabrication and design of our Purcell
filter and flux hose setup. Finally, Sec. 3.7 and Sec. 3.8 cover the cryogenic and microwave
setups used to reach the superconducting temperatures required for the experiments.

41
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Figure 3.1: Picture of the experiment setup which consists of a high
Q cavity coupled to qubits. Each qubit is also coupled to an individual
readout resonator. Included in the setup are 3D modular Purcell filters that
replace the conventional SMA pin and a new generation flux hose design to
introduce magnetic flux tuning. Photo taken by David Jordan.

3.1 Design

A great benefit of superconducting circuits is the ability to design a wide range of Hamil-
tonian parameters. By combining different circuit elements (inductors, capacitors and
junctions) and different coupling methods (inductive or capacitive), we can build artificial
atoms catered to the experimental needs.

It is important to remember that in the realisations of the LC resonators, the resonators
are rarely single mode and have higher-order modes at double or triple the frequency.
Depending on the specific design and mode structure, these modes can also have unwanted
coupling to a qubit or the environment leading to additional Purcell decay of the qubit
[58].
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3.1.1 "2D" Resonators and Qubits

A type of resonator used in 3D architectures of superconducting circuits is the microstrip
resonator design. This design is a strip of superconducting material patterned on a sapphire
or silicon substrate. The length of the strip is L ≈ λ/2 with the specific geometry of the
strip affecting the self-inductance and capacitance. A ground plane is added on the backside
of the substrate leading to a small, compact design. Such structures are called "2D" in the
sense that the sheets of metal are patterned on a substrate. However, in the designs used
in the thesis, the ground plane is not on the back of the substrate but on the surrounding
walls around the structure. Thus, the field of such microstrip modes lives in a 3D space
(Fig. 3.2A).

Due to the extended structure of the microstrip, the resonators are not lumped-element
structures resulting in a modified inductance and capacitance. The frequency and mode
distribution of the structures are found in electrostatic finite element simulations.

Although these structures are operating in a superconducting, and thus dissipationless,
state, in practice there is some dissipation due to imperfections in the fabrication process
or unwanted coupling to a lossy environment. These lead to resistive losses. A useful
metric is the quality factor

Q = ω
Total Energy Stored

Total Power Dissipated = ω

κ
= ω(2T1). (3.1)

The quality factor or linewidth can be further divided into internal losses and external losses
1/Qtotal = 1/Qinternal + 1/Qexternal. External losses are by design, and are the coupling be-
tween our measurement devices and the resonator mode. 2D designs will experience higher
internal loss as the electric field is contained in a dielectric substrate. These substrates can
contain substrate or surface defects in 2D samples.

Transmons are made by connecting large capacitive pads with a Josephson junction. The
capacitor pads form the large capacitance needed for the transmon limit and the Josephson
junction provides the non-linearity for the addressability of the qubit. The connection link
is made as small as possible to reduce the linear inductance of the transmon.



44 3.1 Design

2mm

A C

Substrate
Ground Plane

Microstrip

B

Substrate
Microstrip

E

E

Figure 3.2: Schematic, design and simulation of microstrip. (A) Electric
fields (red lines) from microstrip design. Dimensions are not to scale. (Top) The
typical 2D microstrip design consists of a metallic plane on top of a substrate and
a ground plane on the bottom. The electric fields are between these two metal
sheets and the design has a small compact form factor. (Centre and bottom) In
the "3D" microstrip designs used here, the central microstrip is placed on the
substrate and the chip is placed into a superconducting tunnel. The electric
fields are then between the central metallic plane and the surrounding walls.
(B) Design of qubit and microstrip resonator. The resonator is the meandering
structure whose length and shape determine the resonance frequency of the
resonator. At the top of the chip, there is a design for a qubit which is a
Josephson junction connecting two capacitor pads. At the bottom of the chip,
there is space left for the copper clamps holding the sample chip. (C) Top and
side view of HFSS eigenmode simulations of the microstrip mode of the resonator
in a tunnel. The ground plane is not in the substrate but in the surrounding
cavity walls around the structure. Thus, the field of such a microstrip mode
lives in a 3D space. In these simulations, hybridisation with the qubit mode is
seen from the electric fields also overlapping with the qubit structure.
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3.1.2 High Q cavities

The electric field mode of 2D resonators has additional losses due to the presence of the
substrate. Surface defects at the substrate-metal and substrate-vacuum interface will limit
the quality factor of the resonator mode. A way to circumvent this problem is with 3D
cavities where the electric field is mainly in the vacuum. This results in a lower participation
ratio in the lossy areas and thus the cavity mode has much higher internal quality factors
[84]. The first 3D cavities were cuboid blocks with the length, width and height of the
cavity determining the mode frequency [85].

The cavities are mainly made from a block of metal in a subtractive process1. This means
a cut through the cavity halves is needed. Such a cut will introduce a seam which is an area
for imperfections. The electric field mode which induces a current flow across such seams
will lead to resistive losses. These seam losses can be reduced by choosing the cut of the
cavity to be parallel with the current flow direction or providing a better seal with indium
wire bonding [86]. Another method to reduce seam losses is through the usage of electron
beam welds shown in Tesla cavities [87, 88]. Good sources for the discussion of various loss
mechanisms can be found in [60, 89]. Some designs avoid the seams entirely which allows
for higher quality factors. Some examples are post cavities [90] or flute cavities [91].

In the Kirchmair lab, we use coaxial λ/4 post cavities [92], which combines the concepts
of a coaxial transmission line and a circular waveguide section at the top (Fig. 3.3). These
cavities can be made by a subtractive process from one block of metal and thus the current
of the cavity mode can flow without going through any seams. The radius of the inner to
outer conductor is chosen a

b = 1
3 , which reduces surface resistance losses [82].

The coaxial part forms a post which is short-circuited at the bottom and open at the top.
The height of the post approximately determines the frequency of the mode l = λ

4 . The
effective length is altered due to the capacitive loading of the circular waveguide. This
effect can be accounted for by eigenmode simulation of the designed structure.

The circular waveguide is designed with a cutoff frequency much higher than the frequency
of the cavity mode. This leads to exponential suppression of any leakage of the cavity mode.
The propagation constant of the waveguide is β =

√
(2π

λ )2 − (p01
b )2, where p01 = 2.405 is

the first root of the Bessel function J0. The electric field strength will thus decrease by
E ∝ e−2βL. Choosing a length L such that the electric field is attenuated to a factor 10−9

will thus allow for a high coherence mode with quality factors limited by Q ≈ 109.

1As 3D metal printing processes are being developed, one can consider such an additive fabrication process.
However, we will need to etch the surface of the structure after machining which is difficult for an enclosed
cavity.
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Figure 3.3: Schematics and picture of the high Q post cavity design. (A)
Electric field distribution of the cavity mode. The length λ/4 determines the
frequency of the cavity, radius a and b are chosen to have a ratio of 1 : 3. The
length of the waveguide section is made long enough to ensure no decay of the
cavity field through the waveguide. Figure taken from [92]. (B) Cut through
an aluminium post cavity. Photo taken by David Jordan and Markus Knabl.
Figure taken from [93]. (C) Schematic of post cavity coupled to a qubit and a
readout resonator on the substrate. The overlap between the cavity field and
the qubit mode determines the dipole interaction and coupling between the two
elements.

3.2 Simulation

Being able to calculate the final Hamiltonian from complex circuits is a classical problem
2. On top of the complex structure of inductors, capacitors and resistors, the non-linearity
of the Josephson junctions can further complicate the calculation. Fortunately, there are
many methods which decompose a general circuit network into an equivalent impedance
function that we can easily quantise. Here, we use the Foster Theorem [94], which de-
composes the circuit into parallel LC modes. Such modes are the normal modes of the
system which also allows the derivation of the coupling terms between the different modes.
Finally, to achieve our final Hamiltonian, we perturbatively add the non-linearity of the
transmon. This method is called black-box quantisation (BBQ) [95] and is also covered in
detail in [82, 96].

There are two other noteworthy methods of calculating the final Hamiltonian. Firstly, by
writing out the different nodes of the system and the capacitive coupling between each
node, one can do an electrostatic simulation to obtain the cross-capacitance matrix. The
different terms in the Hamiltonian are then a function of the different elements in the

2Calculating the final Hamiltonian from very complicated circuits used to be on University physics exam-
inations. A point that some Professors like to repeatedly mention on the convenience of the tools that
we have available today.
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matrix. This method is known as the method of nodes and is nicely covered in [97].
Such electrostatic simulations are faster but are not as accurate. For large geometries, the
non-lumped-element nature of the structure will complicate the actual circuit model used.
Another approach is using the energy participation ratios of the different modes [98]. This
method quantifies how much the different elements contribute to the mode energy. The
final Hamiltonian terms can then be calculated via such ratios.

In this section, I will outline the simulation process of a single junction coupled to cavity
modes and extend the explanation to a case of two junctions coupled via a cavity mode.
For simplicity and speed, the simulations are done with infinite conductance, meaning that
there are no losses. After simulations, the 3D cavity models were drawn in Solidworks, a
3D CAD modelling software used by the mechanical workshop at IQOQI.

The simulations were done with finite-element modelling (FEM). FEM is a mathematical
tool that solves partial differential equations numerically. The model is split into finite-
element sizes and solves the boundary-value problem within each element. A complex
geometry can then be discretised in space (known as meshes) and we can obtain the
admittance of the system. For circuits, the partial differential equations are the Maxwell
equations and the boundary conditions are the conductance and charges on the surfaces.
In particular, the High Frequency Structure Simulator (HFSS) tool in the ANSYS software
and the SONNET software were used.

3.2.1 HFSS Simulations

After drawing a particular experimental geometry, the first step is to simulate the eigen-
modes of the system. The Josephson junction is included by adding a lumped element
with a defined junction capacitance and inductance.

Coupling between the qubit and resonator modes can be calculated by sweeping the junc-
tion inductance, and thus the qubit frequency. For each coupled mode, we will see an
avoided crossing between the resonator and qubit. Eigenmode simulation results of a qubit
coupled to a High Q cavity and readout resonator are shown in Fig. 3.4.

Equation 2.52 is used to obtain the coupling strength g. For an initial guess, a simple
polynomial fit can be used. The coupling strength g obtained from fitting with a polynomial
and the correct equation is usually within error bars of each other.

The exact geometric parameters often need to be refined after a few iterations of the full
simulation process. One should also take into account fabrication and mounting consider-
ations. For example, a small line width might provide the required capacitance for qubit
anharmonicity. However, a long, thin structure has a large aspect ratio and is difficult to
consistently fabricate in the cleanroom.

In 3D structures, structural and space limitations should be considered. High-purity alu-
minium is used for 3D cavities. This material is considered very soft and needs at least
1 − 2 mm wall thickness to be structurally sound. The samples are also placed inside su-
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perconducting and magnetic shields. Thus, sufficient space must be provided to allow for
SMA flanges and the tightening of SMA cables.
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Figure 3.4: HFSS eigenmode simulation results with a sweep in qubit
inductance for a specific geometry. The eigenmodes of the system are ob-
tained with simulation. By sweeping the parameters of the simulation, in this
case, the qubit junction inductance, we will change the frequency of the relevant
mode. When the mode crosses any other normal mode, for each coupled mode
we will observe a gap opening up with an avoided crossing feature (Fig. 2.6)
that can be fitted to obtain the coupling between the modes g. Results anoma-
lies around 5 nH and 8.5 nH are due to simulation inaccuracies from the fast
and rough simulation sweep parameters. The convergence of the simulation on
slightly different frequency values in this region does not affect the accuracy of
the estimation of coupling values.

After the eigenmode simulations, the next type of simulation is Driven Modal. In this
simulation, we add lumped ports to represent the qubit mode and measure the frequency
response (impedance or admittance) from each port. It is also possible to define wave ports
to simulate SMA coupling pins or waveguide ports to measure the coupling between modes
and the external environment. Each mode’s characteristic impedance is used to predict
the designed Hamiltonian.

3.2.2 Foster equivalent circuits

In Foster’s theorem, a circuit is described by an equivalent circuit made up of parallel LC
oscillators [94]. This is equivalent to diagonalising a linearised system of coupled harmonic
oscillators. Given such a circuit, we can write the admittance of m modes as

Y (ω) =
∑
m

1
iωmLm

+ iωCm =
∑
m

1 − ω2LmCm

iωLm
. (3.2)
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The admittance will have a zero-crossing at resonant frequencies ωm = 1√
LmCm

. Near the
resonance, we can approximate ω = ωm + ∆ω → ω2 ≈ ω2

m + 2ωm∆m + O(∆ω), resulting
in the admittance

Y (ωm + ∆ω) =
∑
m

−2∆ω
iω2

mLm
=
∑
m

i2∆ωCm. (3.3)

Therefore, by taking the gradient of the imaginary part of the admittance, we can calculate
each mode’s capacitance, inductance and characteristic impedance

ωm = 1√
LmCm

, (3.4)

Cm = 1
2

(
∂(Im{Y })

∂ω

)
ωm

, (3.5)

Lm = 1
ω2

mCm
, (3.6)

Zm =
√
Lm

Cm
. (3.7)

The imaginary part of the admittance for a qubit coupled to a cavity mode is plotted in
Fig. 3.5. The bare, uncoupled cavity frequency at ωcav = fcav/2π will shift to its dressed
frequency, ω̃cav = f̃cav/2π. The simulation results allows us to obtain the Hamiltonian
Ĥ = ∑

m ℏωm(m̂†m̂+ 1
2), which is in terms of the linearised coupled modes. The coupling

between the modes is implicit in the dressed frequencies of the circuit.

Figure 3.5: Calculated imaginary part of admittance from a qubit port
for a qubit coupled to a cavity mode. For each coupled mode, we have a
pole in the admittance and an additional zero crossing. The zero crossing, pole
and gradient can be used to determine the parameters of the coupled modes.
Here, we see the dressed qubit mode at frequency fqb ≈ 5.73 GHz (green line).
The qubit is coupled to a cavity at the dressed frequency f̃cav ≈ 7.41 GHz
(orange line) and a bare frequency at fcav ≈ 7.4 GHz (vertical red line). The
gap between fcav and f̃cav is approximately the coupling strength and detuning
between the qubit and the cavity, g2/∆.
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3.2.3 Black Box Quantisation

To obtain the full Hamiltonian parameters of the circuit, we introduce the non-linearity
from the Josephson junction. Recalling the LC Hamiltonian Eq. (2.30), the flux and charge
operators Eq. (2.32), we perturbatively add the anharmonic part of the Hamiltonian ĤNL

Ĥ =
∑
m

ℏωm

(
m̂†m̂+ 1

2

)
+
∑

i

ĤNL−JJ (3.8)

=
∑
m

ℏωm

(
m̂†m̂+ 1

2

)
−
∑

i

EJi

[
cos ϕ̂i − (1 + 1

2 ϕ̂
2
i )
]

(3.9)

where we have m modes including the i junctions. The minus terms in the bracket after
cos ϕ̂i are already accounted for in the harmonic part of the oscillator. Using Kirchoff’s
law, the current through each junction is the sum of currents due to each mode. From the
Josephson relations Eq. (2.34), we can write this as a phase through the junction due to
each mode

ϕ̂i =
∑
m

ϕZPF,m(m̂† + m̂) (3.10)

where each mode’s zero point fluctuation is given by ϕZPF,m =
√

ℏZm
2 . m̂† and m̂ are

the creation and annihilation operators respectively. We can then expand the cos ϕ̂i =
1 − 1

2 ϕ̂
2
i + 1

4! ϕ̂
4
i − 1

6! ϕ̂
6
i ... + (−1)n 1

2n! ϕ̂
2n
i + .... Note that the phase operator here is a

dimensionless normalised operator flux operator: ϕ̂ = Φ̂
ϕ0

, where we have the reduced flux
quantum ϕ0 = ℏ

2e . This constant was initially absorbed into the operator coefficients in
Eq. (2.32).

In the expansion of the ϕ̂n
i terms, using the RWA, we can drop many non-energy conversing

terms such as m̂†m̂†. An important choice must be made in writing the operators in normal
order (m̂†m̂†m̂m̂) or in terms of the number operator ((m̂†m̂)2). The difference is due to
the commutation relation [m̂, m̂†] = 1 that will cause higher order terms to affect lower
order terms. Here, I use the former notation.

1 cavity, 1 qubit

Consider the simplest setup of a qubit coupled to a single mode of a cavity. The phase
through the junction is

ϕ̂ = ϕ̂c + ϕ̂q = ϕc(ĉ† + ĉ) + ϕq(q̂† + q̂). (3.11)

We can expand the cosine term and compare the Hamiltonian to the dispersive Hamiltonian
up to the same order. The expansion is explicitly shown in appendix C.

Ĥ1cavity, 1qubit = ℏωc + ℏωq

− χqcq̂
†q̂ĉ†ĉ− Kq

2 q̂†q̂†q̂q̂ − Kc

2 ĉ†ĉ†ĉĉ

+ χqqc

2 q̂†q̂†q̂q̂ĉ†ĉ+ χqcc

2 q̂†q̂†q̂q̂ĉ†ĉ+ K ′
c

6 ĉ†ĉ†ĉ†ĉĉĉ+
K ′

q

6 q̂†q̂†q̂†q̂q̂q̂

(3.12)
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where χqc is same dispersive shift in the dispersive Hamiltonian Eq. (2.49). Kc is the
inherited non-linearity of the cavity, known as the self-Kerr. χqcc is the cavity photon
number enhanced dispersive shift (χqc + χqcc

2 ĉ†ĉ)ĉ†ĉq̂†q̂ or the qubit-enhanced cavity Kerr
(Kc + χqcc

2 q̂†q̂)ĉ†ĉ†ĉĉ. Lastly, neglected here is the shift from bare frequencies ωc and ωq to
dressed frequencies ω̃c and ω̃q due to Lamb shift.

We neglect the K ′
q and χqqc terms as the qubit is rarely excited to the second excited

state. Thus to simplify the notation, we often write χqc as χ and χqcc as χ′. The choice of
coefficients in this Hamiltonian is chosen to represent measured values. In the experiment,
the difference between the transition frequencies of the cavity from |0⟩ to |1⟩ will be K
and the difference between |1⟩ and |2⟩ will be K − K ′ and similarly for the qubit peaks.
Although, one must be careful in experiments if the peaks observed are due to a two
photon process with frequency 2ωpeak = 2ωc − Kc or a transition between the first and
second excited state ωpeak = ωc −K.

By comparing the different Hamiltonian coefficients, we obtain the relations to first-order

Km = EJ

2ϕ4
0
ϕ4

m, (3.13)

χqc = EJ

ϕ4
0
ϕ2

qϕ
2
c =

√
2KqKc, (3.14)

K ′
m = EJ

6ϕ6
0
ϕ6

m, (3.15)

χqcc = EJ

ϕ6
0
ϕ2

qϕ
4
c . (3.16)

Due to the introduction of the non-linear junction, all coupled modes will inherit some non-
linearity Km. Such relations also show the relative scaling factors between the different
Hamiltonian parameters, χ′

χ = ϕ2
c

ϕ2
0
. One can see that the transmon ratio appears via the

qubit anharmonicity, Kq = EC = EJ

2ϕ4
0
ϕ4

q . Thus, the term EJ
EC

= 2ϕ4
0

ϕ4
q

is large.

Another important thing to note is the relative scale of χqcc

Kc/2 = 4ϕ2
q

ϕ2
0

= 4
√

2
EJ /EC

≈ 0.4−1.4.
If the qubit is excited, the self-Kerr of the cavity is enhanced by a noticeable amount.
We can view this as the anharmonicity of the qubit being much larger than that of the
cavity. The situation is made worse if the qubit frequency is above that of the cavity,
the negative anharmonicity of the transmon means the excited states are closer to the
transition frequency of the cavity resulting in possible overlap between the cavity frequency
and higher level transitions of the qubit.



52 3.2 Simulation

2 cavities, 1 qubit

In some experiments, we have a qubit coupled to two cavities. One cavity acts as a high
Q storage for quantum information and another as a low Q resonator that allows for fast
readout of the qubit state.

The flux operator over the junction is then ϕ̂ = ϕ̂c + ϕ̂q + ϕ̂r. Doing the same expansion,
we find the similar terms ϕ̂4 ≈

∑
m ϕ̂4

m + 6ϕ̂2
c ϕ̂

2
q + 6ϕ̂2

rϕ̂
2
q + 6ϕ̂2

c ϕ̂
2
r . The first 3 terms in the

summation represent the anharmonicity of each mode and follow the 1 cavity and 1 qubit
case. Likewise, the next 3 terms represent the pairwise coupling term between each of the
modes. The additional term can be written as

ϕ̂2
c ϕ̂

2
r ≈ ϕ2

cϕ
2
r ĉ

†ĉr̂†r̂ (3.17)
Ĥcross−Kerr = χcr ĉ

†ĉr̂†r̂ (3.18)

χcr = EJ

ϕ4
0
ϕ2

cϕ
2
q = χcqχrq

2Kq
(3.19)

where χcr is the cross Kerr between the cavity and resonator through the qubit mode.

1 cavity, 2 qubits

For multiple junctions, there are two complications. Firstly, we need to determine the
relative current flows induced by the different modes on each of the junctions. Specifically
for the junctions, this means determining if the current across a junction induces an in-
phase or out-of-phase current flow in the other junctions. This can be determined by the
sign of the admittance matrix from each qubit port at each junction mode. Alternatively,
we can examine the mode structure of each qubit mode and deduce the relative current
flows in the other qubit modes.

Secondly, we need to expand the Hamiltonian for multiple junctions. In the case of 2 qubits
coupled in phase with a cavity, Eq. (3.8) becomes

ĤNL = −EJ1

(
cos ϕ̂1 − (1 + 1

2 ϕ̂
2
1)
)

− EJ1

(
cos ϕ̂2 − (1 + 1

2 ϕ̂
2
2)
)

(3.20)

ϕ̂r = ϕ1r(q̂†
1 + q̂1) + ϕ2r(q̂†

2 + q̂2) + ϕcr(ĉ† + ĉ) (3.21)

ϕmr =
√

ℏZmr

2 (3.22)

Zmr =
√
Lmr

Cmr
= 1
ωmCmr

(3.23)

Cmr = 1
2

(
∂(Im{Ymr})

∂ω

)
ωm

(3.24)

where the flux operator is defined with respect to each qubit reference port r. The char-
acteristic impedances and zero point fluctuations of each mode m are likewise changed
for each port r given by ϕmr. Expanding the fourth-order term gives: ϕ̂4 = ∑

r(ϕ̂4
r) =
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∑
r(∑m(ϕ̂4

mr) + 6ϕ̂2
1rϕ̂

2
cr + 6ϕ̂2

2rϕ̂
2
cr + +6ϕ̂2

1rϕ̂
2
2r). Comparing the Hamiltonian to that of a

one cavity and two qubit quantum system, we can derive the coefficients with

Ĥ1cavity, 2qubits = ℏωq1 q̂
†
1q̂1 + ℏωq2 q̂

†
2q̂2 + ℏωcĉ

†ĉ

− 1
4

(
EJ1
ϕ4

0
ϕ4

11 + EJ2
ϕ4

0
ϕ4

12

)
q̂†

1q̂
†
1q̂1q̂1

− 1
4

(
EJ1
ϕ4

0
ϕ4

21 + EJ2
ϕ4

0
ϕ4

22

)
q̂†

2q̂
†
2q̂2q̂2

− 1
4

(
EJ1
ϕ4

0
ϕ4

c1 + EJ2
ϕ4

0
ϕ4

c2

)
ĉ†ĉ†ĉĉ

−
(
EJ1
ϕ4

0
ϕ2

11ϕ
2
c1 + EJ2

ϕ4
0
ϕ2

12ϕ
2
c2

)
q̂†

1q̂1ĉ
†ĉ

−
(
EJ1
ϕ4

0
ϕ2

21ϕ
2
c1 + EJ2

ϕ4
0
ϕ2

22ϕ
2
c2

)
q̂†

2q̂2ĉ
†ĉ

−
(
EJ1
ϕ4

0
ϕ2

11ϕ
2
21 + EJ2

ϕ4
0
ϕ2

12ϕ
2
22

)
q̂†

1q̂1q̂
†
2q̂2.

(3.25)

An additional term that arises is χq1q2 = EJ1
ϕ4

0
ϕ2

11ϕ
2
21 + EJ2

ϕ4
0
ϕ2

12ϕ
2
22 is the capacitive coupling

between both qubits. This term also includes the dispersive cavity mediated coupling
χq1q2,cavity mediated = χq1cχq2c

(
1

∆q1c
+ 1

∆q2c

)
. Repeating the calculation for a Rabi Hamil-

tonian with 2 qubits with a cavity-mediated coupling, we obtain the on-resonance coupling
strength Jq1q2,eff = gq1cgq2c

2

(
1

∆q1c
+ 1

∆q2c

)
[99].

Comparision between Simulation and Experiment

Using the techniques mentioned in this section, we can simulate the expected experimen-
tal values for a given design. Table 3.1 summarises the results from the simulation and
experiment.

One should note that there will always be some level of error arising from simulation or
experimental implementation inaccuracies.

On the simulation side, it may be hard to simulate the small features on the admittance
response of the curve. For example, in the case of small qubit-qubit coupling, it is easy
to miss the pole in the qubit admittance curve. However, the fact that the features in the
admittance response of the qubit are small, means that there is a steep gradient at the
zero-crossing. Thus, this results in a small value of ϕ12 and ϕ21 and the correction terms
are thus small. By neglecting, the calculated simulation values are a lower bound. The
Hamiltonian parameters will increase depending on the size of EJ2ϕ2

12
EJ1ϕ2

11
or EJ1ϕ2

21
EJ2ϕ2

22
.

On the experiment side, a source of inaccuracy is the clamping of the qubit chip. Currently,
this is done by eye and can vary in position by 0.2 mm. This uncertainty will affect the
coupling between the qubit and the high Q cavity. Thus, the anticipated dispersive shift
χqc might defer from the designed value.
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Parameter Simulation Experiment
fq1 (GHz) 5.700 5.731
fq2 (GHz) 6.175 6.229
fc (GHz) 4.347 4.520

Kq1/2π (MHz) 166 175
Kq2/2π (MHz) 148 130
Kc/2π (kHz) 2.95 1.14
χq1c/2π (MHz) 1.198 1.270
χq2c/2π (MHz) 0.687 0.408

χq1q2/2π (kHz) (calculated) 1.1 0.7

Table 3.1: Comparison between BBQ simulation and measured experi-
mental results. In the experiment, Qubit 2 was an asymmetric SQUID and
the reported parameters are for the low sweet spot. In the simulation, due to
the small coupling between both qubits, it is difficult to simulate the relevant
features in the admittance response of the terms ϕ12 and ϕ21. Thus, the re-
ported simulation values are a lower bound. For the qubit-qubit coupling, in
both the simulation and experiment, the cavity-mediated interaction is used as
a lower bound.

Rules of Thumb

When designing a new experiment, the number of parameters to vary are numerous and
it can be overwhelming to know where to start. Here, I outline of the design process and
rules of thumb to help the simulation process.

Before starting, it is important to understand what is simpler to consistently fabricate in
the cleanroom or machine in the mechanical workshop. For 3D cavities, we should know
the material and space limitations that the mechanical workshop or external companies can
do. This will eliminate the need to repeat the simulations should the fabrication process
be too difficult. From a design process perspective, it is also helpful to first build a quick
and simple prototype of the final experiment. From the desired Hamiltonian, we can start
the simulation process in ANSYS.

1. Draw out the model with driven modal simulation type.

• This includes fine mesh sizes and any possible 2D readout resonators.
• For the qubit modes, lumped ports and lumped RLC elements to represent the

Josephson junction.
• The junction will have around 5 − 10 fF and 1 − 10 nH.

2. Duplicate the simulation model and change it to eigenmodal solution type.

• The lumped ports can be made as a non-model object.
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• Any additional 2D structures such as the readout resonator can also be made a
non-model object as well.

• This is done to link the two geometries of the different simulation types to not
affect the simulated capacitance of the qubit pads.

3. Do fast eigenmode simulations to obtain the mode frequencies and coupling strength
g between qubit and cavity modes and fix the geometry of the experimental design.

• The 3D experiment geometry is first fixed and limited to fabrication limitations.
• Next, the qubit position and dipole lengths are fixed to obtain the correct cou-

pling strength g.
• Tapered lead qubit designs can help reduce surface loss [100].
• With the coupling strength, we can calculate the rough qubit and cavity de-

tuning needed to obtain the desired dispersive interaction χ (by changing the
junction inductance).

4. For each mode of interest, we can do a driven modal simulation around the mode
frequency.

• It is faster to first do quick interpolation simulations and BBQ to obtain rough
parameters.

• The qubit anharmonicity can then be corrected by changing the qubit pad
widths (affecting mainly the self-capacitance and not the coupling strength as
much).

5. Next, we include any additional 2D readout resonators needed and repeat steps 2 to
4 for the 2D structures without changing the structure of the cavity and qubit.

6. Finally, we can include any coupling pins and simulate the external coupling factors.

• The external coupling factors for each mode can be calculated by doing a circle
fit of the reflection parameters [101].

• For the circle fit, it is important to remove any lumped ports as these ports are
50Ω in a reflection measurement.

• An additional weakly coupled qubit pin can be used to simulate the losses in a
qubit. This allows the loss in the qubit to be controllable and makes it easier
to find and fit mode resonances.

• An alternative method to check for Purcell decay is to simulate and reduce the
transmission between the qubit port and external coupling pin [66].

The simulations were done to an accuracy of 5%. In most experimental labs, there is
not a well-optimised, established fabrication and assembly process specific to every exper-
iment design. Thus, inaccuracies arising from fabrication, etching or assembly will add
to the inaccuracy between designed parameters and measured parameters. In such cases,
it is faster to design around established recipes and use in-situ tuning or experimental
parameters sweet spots that can account for such imperfections. From a design process
perspective, this is trading time taken to optimise fabrication recipes with time spent on
increasing experimental complexity.
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3.3 Qubit Fabrication

After finalising a design, the qubit design was drawn with gdspy and fabricated in the
Quanten-Nano-Zentrum Tirol (QNZT) cleanroom in the University of Innsbruck and IQOQI
Innsbruck. The Josephson junctions were made of aluminium through a double-angle
shadow evaporation process with an oxidation step between the deposition layers. For the
qubit antenna pads, both aluminium and tantalum were tested.

Electron-beam (e-beam) lithography was done with a Raith eLINE Plus 30 kV. The max-
imum voltage affects the amount of electron scattering and will eventually affect the reso-
lution size that can be accurately exposed. The design will have two length scales. One for
big structures such as the antenna pads that are written with a bigger write-field 1 mm and
aperture. The smaller scale structures are written with higher accuracy with a write-field of
200µm and smaller aperture size. Within this write-field, the smaller structures are limited
to a 180µm size to allow room for overlap structures to ensure good contact of different
structures between adjacent write-fields. The Josephson junction can then be written with
higher accuracy and the antennas can be written faster with the bigger aperture size.

3.3.1 Fabrication Parameters

The Josephson junction is a sandwich of aluminium-aluminium oxide-aluminium. At room
temperature, the insulating aluminium oxide layer forms a resistive element. The normal
state resistance Rn can be related to the critical current Ic and thus Josephson energy EJ

via the Ambegaokar-Baratoff formula [102]

IcRn = π

2e∆(T ) tanh ∆(T )
2kBT

≈ π∆c(0)
2e (3.26)

where ∆(T ) is the superconducting energy gap at a temperature T . At temperatures
much smaller than the critical temperature Tc, the relation can be approximated to the
second equation where ∆c(0) ≈ 180µeV for aluminium. An established process will have
fabricated a range of junctions to relate the measured room temperature resistance to qubit
frequencies. The room temperature resistance of qubit junctions is usually in the range
of a few kΩ. With the junction critical current Ic and a designed qubit capacitance Ec,
Eq. (2.45) can be used to calculate the estimated qubit frequency. An additional benefit
for 3D architectures is the post-selection. The fabricated qubit with parameters closest to
the desired value can be selected for the experiment. A standard design of qubits used in
my experiments is shown in Fig. 3.6.

In addition to the inductance, the two aluminium layers will have a junction capacitance
given by CJ = ϵ0ϵr,AlOx

AJ
t , for a dielectric constant of aluminium oxide ϵr,AlOx ≈ 10

[84, 103] and barrier thickness t ≈ 2 nm [104]. In my samples, the junction size used is
AJ ≈ 150 nm × 150 nm with junction capacitance is around 5 − 10 fF.
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Figure 3.6: Design of a qubit and resonator and optical picture of a
Josephson Junction. Different colours represent different dose factors for the
e-beam lithography. (Bottom right) Dark field image from an optical microscope
of the fabricated Josephson junction before the liftoff process.

The desired junction inductance can be reached by changing the designed junction size and
oxidation parameters. Rn ∝ (poxtox)γ

AJ
, where tox and pox is the oxidation time and pressure,

AJ is the size of the junction and γ is the proportionality constant. In my fabrication
recipe and design, I find γ ≈

√
2. Junctions with larger sizes have a small fabrication

spread [105]. However, smaller junctions lead to a smaller probability of adverse surface
defects in the Josephson junction [106].

As the junctions are very small capacitors, care must be taken during the probing process.
Ionisers and humidifiers are turned on to prevent a build-up of a potential difference across
the junction3. Also, the probing needles are first shorted by an external connection. The
needles are then placed in contact with the qubit pads before the external short is removed.
The junction resistance is then measured in series with a 11 kΩ resistor.

An important point of the fabricated junctions is the effect of junction ageing. Over time,
the oxide layer between the aluminium pads will grow and change in structure leading to
a larger resistance [107]. This process is sped up through thermal cycling in the cryostat
and saturates at approximately 10% higher value than the post-fabricated value.

3I have noticed that in the cold, dry Innsbruck winter months when experimentalists are more prone to
wearing electrostatic inducing clothes, qubits are more prone to blowing up.
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3.3.2 Aluminium

The fabrication process was established by Dr. Maximillian Zanner after the QNZT was
opened in 2018 [83]. Below is a summary of the adapted process with an additional laser
dicing step. The detailed fabrication recipe is provided in appendix D.1.

The fabrication process starts with a sapphire c-plane(001) from Crystec (Kyocera) with
thickness 330µm and diameter 50.8 mm. Sapphire was used as it has low dielectric losses
[108, 109]. The wafers were piranha cleaned in a 3 : 1 ratio of H2SO4 : H2O2 for 5 min.
They were rinsed in deionised (DI) water, dried and a bilayer resist was spun on top (1µm
MMA (8.5) EL13 and 0.3µm of 950 PMMA A4). We place the designs in the centre of
the wafer to avoid imperfect resist spinning thickness, wafer handling and clamping areas.
The resist layer thickness was measured with the ellipsometry method using a SmartSE
Ellipsometer.

As the sapphire is not conducting, a small gold layer is sputtered before the electron-
beam lithography step. The gold layer will prevent the build-up of electron charge on the
dielectric surface. The bottom resist layer is more sensitive to the lithography process.
Low exposure doses will result in an overhang structure that is used for the double-angle
junction evaporation process. After lithography, the gold layer is removed in a solution of
potassium iodide and DI water. The sample is developed in a 6◦C bath of 3 : 1 solution of
isopropyl alcohol (IPA) and DI water.

The wafer is transferred to a Plassys MEB550S electron-beam evaporator and pumped
overnight. The long pumping time is to decrease the water content and other gaseous
impurities in the chamber. Before any process begins, the chamber undergoes titanium
gettering of gas and any resist residues are cleaned by a weak oxygen and argon plasma. In
the next step, two layers of aluminium (25 nm and 50 nm) were evaporated onto the sample
with a controlled oxidation step (5 mbar for 5.5 min) carried out between the deposition of
the two aluminium layers. The thicker second layer allows the layer to climb the bottom
junction pad to give good contact of the second junction pad with the oxide layer. It has
been shown that a choice of the different layer thicknesses and lengths will help in trapping
quasiparticles [110].

Subsequently, the qubit chip was laser-diced. Finally, the resist layer and excess metal
were lifted off. The laser dicing step is done via laser ablation of the sapphire material.
This inevitably will have some material being thrown around the wafer. The sapphire cut
quality can be improved by starting the cut away from the intended chip cut line. Also,
such defects can be mitigated by a protective resist layer with an extra lithography and
development step at the laser marks to prevent resist burn-in. The method used here
is to do the lift-off after laser-dicing which provides the same protection cover. This step
however prevents the probing of the junctions before dicing and reuse of the sapphire wafer
in the case of fabrication anomalies.
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3.3.3 Tantalum

Other than aluminium, tantalum and niobium can be used as superconducting materials
[111]. Tantalum and niobium have a higher critical temperature which leads to a bigger
superconducting gap and a smaller quasiparticle population. Furthermore, tantalum and
niobium can be more aggressively cleaned with piranha during the fabrication process
which reduces surface defects. However niobium oxide is a lossy superconductor, tantalum
oxide has better superconducting properties and using tantalum as a material for antenna
pads has led to higher qubit lifetimes [112]. The difficulty of using a double-angle shadow
evaporation process for tantalum or niobium prevents the full replacement of the aluminium
material. Thus, the Josephson junction is still made up of aluminium. The detailed
fabrication recipe is adapted from [111] and is produced in appendix D.2. Work on adapting
the recipe was done with Dr. Maximilian Zanner and Dr. Christian Schneider, with
preliminary results on the coherence times of the qubits found in [83].

The process involves 550µm sapphire wafers which were sputtered with a 200 nm layer
of tantalum by the company STAR Cryoelectronics. The wafers are first solvent-cleaned
and then a negative resist (600 nm of MaN 2403) is spun on top for an etching process.
The structures are written via e-beam lithography. A negative resist process will allow the
formation of cross-linked polymers where the electron beam hits the structure. The wafer
is developed with Ma-D 525 and post-baked at 100◦C to strengthen its resistance against
the etching process and give better edge roughness during the etching process. Only the
areas that were exposed to the electron beam will have a cross-linked polymer structure
that is strong enough to resist the etching process.

The sample is placed in a Sentech ICP SI 500 which first does a soft oxygen cleaning to
remove any resist residues. The areas of exposed tantalum are etched via a CF4 process.
Finally, the sample can be piranha cleaned to remove the leftover resist organics and the
sample can be used for a double-angle aluminium shadow evaporation process.

3.4 High Q Cavities Fabrication

To achieve a long lifetime for quantum information storage, seamless 3D cavities were
made. The design has a post length of 14.8 mm, an inner radius of 2 mm and an outer
radius of 6.2 mm, giving a bare cavity frequency of approximately 4.5 GHz. The tunnel for
the qubit chip has a diameter of 4 mm, which is a compromise between cavity mode leakage
into the tunnel and qubit capacitance to the ground. The qubit chip is 1.2 mm below the
top of the post to maximise the coupling between the qubit and the high Q cavity mode.
Due to the high dielectric constant of the sapphire chip, there is a "concentration" effect of
the high Q cavity mode in the sapphire dielectric. Thus, mistakes in the height of the chip
will not change the coupling between the two modes significantly. It should be noted that
in my experimental design, the presence of the sapphire dielectric will shift the resonance
frequency of the high Q cavity down by approximately 10 MHz per sapphire chip. The
Solidworks design of the cavity is shown in Fig. 3.7 with structures for the qubit, flux hose
and Purcell filter clamps.
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Figure 3.7: Solidworks design of high Q cavity. Design of (A) the full
cavity setup in Solidworks and (B) the side view of the internal structure of
the cavity. The important features are the height of the post (14.8 mm) which
sets the resonance frequency of the cavity, the diameter (12.4 mm) and the
length of the waveguide section (30.7 mm) which minimises the decay of the
cavity mode. Not shown here is the diameter of the qubit tunnel (4 mm) which
affects the coupling between the qubit and the cavity modes. Copper clamps
that thermalise the cavity and the sample. The lid at the top is to block stray
infrared photons. At the bottom, there are mounts for the flux hose and a
Purcell filter.

For the cavity, two materials, aluminium and niobium, were used. Starting with a metal
block, bigger holes are first milled away. Next, a negative of the cavity is made for an
electrode in a plunger erosion electric discharge machining (EDM) process. This process
involves putting a high voltage on an electrode that erodes the material by large electrical
discharges. As compared to conventional milling, EDM allows for more complex shapes
and larger aspect ratios to be formed. EDM requires a longer time and multiple electrode
negatives have to be made as this process also damages the electrode.

Since any machining will inevitably damage the surface of the material, we etch away these
surface defects by removing ≈ 150µm of material in a buffer chemical process [60, 113].
This will produce a smooth surface that reduces losses in the cavity. The etching process
involves strong acid and is very exothermic. The reaction rate doubles every 10◦C. Thus,
the solution must be temperature controlled to be relatively cold or the etching process
will have a thermal runaway. The reaction also produces a lot of gas bubbles. Thus, the
etchant flow must be fast to prevent undesirable streaking on the surface and non-uniform
etching. Any screw threads must also be protected as the etchant will erode the threads
and cause problems during mounting.

In the next part, I describe the specifics of the fabrication and etching process for both
materials.
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3.4.1 Aluminium

The high Q cavities were machined in the mechanical workshop at IQOQI Innsbruck.
As high-purity aluminium is a soft material, the cavities were designed with a minimum
thickness of 1 mm. After machining, we polish the surface with two rounds of Transene
etchant in a double-walled beaker. The two rounds of etchant are needed to refresh the
reactants in the solution. The beaker is temperature-controlled via an external heat con-
troller. Transene etchant type A is a solution of (55 − 65%) phosphoric acid, (1 − 5%)
nitric acid and (3 − 5%) acetic acid. The screw threads were protected with aluminium
screws that were used as sacrificial material. The detailed etching recipe is produced in
appendix D.4.

3.4.2 Niobium

In the Kirchmair lab, we also used high-purity niobium cavities [92]. Niobium gives benefits
such as higher critical temperature and magnetic field. As niobium is a much harder
material than aluminium, greater care is necessary. The milling process requires titanium
drill bits. The EDM process also used multiple copies of a tungsten alloy electrode.

Due to the chemical resistance of niobium, the buffer chemical process is more dangerous.
The cavity was etched with collaborators at the Institute of Science and Technology, Austria
in Klosterneuburg with the group of Prof Johannes Fink. The detailed etching recipe is
produced in appendix D.5.

This process involved an etching solution of 1 : 1 : 1 (49%) hydrofluoric (HF), (69.5%)
nitric (HNO3) and (85%) phosphoric acid (H3PO4) for one hour at 5◦C. After which,
(H3PO4) is slowly added to reach a ratio of 1 : 1 : 2 for another hour of polishing. The
niobium cavity is then rinsed heavily with DI water. In the etching process, we found that
cooling the cavity before etching was essential to prevent thermal runaway.

To prevent excessive heating of the solution, the cavity was also cooled down to 5◦C before
starting the etching process. The screw threads were protected with a PDMS photoresist.

Unfortunately, niobium cavities will start to grow an oxide layer over time. This niobium
pentaoxide layer has lossy superconducting properties. Thus after a certain amount of time
in ambient pressure, we need to consider the removal of the oxide layer. On 2D co-planar
waveguide structures, a study on the oxide layer saturation showed that the oxide layer
was saturated after 200 hours in atmospheric pressure [114]. Fortunately, the 3D geometry
of the post cavity is forgiving as the participation ratio of the oxide layer is small and thus
can still have high-quality factors. We had one cavity left in the ambient atmosphere for 6
months which still had a quality factor of 0.5 million [92]. However, one must also consider
the effect of the oxide layer on qubits. To combat the regrowth of the oxide layer, there
are some proposals to coat the layer with a good superconductor such as NbSn [115].
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3.5 Flux Hoses

To allow for in-situ tuning of the qubit frequencies, we need to be able to thread magnetic
flux through a SQUID loop. For 2D geometries, on-chip flux bias lines can be used to
introduce the tuning magnetic field [116]. However, such lines complicate the fabrication
process and can capacitively couple to the qubit becoming an additional loss channel. For
qubits enclosed in a superconducting 3D cavity, introducing a magnetic field is difficult
due to the Meissner effect [117]. To circumvent this problem, the Kirchmair lab uses flux
hoses [118, 119]. These hoses guide the magnetic field lines in and out of the cavity so
that flux quantisation is not broken. Here, I introduce a new design that improves the ease
of fabrication and assembly of such hoses. Work in this section was done with Desislava,
Stefan, Vasilisa and Lucien from the lab with help on the magnetostatics simulations from
Dr. Natanael Bort-Soldevila [120].

The first generation flux hose design consisted of alternating layers of µ-metal and alu-
minium shells that guided magnetic fields inside a superconducting 3D cavity. With this
hose design, fast flux control (< 100 ns) has been demonstrated. However, the design had
many parts that made it difficult. The long physical distance between the coil and SQUID
loop heavily attenuated the magnetic field. Normal metal at the connector assembly leads
to a resistive load near the flux hose that could heat up. Thus larger coil currents were
problematic. Finally, the outermost superconducting shell had to be embedded with the
superconducting cavity to reduce the losses of the cavity.

In a new generation design, the flux hose is made from a single solid superconducting
piece with a small slit and a central hole (Fig. 3.8). A coil can then be embedded into
the superconducting body that shields the qubit from any potential losses from the coil.
Currents in the coil will then try to induce magnetic fields in the superconducting body.
However, due to the Meissner effect, this will cause shielding currents on the surface to
counteract the added magnetic field. These shielding currents will then create a magnetic
field in the inner hole of the superconductor that we can use to tune our SQUID.

This new design enables better integration into our 3D cavity. The flux hose was made
from aluminium and is cut by wire EDM that enables the small feature size of a 200µm
slit across a 15 mm length. The coil can be wound much closer to the SQUID loop and
is almost surrounded by superconducting material that shields the qubit from additional
decay channels. The slit allows for arbitrary magnetic fields in the superconducting hole.
After the hose is fabricated, a superconducting wire is wound around the end and secured
with stycast 2850.
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Figure 3.8: New generation design of flux hoses. (A) (Top) Simulation of
a coil embedded in a hollow superconducting cylinder and (Bottom) linecut of
the magnetic field generated by a five-loop bare coil (not pictured) and a single
coil embedded within a zero-magnetic permeability material. When there is
a current in the coil, shielding currents in the superconductor will produce a
field in the hole of the cylinder. This field can be used to thread a magnetic
field into a superconducting cavity. Figure from [120]. (B) SolidWorks draw-
ing of a new generation of superconducting flux hose. The slit is made from
wire electro-discharge machining and allows for arbitrary magnetic fields in the
superconducting hole. The body is inserted into a superconducting hole and
(C) the superconducting wire is wound around the slot with a smaller diame-
ter. Picture from an optical microscope. (D) Assembled flux hose. The coil is
secured with stycast 2850. Picture taken by David Jordan.
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3.6 Purcell Filters

To include Purcell filters in the setup, a design of a modular bandpass filter for 3D ar-
chitectures was made. Work in this section was done with many collaborators in the lab
including Stefan, Desislava, Lucien and our external collaborators Dr. Arman Alizadeh in
the group of Prof. Iman Mirzai, who worked on the design and simulation process.

The filters have a microstrip design with one end having an extended pin that will couple
to the readout resonator and can replace the SMA pin (Fig. 3.9). The gap and width
of each line determine the coupling and resonance frequency of the structure. The 3D
modular design allows us to integrate the Purcell filter into the coupling pin and still gives
the flexibility of redesigning and changing the qubit chips without the need to replace the
Purcell filter. By using bandpass filters as the Purcell filter, the qubit frequency can be
changed without the need to redesign the filter and allow for an in-situ tuning of a qubit
that remains Purcell-protected.

2 mmA B

300 um 200 um

Figure 3.9: Purcell filter design and prototype device. (A) Design of Purcell
filter which will be soldered to an SMA pin (bottom left) and on the other end,
the extension of the microstrip structure serves as a 3D pin that couples to the
cavity. The gap between and width of the microstrip structures determines the
coupling and resonance of the mode. (B) Picture of mounted prototype Purcell
filter design. The backside is soldered onto the ground plane. Picture taken by
David Jordan.

The bandpass filter was designed with network synthesis methods [18, 121] and is formed
by capacitively coupling small superconducting λ/2 microstrips. By optimising the width
and gap size between the resonators, we can design a bandpass filter with network syn-
thesis methods. This particular design is a 5th order Chebyshev filter and is optimised for
bandpass transmission flatness and compactness. The final design can be simulated with
ANSYS HFSS for the coupling strength to the readout resonator or with Sonnet to simulate
the transmission properties of the bandpass filter. The prototype filters were made with
SMA pins on both sides to allow for faster feedback on the design process. A big difficulty
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in the design process was to integrate the 3D coupling pin into the structure. This led to
an impedance matching problem which required a redesign of the filter structure.

The Purcell filters were fabricated with an optical lithography process. Optical lithography
is a faster process and could be used due to the larger structures on the chip that reduce
the fabrication resolution requirements. To improve ease of assembly, the wafer is first
metalised on the backside with gold to allow for soldering to the sample box. The top layer
is fabricated with aluminium and gold contact pads for soldering to an SMA pin. With the
laser dicer, we can dice out part of the sapphire that will protrude into the qubit tunnel
to act as a coupling pin to the readout resonator. The backside metalisation of the wafer
was removed for the protrusion. In future iterations, niobium will be used for backside
metalisation to reduce losses and sputtered with a hard mask layer. The fabrication recipe
was developed by Stefan Oleschko and is reproduced in appendix D.3.

A prototype Purcell filter was made with SMA ports on both ends. A transmission mea-
surement (red) of the prototype filter is plotted in Fig. 3.10 with a reference measurement
(blue) with a through cable.
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Figure 3.10: Transmission measurement of a prototype filter design with
SMA ports on both ends. The red line is a measurement through the
prototype Purcell filter while the blue line is a reference measurement through
a cable. The insets are zoomed-in measurements to show the loss profile in the
bandwidth of the filter and the transmission slope near the cut-off frequency.

3.7 Cryogenic setup

To reach superconducting temperatures and small levels of quasiparticle excitation, we
need to cool the experiment down below the critical temperature of the superconductor to
TC/4. However, this is not enough as we also require that the thermal energy of the mode
is much smaller than any transition frequencies kBT ≪ ℏω. This way, through dissipation
into the cold environment, the quantum system can be initialised into the ground state.
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The experiments were conducted in a Triton DU7-200 Cryofree dilution refrigerator system
(Fig. 3.11A) with a schematic of the cooling system shown in Fig. 3.11B. Operation in such
a cryogenic environment poses its own challenges. In appendix E, I outline the operating
principle of the cryostat and the heat load considerations on each operating temperature
plate. The experiments are mounted on the bottom “base” plate that is at a physical
temperature of 20 mK.

4 K

100 mK

20 mK

50 K

1 K

A B

Figure 3.11: Working principle of the cryostat. (A) Picture of the cryostat
dilution refrigerator. The different plates operate at different temperatures and
provide different cooling powers. Picture taken by David Jordan. (B) Schematic
of the cryostat. The cryostat has two cooling systems, a pulse tube at the 4K
plate and a 3He/4He mixture at the base plate. Figure from [122].
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3.7.1 Cryogenic Wiring

The experiment on the base plate has a physical temperature of approximately 20 mK.
However, the experiment must be connected to some control drive lines and measurement
output lines. These lines are connected to higher temperatures and will introduce addi-
tional thermal noise to the experiment.

For electrical circuits, this is the Johnson-Nyquist noise [123, 124]. The voltage noise power
spectral density from a resistor R at temperature T is [125]

SV V (ω,R, T ) = 4Rℏωnth(ω, T ) (3.27)

nth(T ) = 1

e
ℏω

kBT − 1
(3.28)

where nth(ω, T ) is the mean number of thermal photons. Without any attenuation, the
residual mean thermal photon number at 7 GHz is 904 photons. Fluctuations of cavity
photon number will cause the qubit frequency to shift through the dispersive interaction
resulting in additional dephasing of the qubit. In the strong dispersive limit, the dephasing
rate is [126]

Γϕ,th ≈ nthκχ
2

χ2 + κ2 = nth

1 + κ2

χ2

κ. (3.29)

Thus, we need to add attenuators to reduce this flux of thermal photons into the cavity.
The effective thermal photon number is then given by

nth,eff =
(plates)∑

i

Ainth(Ti) (3.30)

Teff(ω) ≈ ℏω
kB ln (1/nth,eff + 1) (3.31)

where A(i) is the total power attenuation factor from each plate to the base plate of the
cryostat (AW = 10AdB/10). Teff is the effective mode temperature of the cavity and can
be approximated by inverting the Bose-Einstein relation. This is an approximation as
the different thermal contributions from the attenuators lead to a distribution that is not
thermal anymore.

In addition to the thermal noise from the drive lines, the output lines will also contribute
to the thermal noise. The main noise source on the output lines is from the high electron
mobility transistor (HEMT) amplifiers at the 4 K stage. Unlike the input lines, we should
not attenuate the output signal coming from the experiment. Thus, cryogenic isolators
are used which allow the transmission of the signal from the experiment, but attenuate
the thermal noise from the amplifier. For the output lines, isolation from 4 K noise of
40 − 60 dB at the base plate will only result in a total of ≈ 0.095 nW of additional heat
load on the base plate. Depending on the cavity external coupling rate, this translates to
≈ 10−3 to 10−5 residual thermal photons in the cavity.

The output RF line material has two sections: from the isolators to the 4 K stage, they are
made from a niobium-titanium alloy that becomes superconducting. After the HEMTs, a
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copper-nickel alloy is used to connect the HEMTs to the room temperature plate. While
copper has better transmission properties, it is thermally conducting. This will give too
much heat load to the bottom plates. Thus, a copper-nickel alloy is used as a compromise
between steel and copper. Additionally, the attenuation from the copper-nickel alloy does
not significantly degrade the signal-to-noise ratio as this is after the first stage amplification
from the HEMT [46].

The input lines are made from stainless steel inner and outer conductors. Stainless steel is
a poor thermal conductor and is cheaper than the copper-nickel alloy. However, stainless
steel will have a higher transmission loss which is acceptable for input lines. The assembled
lines will also need to have a bend to account for thermal contraction during the cool-down
of the cryostat.

The main heat load on each plate is due to the thermal conduction through each line. This
is calculated in detail in appendix E.1. For 20 input lines and 4 output lines used in the
cryostat here, we can assume the heat load on each plate of the cryostat is small compared
to the cooling power.

The important quantity that affects our experiment is the residual thermal photons. Ta-
ble 3.2 shows the contribution of the different stages and attenuation to the residual ther-
mal photons in the cavity. At each plate, the attenuator will attenuate the thermal noise
from above and also add thermal noise from its physical temperature. Depending on the
subsequent attenuation below each plate, each plate’s thermal noise contribution from its
temperature can be calculated. The last row shows the sum of all the contributions from
each plate and is the residual cavity photon number. For example, we can see that in
the standard attenuation of 20 − 10 − 20dB configuration, the highest contribution to the
cavity thermal photon number is the 4 K plate, thus it would make sense to add addi-
tional attenuators after the 4 K plate. In these calculations, the cavity is at a frequency of
7 GHz.

Plate Input Line Attenuation (4 K, 100 mK, Base) Output Line Isolation
20-10-20 20-10-30 20 - 0 - 40 40 60

300 K 9e−3 0.9e−3 0.9e−3 - -
50 K 1.5e−3 0.15e−3 0.15e−3 - -
4 K 11e−3 1.1e−3 1.1e−3 1.1e−3 11e−6

1 K 2.5e−3 0.25e−3 0.25e−3 0.25e−3 2.5e−6

100 mK 0.36e−3 0.036e−3 3.6e−6 - 36e−9

20 mK 51e−9 51e−9 51e−9 51e−9 51e−9

Residual nth 0.025 0.0025 0.0024 0.0014 14e−6

Table 3.2: Table showing the contributions of the residual thermal pho-
tons to the experiment on the base plate for different line configura-
tions in units of dB. Each contribution considers the total attenuation after
each plate. The last row shows the sum of the different contributions from all
the plates and is the residual cavity photon number. Depending on the relative
input and output coupling strength of the cavity, the residual thermal noise will
be somewhere between the chosen input line and output line configuration. For
these calculations, the cavity frequency is 7 GHz.
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For a reflection configuration, only one cavity port is taken into account. The thermal
photon flux from the input line and output line add up. An experiment in transmission
will have a thermal equilibrium between the input line reservoir and output line reservoir
determined by the ratio of the input and output coupling of the cavity. For a qubit coupled
to a cavity with nth = 0.02 and optimal readout parameters of χ/2π = κ/2π = 1 MHz, the
thermal dephasing limit is Tϕ,th = 1/Γϕ,th ≈ 100µs. For a T1 of 20µs, this will limit the
maximum T ∗

2 to 35µs. Thus, it is important to make sure the thermal population in the
cavity is as low as possible.

It is also important to consider the maximum heat load on each attenuator. Too much
power dissipated at a certain resistor will cause the resistor to heat up and emit larger
thermal radiation than the physical temperature of the plate. Although attenuators are
properly thermally anchored, the inner conductor is still separated by some dielectric and
will not be as efficiently cooled. Some wiring schemes include directional couplers which do
not dissipate the signal [125]. Instead, the attenuation comes from the coupling coefficient
from the input port to the output port. Most of the signal is routed back up to upper
plates with larger cooling power.

From Eq. (3.29), one can see that, depending on the quality factor of the cavity Q = 1
κ and

the coupling to the qubit χ, the additional thermal dephasing rate is different. Also, with
low κ, we need much higher drive powers which would then negate the benefits coming
from attenuating the thermal noise. Thus, there are two sets of attenuation for different
cavity coupling quality factors.

Finally, care must be taken for DC bias lines. Ground loops through the SMA cables
or power supplies can cause large fluctuations of currents in the flux bias lines leading
to unstable qubit frequencies. A magnetic field change in the ground loops will generate
circulating currents. If there is a cable which goes in the cryostat in proximity to these
currents, an induced current will be guided inside the cryostat. More details about adverse
effects and avoiding DC ground loops can be found in [25].

3.7.2 Cryogenic Filtering and Shielding and Packaging

In addition to the attenuation and isolation of thermal noise, we include filtering to reduce
microwave noise. Bandpass filters on the drive line help to reduce noise fluctuations at
higher drive harmonics or cross-talk between the different elements.

Most of these microwave components are rated only to 12 GHz or in the case of SMA
connectors 18 GHz. Above these frequencies, the connectors or whole components can be
transparent to infrared photons. Infrared photons can leak into the experiment and cause
additional losses by exciting quasiparticles across the superconducting gap [127]. Thus,
infrared filters are added in the form of Eccosorb filters. These are home-built dissipative
low-pass filters with high attenuation up to the infrared regime. The filters should be
placed as close to the experiment as possible. After the filter, we have to use light-tight
cables and shields to prevent the leakage of infrared photons into the experiment.
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The samples are placed in a µ-metal shield which sits in a superconducting shield to protect
the experiment against stray magnetic fields. The shield is filled with eccosorb foam for
absorption of any stray infrared photons and is surrounded by copper to have good thermal
contact with the base of the fridge.

The sample chips and cavity are thermalised by copper clamps. To increase the efficiency
of cooling, it is best to limit the number of separate mounting bodies as each interface
will cause a reduction in the cooling efficiency. At cryogenic temperatures, thermalisation
between two bodies is not determined by pressure but by the force applied between them
[128, 129]. The qubit chip has an additional aluminium sheet with a small slit between the
chip and copper clamp. The small aluminium sheet is to shield the qubit mode from the
non-superconducting copper clamp. The small slit was made with a wire EDM.

3.8 Microwave setup

To apply gates on the qubits or cavities, we need to generate fast microwave pulses at
the frequency of the respective quantum element. Such pulses can be as short as 10 ns in
duration and have any pulse envelope shape. While there are some instruments capable of
direct synthesis of the pulses, these instruments are still expensive for research labs.

To form any pulse shape, we use arbitrary waveform generators (AWG), with a sampling
rate of at least 1 Gsample/s. However, most AWGs only have a limited bandwidth up to
(100 − 1000 MHz). To up-convert the intermediate frequency (IF) signal from the AWG to
the relevant quantum element frequency, mixers are used. Mixers are microwave devices
that are used together with an additional local oscillator (LO) to output a radio frequency
(RF) signal that is the product of the two. The output of a mixer is

vRF(t) = KvLO(t)vIF(t) = K cos (ωLOt)Vpulse(t) cos (ωIFt)

= K

2 Vpulse(t) [cos ((ωLO − ωIF)t) + cos ((ωLO + ωIF)t)]
(3.32)

where K is some voltage conversion loss in the IQ mixer. Depending on the specific mixer
device, K is approximately 6 − 9 dB of loss. The output RF contains two frequencies
ωRF = ωLO ± ωIF called the left and right sideband.

Mixers are inherently non-linear devices and thus have higher order sidebands. Imperfec-
tions in each mixer device will also result in some LO leakage or phase and amplitude
differences between the two sideband frequencies. Fortunately, there is a whole field of
microwave engineering that can account for and calibrate out such imperfections to pro-
duce a clean RF signal. Here, I describe two such methods, In-phase and Quadrature (IQ)
mixing and Double SuperHeterodyne (DSH) mixing. Details on pulse mixing and the IQ
calibration routine are found in [26] with more theoretical details found in [80, 81].

In addition to the mixers used, it is crucial to have fast microwave switches after any IQ
mixer and amplifier. This is especially important for IQ mixing, where the calibration in
the presence of an IF signal is very different to the case without an IF signal. Thus, the
LO leakage when there is no pulse being played might be large and must be attenuated
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with a fast switch. In the case where more RF power is needed, low-noise amplifiers can
be used. It is also important to place amplifiers before any switch to prevent sending
amplified thermal noise to the experiment. Small attenuators are placed before and after
the amplifiers to protect the amplifier from damage.

3.8.1 IQ Mixing

IQ mixers are a four-port device designed to produce high suppression of unwanted side-
bands. IQ mixers are made up of two balanced mixers and two hybrids. The LO signal
is split with the first hybrid into two signals with a π phase difference and used to drive
the two mixers. I and Q signals are used to drive the IF port of the mixers (Fig. 3.12A).
The output of the two mixers is then combined with the second hybrid to produce the RF
signal. The resulting RF signal is given by

VRF(t) = I(t) cos (ωLOt) +Q(t) sin (ωLOt) (3.33)

Considering the general case of I(t) = I0(t) cos (ωIFt+ ϕI) andQ(t) = Q0(t) cos (ωIFt+ ϕQ),
where I0(t) and Q0(t) are the pulse envelope. We can simplify the equation to

VRF(t) = I0(t)
2 [cos ((ωLO + ωIF)t+ ϕI) + cos ((ωLO − ωIF)t− ϕI)]

+ Q0(t)
2 [sin ((ωLO + ωIF)t+ ϕQ) + sin ((ωLO − ωIF)t− ϕQ)] .

(3.34)

By choosing I0(t) = Q0(t) and the right conditions for ϕI and ϕQ, we can select the
desired frequency and phase for the RF output. It is for this reason that qubit σ̂x or cavity
D̂(Re{β}) operations are called I pulses, while qubit σ̂y or cavity D̂(Im{β}) operations
are also known as Q pulses. The two terminologies are used interchangeably, as is the case
in this thesis. In particular, table 3.3 states the matching conditions.

ϕI ϕQ VRF(t)
0 π

2 I0(t) cos ((ωLO + ωIF)t)
π
2 π −I0(t) sin ((ωLO + ωIF)t)
0 −π

2 I0(t) cos ((ωLO − ωIF)t)
π
2 0 I0(t) sin ((ωLO − ωIF)t)

Table 3.3: IQ mixer calibration conditions. By choosing the right phase
relation and adjusting for imperfect DC offsets, the output of the IQ mixer can
calibrated to the left (ωLO − ωIF) or right sideband (ωLO + ωIF) frequencies.

Imperfections in the IQ mixer will lead to leakage of the LO tone. Furthermore, nonlinear-
ities of the mixer will lead to the generation of higher-order sidebands. We can calibrate
the LO leakage by adjusting the DC offset on both the I and Q ports. Imperfect sideband
calibration can be tuned by calibrating the amplitude ratio and phase difference between
the I and Q ports of the AWG. This is captured by a correction matrix that is applied to
the pulses as they are played.
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QI
R
L
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IF IF

Figure 3.12: IQ mixing circuit and calibrated spectrum. (A) IQ mixing
circuit. The IQ mixer is made up of two balanced mixers with two IF channels.
(B) Spectrum analyser measurement of a calibrated IQ mixing circuit. The
unwanted sideband suppression should reach > 40 dB. The highest unwanted
sideband will come from higher-order harmonics that can not be calibrated.
The IQ mixing circuits should be recalibrated if the pulse frequency is changed
by ≈ 10 MHz or the pulse amplitude is changed by ≈ 0.1 V.

The calibration is sensitive to instrument temperature, frequency and power and should
be recalibrated every ≈ 10 MHz or ≈ 0.1 V. IQ calibration will fluctuate but can achieve
at least 40 dB suppression between the wanted sideband and unwanted tones (Fig. 3.12B).
The highest unwanted sideband is the second order term ωLO ± 2ωIF which cannot be
calibrated out for an IQ mixer with only two ports. Thus, for transmons, it is better to use
the left sideband (LSB) for the qubit frequency. The anharmonicity of the transmon will
mean the transition frequency for driving |e⟩ to |f⟩ is lower than the qubit drive frequency.
Thus, the highest unwanted sideband tones near ωqb − α will cause AC Starck shift or
leakage out of the qubit computational subspace.

In some cases, the AWG signal needs to be attenuated for proper calibration. This can be
due to the nonlinearities of the mixer or the voltage step size of the AWG. For example,
the OPX AWG from Quantum Machines has a maximum voltage of 0.4 V with a 16-bit
resolution DAC. This means the AWG has a voltage step size of 0.4

216−1 ≈ 12µV. By
attenuating the IF signal first, this effectively decreases the step size and we can finely
tune the calibration of the unwanted sidebands. The signal can be amplified afterwards to
reach the required power levels.

For IQ calibration, some of the signal is routed via a directional coupler to a spectrum
analyser. Signals from multiple mixing channels are combined with a power combiner. An
important property of the combiner is to ensure that there is good isolation of the different
ports in the power combiner. Leakage through the power combiner will result in unwanted
pulses driving the experiment through other input paths.
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3.8.2 DSH Mixing

Double-super-heterodyne (DSH) mixing is an alternative method to produce fast pulses
at the desired frequency [80, 130]. Instead of calibrating out the unwanted peaks, DSH
mixing uses a narrow bandpass filter and two mixing stages to produce a clean RF signal.
The circuit is shown in Fig. 3.13A.

The first mixer stage produces frequencies at ωLO1, ωLO1 + nωIF, where n is the sideband
order. A narrow band pass filter is chosen with a bandwidth smaller than IF such that
only one of the sidebands is transmitted. Only one sideband is chosen, here the LSB at
ωLO1 − ωIF, and the rest are filtered out with a narrow bandpass filter (Fig. 3.13B). The
output frequencies of the second stage are ωLO2, ωLO2 +m(ωLO1 − ωIF). These frequency
spacing of the signals is much further apart as compared to IQ mixing and can be easily
filtered out with a low pass filter.

The IF is chosen such that it is larger than the bandwidth of the central bandpass filter.
For good suppression of unwanted sidebands, the filter should have a fast dropoff. We
operate with the passband at a high frequency and a down-mixing second stage to the
desired RF output. This method will reduce image frequencies that are close to the RF
output. For fast frequency changes, the bandwidth of the central bandpass filter will set
the fast dynamic range. The AWG can quickly change the IF and the tone will still be
well calibrated. Other desired RF frequencies can be reached by changing the frequency
of LO2.

With a good bandpass filter, the DSH method will have a larger suppression of ≈ 60 dB
between the wanted and unwanted sidebands (Fig. 3.13C). The main benefit of DSH is
that no mixer calibration is needed across a large range of frequencies. This method also
allows a comb of calibrated frequencies to be played simultaneously. This is useful if we
want to play qubit pulses on even or odd cavity photon peaks (Fig. 3.13D). In terms of
instruments, DSH uses one less AWG channel and one more LO.

However, there are some drawbacks to DSH. The main issue is that if the AWG does not
have real-time phase control, we cannot play simultaneous I and Q pulses to the experiment.
Furthermore, the two mixer stages will have larger losses and require a larger microwave
amplifier in the setup. Lastly, we have to be careful with image frequencies produced in
the setup.
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RIF
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LO1

IF IFR
L

LO2

Figure 3.13: Double superheterodyne (DSH) working principle. (A) DSH
mixing circuit. This circuit uses two single-sideband mixers with a narrow band-
pass filter. (B) Spectrum after the first narrow bandpass filter. The unwanted
sidebands are filtered out by the bandpass filter. (C) Spectrum analyser mea-
surement of a tone produced by DSH mixing. The unwanted sideband sup-
pression is > 60 dB. The dynamic range of DSH mixing is determined by the
frequency range of LO2 and the bandwidth of the central bandpass filter. (D)
Zoomed in on the transmission spectrum of the frequency comb from a DSH
setup. A huge benefit of DSH mixing is the ability to play a frequency comb
that is well-calibrated. This is useful for playing selective pulses on the even or
odd cavity photon qubit peaks. Here, the differences in amplitude are due to
variations in line attenuation at different frequencies. The amplitudes are indi-
vidually calibrated by selective Rabi pulses on the qubit peaks split by cavity
photon numbers.

3.8.3 Microwave Readout

These mixing schemes work in both up and down conversion. However one must check the
specific mixer model as certain models have image filters or diodes that will only allow the
mixer to operate in one direction.

For readout signals, IQ mixing was used to up-convert the IF tones to the readout frequency.
This avoids additional signal loss in the down-conversion process. The scheme shown in
Fig. 3.14 uses a heterodyne setup that splits the LO of the readout to drive both the
up-conversion IQ mixer and the down-conversion single-sideband mixer. This sets the LO
as the phase reference. The IF signal can then be demodulated into the in-phase and
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out-of-phase components to determine the amplitude and phase response of the readout
tone.

QI
R
LIF IF

LO

ADC

RL
IF

DUT

Figure 3.14: Readout with IQ mixing circuit. The LO is split to both the
up-mixing and down-mixing side to allow for a phase reference between the
probing signal and readout signal. The probing signal is then sent to the device
under test (DUT) and the readout signal is digitised. Due to the dispersive
interaction between the qubit and the readout resonator, the amplitude and
phase of the readout signal will be dependent on the qubit state.

3.9 Experimental Setup Summary

The following is a summary of the instrument and wiring setup used in the experiments
in the thesis. The schematic is shown in Fig. 3.15 which includes an additional pump line
for a quantum-limited parametric amplifier.

The input drive lines for the qubit and readout resonator are attenuated by 20 dB at the
4 K plate and 10 dB at the still plate. At the base plate, the input signal is filtered by a
K&L DC − 12 GHz low pass filter and then attenuated by a 20 dB Quantum Microwave
thermalised cryogenic directional coupler followed by a Quantum Microwave thermalised
cryogenic 20 dB attenuator and filtered by microtronics 4 − 8 GHz bandpass filter. The
input signal for the high coherence cavity is attenuated and filtered similarly, except for
the base plate where a 10 dB thermalised cryogenic attenuator is used instead.

The experiment was done in reflection with a Quinstar double junction 4−8 GHz circulator.
Before and after the setup, the input and output signals pass through a home-built eccosorb
filter.

The output signal is filtered via a microtronics 6 − 10 GHz bandpass filter, before passing
through a quantum-limited parametric amplifier. The experiment is isolated from thermal
noise in the parametric amplifier pump line by 60 dB at the base plate and 20 dB at the
4 K plate. The output signal is then filtered by a K&L filter which is connected to two
Quinstar isolators giving 40 dB isolation. The signal is amplified at the 4 K plate by HEMT
amplifiers and again with room temperature amplifiers outside of the refrigerator before
being down-converted and digitised.
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For shielding, the samples are placed in a light-tight µ-metal shield which sits in a supercon-
ducting shield to protect the experiment against stray magnetic fields. Copper mounts are
used to thermalise the shield and experiment. Inside the shields, eccosorb foam surrounds
the experiment to absorb any stray infrared photons.
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Figure 3.15: Full experimental wiring. The schematic includes microwave
circuits at room temperature and cryogenic attenuation and filtering. Figure
from supplementary material in [131].

The pulses for the high Q cavity and readout resonator with IQ mixing using a Marki
microwave IQ mixer. The qubit pulses were up-mixed through a DSH setup employing
two LOs and two MiniCircuits single side-band mixers. These pulse generation setups also
incorporated various amplifiers, filters, alternators, and home-built fast microwave switches
to achieve effective suppression of unwanted mixing products and minimise leakage of LO
signals. The signal from the cryostat was down-mixed using the same readout LO and
further amplified before being digitised.

Specifically, the AWG and ADC used was the Operator X (OPX1) from Quantum Ma-
chines. In later iterations of the experiments, an upgraded version (OPX+) was used with
the Octave that included an integrated IQ mixing circuit. The additional LOs were from
Valon RF Technologies.



CHAPTER 4
Experimental Characterisation

In this chapter, I outline the measurement methods used to characterise the Hamiltonian of
the experiment. There are a plethora of measurement methods to get the same Hamiltonian
parameters [24, 96, 103]. These can be classified into two broad categories. The first is the
frequency domain, where we sweep the frequency of a probe or pump tone. The second is
time domain measurements, where the response of the system is measured over time. Here
I present a summary of characterisation experiments used and my thoughts on carrying
out experiments in different situations.

In practice, instruments or experimental systems may not perform flawlessly. Thus, ex-
periments such as null checks are crucial to differentiate measurement artefacts that arise
due to imperfections. In research labs, we might also be limited in the number of available
instruments. Thus, I believe it is useful to have a comprehensive understanding of multi-
ple methods for measuring the same Hamiltonian. This redundancy serves as a valuable
cross-check with various instruments in the troubleshooting process.

In the first section, I present the fast continuous wave (CW) measurements to charac-
terise the readout resonator and check the status of the qubit. In Sec. 4.2, I outline the
experiments done to characterise the qubit. Section 4.3 explains the measurements to
characterise the high Q cavity mode. Finally, in the last section, I describe the method of
creating single Fock states in the high Q cavity. Also, in appendix F, I include a diagnostic
toolbox that includes other experiments that can be used for troubleshooting or fine-tuning
of experiment parameters.

4.1 Readout Resonator CW Measurements

The first set of measurements is done with a Vector Network Analyser (VNA). VNAs
measure the coherent complex scattering parameters of the experiment. To measure the
readout resonator, we use the VNA S21 measurement which sends a pulse on port 1 of the
VNA and measures its response at port 2. VNAs have a large dynamic range in power and
frequency and thus can be used to quickly find the resonator frequencies.

VNAs can be set with a frequency range, number of frequency points and an associated
intermediate frequency (IF) bandwidth that samples around each frequency point. Av-
erages are then taken over each sweep and the final measurement is shown. For initial
checks, it is visually faster to watch measurements happen with a higher IF bandwidth.

77
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We can recognise patterns in the measurement results before the full measurement is fin-
ished. However, for doing bigger measurement maps where we are not actively monitoring
the measurement, it is faster to do fewer frequency points with a lower IF and fewer number
of averages. This is because most VNAs are designed such that it would do a full sweep in
frequency first and then average on top of each frequency point with subsequent sweeps.
This will take extra time when the VNA switches between the start and the stop probe
frequency.

Power Spectroscopy The first measurement is a power spectroscopy with a VNA. At high
powers, all qubits and other two-level systems become saturated. Thus, we will see the bare
resonator frequency. At lower probe powers, for a coupled qubit that is alive, the resonator
will become non-linear and start to shift to the dressed frequencies Fig. 4.1A. For this
reason, we often interchange the terms used for the dressed and bare frequencies with low-
power and high-power frequencies of the resonator. With the simulated coupling strength g
and anharmonicity Ec, the difference between the dressed frequency and the bare frequency
can be used to determine the qubit frequency with Eq. (2.52), ω′

r − ωr = − g2

ωq−ωr−Ec/h .
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Figure 4.1: Readout resonator CW measurements.(A) Power Spectroscopy
of a readout resonator coupled to the qubit. At high probe powers, the qubit
is saturated or excited beyond the Josephson junction potential well [52]. This
results in the readout resonator moving towards the bare frequency. At lower
powers, the coupling between the resonator will become non-linear and shift
towards the dressed frequency. This measurement map is done with a Vector
Network Analyser and is the first measurement that determines if a qubit sur-
vived the mounting process. (B) For setups with the reflection configuration,
a circle fit of the reflected signal allows the extraction of the quality factors of
the cavity [101].
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These measurements can be done while the fridge is still cooling down, after reaching
a base temperature ≈ 100 mK. The cavities are already superconducting and readout
frequencies can be determined. These measurements will not reflect the true line widths
of the resonators but allow for easier determination of frequencies in a new setup.

For experiments in reflection or hanger configuration, we can determine the internal loss
rates and external coupling rates. This is done through a circle-fit routine [101] (Fig. 4.1B).
For a resonator in reflection with frequency fr

S11(f) = 2Qtot/Qc

1 − 2iQtot
f−fr

fr

− 1 (4.1)

where Qtot is the total quality factor due to Qint internal losses and Qc external coupling.
For accuracy in the fit routine, the experiment should have a coupling ratio of Qint

Qc
≈

0.01 − 100, with the optimal case being critically coupled, Qint ≈ Qc. 1.

It is often difficult to estimate the final Qint a priori. For better fitting of the different
quality factors, it is better to be in the under-coupled regime Qint < Qc. By estimating
the power sent to the resonator at the experiment, we can also determine the number of
photons used in the readout with ⟨nphotons⟩ = 2

ℏω
Q2

tot
Qc

Pin, where the Pin is the input power
in W.

An important distinction between such a measurement and a true reflection measurement
is the use of the circulator in the cryostat. The measurement is still a transmission con-
figuration as the signal travels on separate input or output lines. Leakage through the
circulator can cause an interference between the leakage signal and the signal from the
experiment known as Fano-interference [132]. This will affect the shape of the resonance
and cause inaccuracies in the determination of the different quality factors. This adverse
effect can be mitigated by being in the under-coupled regime.

As we increase the number of photons used in the readout, we see the linewidth of the
resonator changing [133, 134]. Thus, to determine the internal loss rate of the resonator,
the power must be reduced such that there is roughly an average of 1 photon in the readout.
The power level for a single photon in the cavity depends on the coupling quality factor
but is approximately −130 dBm at the base plate. In most cases, the external coupling
will not change with frequency or power, thus to help with the fitting program, a faster
measurement at high powers can be used to determine the external quality factor first.

1Another measurement method to determine the different coupling constants is via a spectrum analyser.
Using the time traces of the response of the cavity to a pulse, we can fit the different decays [92] shown
in appendix F.3
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Flux Tuning For resonators with a SQUID, we can check the tuneability of the qubit via
the readout resonator. By tuning the qubit frequency, the dressed frequency of the readout
resonator will also shift. Thus, we can already determine the current needed for changing
the flux by a Φ0. Higher-frequency sweet spots in the readout resonator will correspond
to low-frequency sweep spots in the SQUID. We can also use Eq. (2.48) to fit any avoided
crossings to determine the coupling between the resonator and SQUID.

Figure 4.2: Readout resonator flux map. A readout resonator is coupled to
a SQUID which is coupled to a flux hose. By changing the current in the coil
of the flux hose, we can change the frequency of the SQUID. This in turn will
shift the dressed frequencies of the readout resonator accordingly. Thus, we can
determine the conversion between the current applied and the flux quantum
in the SQUID loop. In this map, hysteresis present in the system prevents
full fitting of the resonator frequencies. In the first generation of flux hoses,
as shown here one flux quantum required 24.5 mA, while with the improved
designs, only 5.6 mA was required per Φ0. Measurement was performed with
Lucien Québaud during an internship project.

In an initial proof of concept experiment, we compare a SQUID in two setups where we
determine the flux periodicity of the system for the two generations of flux hoses. Both
experiments have the same SQUID loop area and flux hose to SQUID loop distance. For
the first generation flux hose, we required 24.5 mA per Φ0 (shown in Fig. 4.2) while the
new generation design only required 5.6 mA per Φ0. This shows a factor 5 improvement
in the efficiency of magnetic flux transfer. Measurements of the fast flux tuneability of the
new generation design are currently ongoing.
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4.2 Qubit Measurements

After measuring the resonator, we can introduce another pump tone to characterise the
qubit. This frequency can be filtered out or attenuated in the output lines as we do not
read out at the qubit frequency.

Qubit Spectroscopy The next set of CW measurements is probing at the low-power
readout resonator resonance and including a second pump tone, known as two tone spec-
troscopy. When the pump tone is resonant with the qubit frequency, the resonator is
shifted down by χ (Fig. 4.3). At higher pump powers we are also able to excite the two-
photon transition to the |f⟩ state and see a twice-shifted readout resonator. At this pump
frequency, the detuning from the ground state transition is half the anharmonicity of the
qubit. Similar to the CW measurements of the readout resonator, this measurement can
also be done while the experimental setup is around 100 mK as we are only determining
frequencies here.
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Figure 4.3: Two tone spectroscopy. (A) Qubit spectroscopy map. Two tone
spectroscopy is done by turning on a pump tone and probing the readout res-
onator. By sweeping the frequency of the pump tone, we can determine the
qubit frequency when the readout resonator shifts to a lower frequency. (B)
Linecut data and fit of a single probe frequency. For a measurement in reflec-
tion, the probe frequency is at the readout resonator frequency and thus will
read an increase in signal when the qubit is excited and the readout resonator
is shifted.
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4.2.1 Rabi

Thus far, all of the presented measurements have been CW measurements where both the
probe and pump tone are always on at the same time. To do more complex experiments,
the measurements have to be in the pulsed mode. This requires moving to fast AWGs and
mixing setups. Between measurements, a long wait time is needed to allow the system to
cool back down and initialise in the ground state. This is typically 5−10 T1 of the qubit.

The first measurement is called a Rabi experiment which aims to tune up qubit pulses.
In this experiment, a qubit pulse is first played followed by a measurement of the readout
resonator. There are two ways to tune up qubit pulses referred to as power Rabi (Fig. 4.4A)
or time Rabi (Fig. 4.4B).

For power Rabi, the qubit pulse length is kept the same while the amplitude is increased.
This means the pulse has the same frequency width. However, the Stark shift due to the
pulse amplitude will increase. For systems that are very susceptible to these shifts, it could
be the case that the qubit is tuned in and out of resonance within the amplitude sweep. For
time Rabi, the pulse length increases and becomes more selective at higher pulse lengths.
It is also the case, that some AWGs can easily increase the amplitude but cannot stretch
a pulse quickly without incurring additional lag time.

As we are averaging sequential experiments, the voltage that we measure is

Vmeasurement = PeVe + PgVg (4.2)
= VA cos (2πAt) + Voffset. (4.3)

where Ve,g = VA ± Voffset is the voltage that corresponds to measuring the qubit state in
|e⟩ or |g⟩. Pe and Pg refer to the probability that the qubit is in the ground or excited
state given by Eq. (2.62). Here, note that there is no phase component in the cosine as a
zero amplitude and time qubit pulse must leave the qubit in the ground state. However,
it is often the case that AWGs have a minimum pulse length and thus, the time Rabi
needs to start from some minimum pulse length. For all future measurements, if there
are no higher-order cross-Kerr effects from the excitation of other modes, the obtained
measurement voltage should be between Ve and Vg.

We can determine the maximum applied Rabi frequency Ω. Using square pulses with a
constant amplitude and thus constant applied Rabi frequency, the number of oscillations
nosc in a time Rabi measurement will give Ω/2π = nosc

Tpulse
≈ 10 − 80 MHz. This allows us to

convert between the voltage we apply and the Rabi frequency on the qubit.
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Figure 4.4: Rabi experiments. (A) Power and (B) time Rabi measurements.
These measurements are done by sweeping the amplitude or length of the qubit
pulse which results in Rabi flopping the qubit between the excited and ground
state. The AWG used has a minimum pulse length and thus, the time Rabi
needs to start from some minimum pulse length. (C) Rabi map. Detuned Rabi
oscillations can be seen when the qubit tone is off in frequency. At detuned
frequency, the qubit is not fully rotated to the excited state.

In Fig. 4.4C, the power Rabi measurement is done for a detuned qubit drive. From
Eq. (2.62), we note that slightly detuned pulses will result in similar measurement re-
sults but with a smaller amplitude VA. Furthermore, small pulse amplitude or time errors
are also difficult to catch. This might be visible on big measurement maps of qubit detuning
and pulse amplitude and doing a global map fit. However, such maps are time-intensive. A
more time-efficient way to amplify such small errors is the repetition of N pulses. The er-
rors in each pulse will add up and thus can be more easily seen. This is known as Amplified
Phase Error and some measurements are shown in appendix F.1.
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4.2.2 Optimising Qubit Readout

For the initial measurements, we can just pick a low-power readout resonator and measure
the amplitude or phase of the resonator. To improve the readout fidelity, we can opti-
mise the measurement pulse amplitude and time. Optimising the readout parameters will
require measurement of the qubit coherence times and readout fidelities. Thus, initial mea-
surements are first set to a longer waiting time and measurement pulse time. Unoptimised
values just result in a lower measurement fidelity but still produce the results needed to
optimise the measurement.

The measurement time is bounded by two limits, the external coupling rate of the readout
resonator κc and the qubit lifetime T1. We need to get information on the resonator
photons and thus we choose the measurement time tm > 4(2π

κc
). A longer measurement

time also allows for a longer integration of the signal and thus reduces the measurement
noise. However, the qubit should not decay during the measurement time tm < 1

10T1.

Similarly, a larger measurement pulse amplitude will give us better differentiation between
the qubit in the ground or excited state voltages. However, for quantum non-demolition
measurements, we need to stay under the ncrit limit2.

Between each measurement, we have to allow for all qubit and cavity states to decay back
to the ground state. The waiting time between measurements is limited by the longest-lived
quantum element T ≈ 5 − 10 T1.

Figure 4.5: Phase space of the readout signal. (A) Raw data and (B)
Rotated signal. The readout signal should be demodulated such that it is only
along one quadrature. Otherwise, measurement artefacts will appear, shown in
appendix F.4C. Another improvement is to remove the mean DC offset so that
the readout signal can be amplified to use the full range of the digitiser.

2QND measurements are those where the projected qubit state after the measurement is the result of the
measurement. Consecutive QND measurements will result in the same answer. A counter-example is
most photon detectors, in which the measurement of the photon destroys the photon.
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The readout signal can be demodulated to the I and Q components. These components
can have some DC and phase offset (Fig. 4.5A). For maximum signal contrast, it is best to
account for these offsets to use the maximum voltage and bit resolution of the digitised used.
To maximise the measurement signal over digitiser noise, we can include low-frequency
amplifiers and a bias tee with a resistor across the DC port to the ground port to remove
any DC components of the noise.

The phase offset can be accounted for by applying a rotation angle on the integration
weights in the demodulation process. As shown in Fig. 4.5B, this is equivalent to rotating
the demodulated signal by some angle. It is best to rotate such that all the signal is only
in one quadrature. In reflection configurations, this is crucial as there is a phase difference
of π between the signals. This might result in some intermediate voltage parameters
|Vmeasured| < |Ve| or |Vg|. This is shown in appendix F.4A.

Low Power Readout and Active Reset

Optimal readout parameters use only one quadrature or the phase of the readout signal
and are at a frequency, between both the dressed frequency and χ shifted frequency.

To optimise the readout parameters, we can repeat measurements for the qubit in the
ground or excited state. Plotting the data in a histogram will allow us to obtain a state
preparation and measurement (SPAM) fidelity based on the overlap between the two his-
tograms (Fig. 4.6). In Fig. 4.6B, when the qubit is prepared in the excited state (blue
line), we still see a significant population in the ground state. This is due to a low qubit T1
which results in the decay of the qubit state during state preparation or measurement.

For active reset, two additional conditions are required. The first condition is the ability
for fast single-shot QND measurement of the qubit. Fast single-shot QND measurements
will require a quantum-limited parametric amplifier with a gain of ≈ 20 dB to beat the
HEMT noise. The second condition is initialising the readout resonator in the zero photon
state. Photons in the readout resonator will cause a shift in qubit frequencies due to the
dispersive interaction. The decay of resonator photons is fast due to the large external
couplings, but can still be sped up by shaping the measurement pulse [135].
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Figure 4.6: Single shot high power readout (A) Phase space of measurement
signal and (B) Histogram of data along the I signal direction. The histogram
determines state preparation and measurement (SPAM) errors. Data is sorted
into bins and fitted to a normal distribution (solid lines). The dashed line is the
cumulative distribution of the two cases. The overlap between the two normal
distributions gives the error due to SPAM errors. The maximum fidelity is
given by the difference between the two cumulative counts (green line). Here,
the preparation and readout fidelity is 90.8%.

High Power Readout

An alternative method for readout is high-power readout, also known as Jaynes-Cumming
readout [136]. This method involves high powers of the measurement pulse, giving us a
larger number of signal photons and a higher signal-to-noise ratio (SNR). Depending on
the relative detuning of the qubit from the resonator, the probe power is placed above or
below the high power peak of the resonator. For the qubit in the excited state, the low
power peak of the resonator is shifted down by χ. For a qubit frequency below the readout
resonator frequency, this means that the low power peak is now closer to the high power
peak. This causes a faster transition to the high-power peak. By probing with a power just
below the high power peak, we will only see the readout resonator resonance if the qubit is
excited. The power spectroscopy at the bare resonator frequency for different qubit initial
states is shown in Fig. 4.7A. In Fig. 4.7B, the readout voltage is normalised by the input
readout voltage (as larger input signals will achieve larger output signals). The normalised
data will allow us to calculate the difference in normalised readout signal between the two
cases for qubit ground and excited and we can choose a readout amplitude that maximises
the readout contrast (green line).
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Figure 4.7: High power readout calibration. Power Spectroscopy at the
fbare resonator frequency for the qubit initialised in the ground or excited state.
(A) Raw data. The overall rise in Vmeasured is due to the increase in readout
amplitude used. The dip in readout amplitude is due to the saturation of all
qubits and two-level systems such that we see the bare resonator frequency.
As the measurement is done in reflection, this results in a dip in the readout
amplitude. (B) Normalised data. We can divide the measured readout by
the readout amplitude used to normalise the data. Calculating the difference
between the two curves allows us to choose a readout amplitude that maximises
the readout contrast (green line).

High power readout is not a QND measurement as the qubit is excited to very high transi-
tion levels. During this readout method, the qubit and resonator become highly hybridized.
Transitions between the "qubit" and the "cavity" mode occur which results in a lower mea-
surement fidelity. High power readout also requires a longer waiting time for the qubit
and readout resonator to fully decay and be reinitialised into the ground state between
experiments. Thus, we cannot do feedback control with high-power readout.

Measurement fidelity aside, a high-power readout has an overall measurement time similar
to that of a low-power readout with a quantum-limited amplifier. This method is especially
useful in some experimental situations such as the lack of a quantum-limited parametric
amplifier due to device, wiring or instrument constraints. Furthermore, in the case of high
Q cavities without a technique to for fast Q switching or to empty out the photons in
the high Q cavity, a long waiting time between experiments is already required. In such
scenarios, high-power readout can be a middle ground between shorter measurement time
and having good SNR.
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4.2.3 Qubit Lifetime and Coherence Time

qubit X(π) T (delay)
qubit X

(
π
2

)
T (delay) φ

(
π
2

)

qubit X
(
π
2

)
T
(

delay
2

)
Y (π) T

(
delay

2

)
X

(
π
2

)

A

Figure 4.8: Qubit relaxation and coherence time measurements.(A) Pulse
sequence for (left) qubit relaxation and (right) decoherence time measurements.
(b) T1, (C) T ∗

2 , (D) TE
2 measurement results. T ∗

2 is done by introducing con-
trollable and artificial phase oscillations in the second ϕ̂(π

2 ) pulse. For TE
2 , the

Ŷ (π) echo pulse helps to mitigate low qubit frequency noise and small qubit
pulse amplitude errors. Here, T1 = (33.6 ± 0.3)µs, T ∗

2 = (13.7 ± 0.2)µs and
TE

2 = (15.7 ± 0.3)µs

For qubit T1, a π pulse is applied on the qubit with a variable waiting time (Fig. 4.8A).
The probability of finding the qubit in the excited state will decay with an exponential.
Pe(t) = e−t/T1 → Vmeasured = Ae−t/T 1 + Voffset. The total quality factor of a qubit can be
calculated by Qtot = ωq2T1.

T ∗
2 measures the phase coherence of the qubit by placing the qubit on the equator of the

Bloch sphere. Then, after a variable waiting time, the qubit state is mapped onto the
ground or excited state with another π/2 pulse (Fig. 4.8B). This is known as a T ∗

2 Ramsey
experiment. A detuned qubit frequency will give phase oscillations in the exponential
decay, the measurement map is shown in Fig. 4.9A. For small frequency detunings, the
slow phase oscillation will be hard to fit on top of an exponential decay. Thus, it is better
to use larger detunings or preferably to introduce artificial phase oscillations into the second
π/2 pulse. This allows us to play calibrated qubit tones on resonance and the frequency of
the oscillations to be changed Vmeasured(t) = Ae−t/T ∗

2 cos (δωt+ ϕ(t)) + Voffset, where δω is
the detuning between the qubit and the drive frequency and ϕ(t) is the introduced phase
oscillations in the second π/2 pulse.

Another commonly done experiment is the TE
2 measurement where an additional π pulse

is applied in the middle of the waiting time in a T ∗
2 measurement Fig. 4.8C. This is known

as the spin or Hahn echo sequence [137]. The echo pulse will refocus low-frequency qubit
detuning and the TE

2 will have a similar decay form to T1. Echo pulses are designed into
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pulse sequences to mitigate low-frequency noise and fluctuations of the qubit frequency due
to shot-to-shot photon number fluctuations. By making the echo pulse π/2 out of phase
with the π/2 pulses, we can add a first-order insensitivity to pulse amplitude errors.

An extension to the echo pulses is the Carr-Purcell-Meiboom-Gill (CPMG) sequence [138,
139]. The CPMG sequence increases the number of π pulses that refocus the qubit Bloch
vector after each delay time. By varying the number of pulses, we can also sample different
parts of the noise spectrum of the qubit [140].

Doing repeated T1, T ∗
2 and TE

2 measurements over a long time scale, we typically see
fluctuations of these values and the qubit frequency to an order of 10% (Fig. 4.9B and C).
The fluctuations can be due to stochastic variations in the qubit’s environment leading to
a change in the loss rate of the qubit such as ionising radiation from cosmic rays [141].
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Figure 4.9: Detuned T ∗
2 measurement map and monitoring qubit lifetime

over hours. (A) T ∗
2 measurement map with detuning of the qubit drive tone.

We see phase oscillations in the measurement due to the qubit drive frequency
and qubit frequency detuning. (B and C) Measurement results from repeated
qubit lifetime and decoherence time experiments. Doing repeated measurements
of T1, T ∗

2 and TE
2 show stochastic fluctuations around 10%.
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4.2.4 Qubit Anharmonicity

Transmons have a higher lying |f⟩ state with a transition frequency from |f⟩ to |e⟩ at ωq−α.
This additional state can be a resource for qutrits or a problem causing higher-order effects
on our quantum system. Figure 4.10A shows the pulse sequence used to determine the
anharmonicity. The pulse sequence starts from the qubit in the excited state first applying
a X̂ge(π). A spectroscopy pulse can then be applied to determine the frequency α. Finally,
we need to alter our readout scheme by either measuring the population of |e⟩ at the end of
the sequence or by applying another X̂ge(π) pulse to transfer the remaining excited state
population to ground state before reading out the ground state population. When the
spectroscopy pulse is at the anharmonicity, the pulse will drive transitions between the |e⟩
and the |f⟩ state, thus the excited state population will decrease (Fig. 4.10B).

Similar to higher Fock states in the cavity, higher lying states in the qubit will have a
reduced lifetime. For the nth excited state, the lifetime is Tn = T1/n.

qubitge X(π) X(π)

qubitef X(sat, f)

Figure 4.10: Measurement pulse sequence and results of identifying the
anharmonicity of the transmon. (A) Pulse sequence to identify anhar-
monicity of the transmon. First, the qubit is placed in the |e⟩ state with a
πge pulse and a spectroscopy pulse is played. For readout, another πge pulse is
played to determine if the qubit has left the |e⟩ state due to the spectroscopy
pulse. (B) Spectroscopy of the ef transition. Additional oscillations close to the
transitions are due to off-resonant excitation of the respective transitions, this
results in detuned Rabi oscillations.

4.2.5 Mode Temperatures

As mentioned in Sec. 3.7.1, due to the thermal noise coupling in via the control and
measurement lines, the qubit and the cavity mode temperature will not reach the physical
temperature of the base plate of the fridge. To characterise the mode temperature, we need
to measure the mode population distribution. There are two methods to do so: selective
Rabi oscillations [142] or spectroscopy. The measurement methods are appropriate for
different regimes of mode temperature. But both can be used to determine either qubit or
cavity mode temperature.
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Qubit

For lower mode temperatures, we can determine the occupation of the excited state by
using the |f⟩ state. This is done by mapping the amplitude of Rabi oscillations between
the |e⟩ and |f⟩ state to the populations of the ground and excited state [142]. The pulse
sequence is shown in Fig. 4.11A. The measurement result is shown in Fig. 4.11B. The
amplitude of the Rabi oscillations can then be used to calculate the mode temperature

A|e⟩
A|g⟩

= e
hfq

kBTq . (4.4)

This equation assumes a thermal distribution with low temperature or a two-level approx-
imation of the qubit meaning that there is no population in the |f⟩.

qubitge (X(π)) X(π)

qubitef X(A)

Figure 4.11: Qubit mode temperature measurement. (A) Pulse sequence
of Rabi population measurement of the |e⟩ or |g⟩ state. First, the qubit is
placed in the |e⟩ state with a πge pulse and another Rabi pulse is played with
varying amplitude. For readout, another πge pulse is played to determine if
the qubit has left the |e⟩ state due to the Rabi pulse. For the population
measurement of |g⟩, the experiment is repeated without the first πge pulse. (B)
The amplitude of oscillations is proportional to the qubit population in each
state. This measurement assumes that there is no population in the |f⟩. For
visibility, the amplitude of oscillation for the |e⟩ (blue line) is enlarged by a
factor of 10. Here the excited state population is 1.3%.

With good isolation, the qubit excited state population is 1% resulting in a qubit mode
temperature of 60 − 80 mK.
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Cavity

For higher mode temperatures, qubit or cavity spectroscopy will reveal multiple peaks
spaced by χ. The height of the peaks reflects the distribution of the excited state popu-
lation (Fig. 4.12). However, this method is not as accurate for colder mode temperatures
nq = A|e⟩

A|g⟩+A|e⟩
⪅ 10%. This method is more suited for higher levels of the excited state

population.

qubit X(π, freq)

cavity noise source •

Figure 4.12: Qubit spectroscopy measurement and fit with a thermal
population in the high Q cavity. (A) Pulse sequence of measuring with
added thermal noise. First, a noise source is used to initialise the cavity to
a larger thermal photon population (nth > 0.1). Secondly, a cavity photon
number selective qubit spectroscopy is performed. (B) Measurement result of
qubit spectroscopy with cavity thermal population. The amplitude of peaks
is proportional to the population in each cavity photon number. A global fit
of the multiple Gaussian with peaks weighted to a common thermal photon
distribution is performed. The individual Gaussians are plotted to check for
fitting anomalies (colour lines), such as all Gaussians should have the same
offset and the Gaussian linewidths should be limited by the pulse and not the
loss given by γq+nκ, where γq is the decoherence rate of the qubit, n is the cavity
Fock state number and κ is the loss rate of the cavity. For this measurement,
nth ≈ 2.4, giving a mode temperature of Tcavity = 645 mK.

The qubit peak distribution follows a super-Poissonion Eq. (2.17). In this distribution,
the highest peak is always for n = 0. If the first qubit peak is lower, this points towards
a leakage of a coherent signal into the cavity mode. The individual Gaussians lines are
plotted to check for fitting anomalies, such as all Gaussians should have the same offset
and the Gaussian linewidths should not be too different.

The mode temperature can be calculated via Eq. (3.31). The difference between this
equation and Eq. (4.4), is due to the multi-level Hilbert space of the cavity.
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4.2.6 SQUIDs

For SQUID measurements, at each flux point, the experiments above can be repeated.
Big flux maps will require multiple recalibration of instruments or readout parameters.
Fortunately, for certain parameters, we can play a few tricks to reduce the time taken to
recalibrate.

For readout, low-power readout requires recalibration of the readout frequency. However,
using high-power readout, the readout frequency is always at the bare resonator frequency,
while the optimal readout power will change, we do not have to recalibrate the readout
power as often.

For T1 measurements, we can avoid calibrating π pulses at each flux point. We can use
a fast microwave switch and a LO to saturate the qubit. There will be an equal mixed
population of the |g⟩ and |e⟩ state. The resulting measurement will also have the same T1
decay with half the readout contrast.

4.3 High Q Cavity

This section describes measurement methods to characterise the high Q cavity. Without
a method of direct readout, we have to ask binary questions on the qubit to infer the
cavity state. There are two main methods of measuring the cavity state, namely gener-
alised Husimi-Q and parity measurement [24]. With these two techniques, we can quickly
understand the concept of the other measurements in the frequency or time domain.

4.3.1 Inferring the state of the cavity

These methods work by reconstructing the cavity state via parity values at each phase
space point β of the cavity. The full cavity state is reconstructed by doing a full map of
D̂(β) to every phase space point.

In these measurements, the qubit and the cavity is assumed to be initialised in the ground
state. Measurements with some excited state qubit population will have a reduced mea-
surement contrast.
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Generalised Husimi-Q Measurement

The first measurement technique is to do a selective Xπ,n pulse on the qubit conditioned
on a specific cavity photon number. The pulse sequence is shown in Fig. 4.13A. The qubit
state will then flip only if there are n photons in the cavity at the phase space point
β. To eliminate the overall shift in readout value caused by the cross Kerr between the
high Q cavity and readout resonator, we can repeat the measurement for no qubit pulse
(Fig. 4.13B). The probability of reading the excited state is given by Eq. (2.20).

As plotted in Fig. 4.13C, we can use this technique to determine the displacement scaling
factor A between an applied voltage βV and the coherent state reached β = βV A

Pn(βV ) ∝ e−(βV A)2 (βV A)2

n! . (4.5)

qubit X(π, n)

cavity D(β) •

Figure 4.13: Generalised Husimi-Q measurements. (A) Pulse Sequence of
the generalised Husimi-Q (B) Raw measurement data for the n = 0, 1, 2, 3 cavity
Fock states and a background measurement (bg). The decrease in measured
amplitude is due to the cross-Kerr between the high Q cavity and the readout
resonator. The background measurement will take into account this cross-Kerr
effect (C) Normalised and fitted data of the generalised Husimi-Q for the n =
0, 1, 2, 3 cavity Fock states [24].

For a small initial thermal state in the cavity, P0 will not start from one and P1 will not
start from zero. Due to the distribution of Fock states present at zero displacement.

To reconstruct the Wigner map, we can just do two measurements where the qubit pulse
is a frequency comb of the even or odd photon peaks. This is possible by using a DSH
setup (Fig. 3.13D). The Wigner map can be reconstructed by doing Peven − Podd without
the need for a background measurement.
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Parity Measurement

The second measurement method is to map the parity of the cavity onto the qubit state
[143, 144]. The pulse sequence is shown in Fig. 4.14A. An unconditional π

2 pulse rotates
the qubit to the equator of the Bloch sphere. Due to the dispersive interaction, the Bloch
vectors will evolve at different speeds given by nχ. Thus, waiting a time of T = π

χ , all the
Bloch vectors for an even cavity photon number will have done a multiple of full rotations
while the odd qubit vectors will have a half rotation. Another π

2 pulse will then map the
parity of the state to the two different qubit states |g⟩ or |e⟩. The qubit evolution can be
visualised in the Bloch sphere Fig. 4.14B.

As an example, for a cavity in initial state |α, g⟩, the evolution of the quantum state for
the first 3 operations is as follows

D̂(β) :eiIm{βα∗} |β + α, g⟩

Ŷ

(
π

2

)
: 1√

2
eiIm{βα∗} |β + α⟩ ⊗ (|g⟩ + |e⟩) =

1√
2
eiIm{βα∗}e− |β+α|2

2
∑

n

(β + α)n

√
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(4.6)

Neglecting phase error factors n2 χ′

χ , separating the case for even or odd photons, eiπneven, odd =
±1, gives |ψ⟩ ∝ |neven⟩ ⊗ (|g⟩ + |e⟩) + |nodd⟩ ⊗ (|g⟩ − |e⟩). The final Ŷ

(
π
2
)

gives

Ŷ

(
π

2

)
: ∝ |neven, e⟩ + |nodd, g⟩ . (4.7)

Thus, an even parity will result in the qubit in the excited state, while an odd parity will
result in the qubit in the ground state. The background measurement is done by inversing
the mapping of the cavity parity to the qubit state with a −π

2 amplitude for the second
pulse. The raw measurements are shown in Fig. 4.14C. The background measurement
removes the global coefficients and some higher order Hamiltonian terms.

Similar to the Generalised Husimi-Q calibration method, we can also use this measurement
technique to calibrate our displacement pulses (Fig. 4.14D)

P (β) =
∑

n

Pn(β) ⟨n|Π̂|n⟩ =
∑

n

(
e−|β|2 |β|2n

n! (−1)n

)
= e−2|β|2 . (4.8)

However, this calibration method also assumes that the initial state of the cavity is in the
ground state, a thermal state in the cavity will result in a larger standard deviation.
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qubit Y (π2 )
T (πχ )

Y (±π
2 )

cavity D(β)

Figure 4.14: Parity measurement. (A) Pulse Sequence of a parity measure-
ment. (B) Bloch sphere representation of the evolution of the qubit. Figure
taken from [60]. (C and D) Raw and fitted data of displacement for the two
mappings of the qubit to cavity state. This measurement reveals the parity of
the ground state with β. Thus, by fitting the result to a Gaussian, the scaling
of the standard deviation of the ground state will give the scaling of the dis-
placement pulses [144].

Due to the higher order interaction terms, a phase error eiϕ = e
−in2 χ′

χ which results in the
imperfect mapping of the parity to the ground and excited state. On the Bloch sphere, this
results in the spreading of the blue and red vectors along the equator in Fig. 4.14B(iii).
After the last π

2 pulse, the parity is not perfectly mapped into the |g⟩ and |e⟩ states. This
error can be minimised by changing the delay between the pulses Fig. 4.19 or the phase of
the second Ŷ (π

2 ) pulse to account for the spread of Bloch vectors. This effect also results
in a reduced readout contrast for different cavity state populations.

Finally, another imperfection present is due to the non-zero cross-Kerr between the high
Q cavity and the readout resonator. This means that the readout resonator will shift in
frequency and thus readout contrast will be different for different cavity photon states.
Measuring further out in the phase space of the cavity would mean a larger cross-Kerr
shift of the readout resonator. For a system with cross-Kerr between the high Q cavity
and readout resonator, a parity measurement via the qubit state will have different readout
contrasts at different phase space points of the cavity qubit system.
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The difference in readout contrast can be accounted for in two ways. Measurements of
Fock states or displaced coherent states can be used to determine the maximum readout
contrast at different phase space points. Alternatively, the Wigner measurement results
can be scaled by preparing the desired quantum state and then measuring the maximum
readout contrast at every phase space point. This is done by two additional measurement
maps and altering the parity measurement to D̂(β)Ŷ (π) and D̂(β)Ŷ (0) instead. The
difference between these two background maps gives the maximum readout contrast for
each phase space point and can be used to scale the parity measurement maps.

4.3.2 Frequency Domain Measurements

Cavity Spectroscopy

The high Q cavity frequency can be determined by High Q cavity spectroscopy. This is
done by first applying a saturation pulse on the cavity, a π pulse selective on the cavity
ground state is applied to the qubit (Fig. 4.15A). The qubit will not flip when the saturation
pulse is resonant with the high Q cavity frequency. By reducing the power of the saturation
pulse, we can reduce the observed linewidth and allow us to measure small features such
as the anharmonicity of the cavity K

2 (Fig. 4.15B and C).

qubit X(π, 0)

cavity sat(β, f) •

Figure 4.15: High Q cavity spectroscopy. (A) Pulse Sequence of a high Q
cavity spectroscopy measurement. When the spectroscopy pulse is resonant
with a cavity transition, the cavity is driven to some higher excited state. The
selective qubit pulse, conditioned on the vacuum state of the cavity, will not
be able to flip the qubit to the excited state. (B) Measurement map and (C)
linecuts for different amplitudes of saturation pulse. For long saturation times
and low enough powers, the linewidth of the cavity is not power broadened and
small enough to see a single transition where the qubit could not be flipped
to the excited state. As the power is slowly increased, we can see higher-order
transitions such as the two-photon |0⟩ to |2⟩ or three-photon |0⟩ to |3⟩. Here,
K
2 /2π = 8.8 kHz and K ′/2π = 0.5 kHz.
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Qubit Number Split Spectroscopy

The dispersive interaction between the qubit and high Q cavity can be determined by first
displacing the high Q cavity and then doing a qubit spectroscopy. This is similar to doing
generalised Husimi Q measurements without knowing the correct frequency spacing χ. The
measurement pulse sequence, map, linecut and fit is shown in Fig. 4.16.

qubit X(π, f)

cavity D(β) •

Figure 4.16: Qubit number split spectroscopy with a displaced cavity.
(A) Pulse Sequence of the measurement. First, the cavity is displaced to some
coherent state |β⟩. A long, spectrally narrow, number selective qubit pulse is
applied. The qubit state is then readout. (B) Measurement map with sweeping
amplitude of the displacement pulse. (C) Single linecut data that is fitted to
a multiple Gaussian with heights weighted by a cavity coherent state photon
number distribution. The height of the peaks is fitted to follow the photon
number distribution of a coherent state in Eq. (4.5). Here, the fit gives a
coherent state |α = 1.2⟩. (D) The fit of number-split qubit frequency peaks to
obtain the dispersive shift between the qubit and cavity χ and the higher order
dispersive shift χ′. Here, χ/2π = 1.257 MHz and χ′/2π = 19 kHz.

As a general rule of thumb, when the height of the nth and (n+ 1)th peak is the same, the
amplitude of the coherent state is approximately |α = n⟩. The height of the qubit peaks
can be fitted and follow the photon number distribution of a coherent state in Eq. (4.5).
This is another method of calibrating the displacement scaling between the pulse amplitude
applied and the coherent state achieved.



4 Experimental Characterisation 99

Cavity-Readout Resonator Cross-Kerr

The cross-Kerr between the high Q cavity and readout resonator can be similarly deter-
mined by sweeping the readout resonator frequency. A displacement pulse is applied on
the high Q cavity and a low-power readout resonator spectroscopy is done (Fig. 4.17A). By
using the calibration of the displacement pulse, we relate the mean cavity photon number
to the frequency shift of the readout resonator (Fig. 4.17B).
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Figure 4.17: Cross-Kerr measurement between high Q cavity and read-
out resonator. (A) Measurement map data with a sweep in the displace-
ment pulse amplitude. At each displacement amplitude, we can fit the readout
resonator frequency to obtain (B) the extracted detuning with cavity photon
number. The cross-Kerr between the high Q cavity and readout resonator can
be extracted, here χcr/2π = 8.5 kHz.

4.3.3 Time Domain Measurements

Frequency domain measurements require small frequency steps over a large frequency range
to accurately determine the Hamiltonian coefficients. For example, to measure the higher
order χ′, we need to measure changes of χ/2π ≈ 1MHz to an accuracy of ≈ 1kHz. Such
measurements can be very time-intensive. Time domain techniques provide a faster method
to measure such small corrections.
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Cavity Revivals

Cavity revival measurements are a useful technique to determine the small higher-order
terms. The pulse sequence, phase space evolution, measurement map, linecut data and
global fit is shown in Fig. 4.18.

Firstly, the cavity is displaced, D̂(β) and allowed to evolve for a time T̂ (t). Coherent
states will evolve in phase space with a frequency of the cavity. To second order, this
is ωcav = ωcav,0 − nK

2 − n2 K′

6 , where n is the mean number of photons of the coherent
state. The coherent state has gained some phase β(t) = βe−iω̃t. Subsequently, a second
displacement with a phase difference is applied D̂(−βeiϕ). If the phase evolution of the
coherent state matches the phase difference of the two pulses, the cavity is brought back
to the ground state.

Written explicitly, the evolution of the cavity is as follows

D̂(β) : |β⟩ (4.9)
T̂ (t) : |β(t)⟩ = |βeiω̃t⟩ (4.10)

D̂(−βeiϕ) : ∝ |β
(
eiω̃t − eiϕ

)
⟩ (4.11)

Finally, a cavity ground state selective X̂(π, n = 0) pulse was applied to the qubit. The
qubit state will only flip if the final state of the cavity is in the ground state. The evolution
and revivals of the cavity state are governed by the cavity frequency detuning from the
lab frame. The phase difference as a function of the delay time is similar to the qubit T2
Ramsey measurements. Similarly, we can detune the cavity drive to obtain a measurement
map similar to Fig. 4.9A.

The probability of finding the qubit in the ground state after the second pulse is given
by

P0(β, t) = |⟨0|αfinal⟩|2 =
∣∣∣⟨0|D̂(−βeiϕ)|β(t)⟩

∣∣∣2
=
∣∣∣⟨βeiϕ|β(t)⟩

∣∣∣2
= e−|βe−iω̃t−βeiϕ|2 = e−|β|2(eiωt+eiϕ)

= e
−2|β|2

[
1−cos (∆+|β|2( K

2 + K′
6 ))t

]
(4.12)

where ∆ is the detuning between the induced detuning and the cavity frequency. By
repeating the experiment with varying amplitudes of the displacement pulse, we can fit the
frequency of revivals to obtain the higher-order parameters K and K ′.
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qubit (X(π))
T (delay)

X(π, n = 0)

cavity D(β) D(−β(φ(t))) •

A

B C

D E

Figure 4.18: Cavity revivals measurement. (A) Pulse Sequence of a cavity
revival sequence. Qubit is initialised in the ground or excited state. The cavity
is then displaced and allowed to evolve. Artificial phase oscillations in the
return displacement pulse allow for faster acquisition of cavity revivals. (B)
Phase Space and (C) measurement map of the experiment. (D) Linecut and
fit to Eq. (4.12) for a single displacement amplitude. Here, β = 1.8. (E)
Doing the same for all linecuts and extracting the fit parameters for the entire
map allows us to evaluate the cavity drive and frequency detuning, the Kerr
coefficient K/2π = 8.7 kHz and higher order Kerr coefficient K ′/2π = 550 Hz.
The measurement can be repeated for the qubit in the excited state to extract
all values of the Hamiltonian.

This measurement is limited to (nK
2 + n2 K′

6 )t ⪅ π
2 . To first order, the Kerr effect only

causes a frequency detuning of the coherent state. However, at larger displacements or
longer times, the coherent state also starts to smear out due to the Kerr effect. This
is because the phase difference between Fock states grows as n2 K

2 t. The collapse of the
coherent state has a time scale Tcollapse ≈ π

2(n K
2 +n2 K′

6 )
.

Higher-Order Terms To accurately characterise the Hamiltonian of our system, we can
extend the cavity revival measurement method for other initial states of the qubit. By
placing the qubit in the excited state, the cavity frequency is now ωcav −χ. Similarly, with
increasing displacement powers, the cavity frequency will scale as nχ− n2χ′.

For larger qubit systems, the experiment can be repeated with different combinations
of excited qubit states to determine factors such as χq1q2c. The measured values for an
experiment consisting of two qubits and one high Q cavity system are shown in Table 3.1.
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Parity Revivals

Parity revival measurements determine the time an excited state qubit takes to do a full
evolution in phase space. This measurement is used to determine the correct time for
the parity measurement method in Sec. 4.3.1. Figure 4.19 illustrates the pulse sequence,
measurement results, linecuts and fits.

The cavity is displaced D̂(α) and a Ŷ
(

π
2
)

is played on the qubit. The system is allowed to
evolve. One will see the difference in evolution speed as χ+ nχ′. A second Ŷ

(
±π

2
)

before
the state of the qubit is read out (Fig. 4.19A). The order of pulses is chosen such that these
measurement results can help account for any possible instrument delay when playing this
particular sequence. The final state of the system is

|ψ⟩± = 1
2
[(

|α⟩ ∓ |αe−iχt⟩
)

⊗ |g⟩ +
(
± |α⟩ + |αe−iχt⟩

)
⊗ |e⟩

]
. (4.13)

Thus, we can determine the probability of measuring the qubit in the excited state

P±(e) = ⟨ψ |e⟩ ⟨e|ψ⟩ = 1
4
(
2 ± ⟨α|αe−iχt⟩ ± ⟨α|αe−iχt⟩∗) (4.14)

= 1
2
(
1 ± e|α|2(cos χt−1) cos

(
|α|2 sinχt

))
. (4.15)

Finally, including the background measurement where the mapping of the cavity parity to
qubit state is reversed. We can derive the equation of the measured voltage

Vmeasurement ∝ P+(e) − P−(e) = e|α|2(cos χt−1) cos
(
|α|2 sinχt

)
. (4.16)

Similar to the cavity revivals, the measurement is limited to the linear phase difference
between Fock states and thus the experiment is accurate to (n2χ′)t ⪅ π

2 .
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qubit Y (π2 )
T (delay)

Y (±π
2 )

cavity D(β)

Figure 4.19: Parity revival measurement. (A) Pulse Sequence of a parity
revival measurement. The cavity is first displaced and the qubit is placed in
a superposition of |g⟩ and |e⟩ state on the equator of the Bloch sphere. Af-
ter a delay time, another π

2 pulse is applied on the qubit and the qubit state is
measured. The order of pulses is used to determine the hardware lag time. Mea-
surement is repeated for a −π

2 amplitude for the pulse to reverse the mapping
between the qubit state and the cavity parity. (B) Measurement map sweeping
the revival time and displacement amplitude. (C) Linecut for a displacement
amplitude, β = 2.3. Eq. (4.16) is used to fit the data and obtain appropriate
parity revival time. (D) Fitting all the data and extracting revival time for the
various displacements give χ/2π = 1.47 MHz and χ′/2π = 2.8 kHz. (E) It might
be difficult to fit the fast oscillations within each revival cycle. An alternative
method to properly obtain the revival time for a specific cavity displacement is
to sweep the phase of the second pulse. This results in a different fast phase
oscillation within each cycle and the overall envelope can be used to determine
the proper revival time. While this method uses more time, it is easier to fit
the overall envelope.

It might be difficult to fit the fast oscillations within each revival cycle (narrow features in
Fig. 4.19B). Another method to circumvent the difficulty in fitting is to sweep the phase
of the second pulse. This measurement requires more time and is only done for a specific
displacement pulse and is shown in Fig. 4.19E. This results in a different phase of the fast
oscillations within each cycle and the overall envelope can be used to determine the proper
revival time. While this method uses more time, it is easier to fit the overall envelope and
can more accurately determine any lags due to hardware implementation of the pulses.
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High Q Cavity Lifetime

For a high Q cavity lifetime, a displacement pulse is applied on the cavity with a variable
delay time after (Fig. 4.20A). The cavity state is probed by doing generalised Husimi Q
measurements. The coherent state can be seen decaying through the different Fock states
(Fig. 4.20B and C). The probability of the qubit to be in the excited state is

Pn(e) = |⟨n|α(t)⟩|2 = e−|α2e−κt| (αe− κ
2 t)2n

n! . (4.17)

qubit
T (delay)

X(π, n)

cavity D(β) •

Figure 4.20: High Q cavity T1 measurement. (A) Pulse Sequence of a high
Q cavity T1 measurement. The cavity is first displaced. After a delay time, a
generalised Husimi-Qn measurement is made. (B) Phase space evolution of the
cavity. First, the cavity is displaced out D̂(β) to some coherent state |β⟩. As
the cavity decays at a rate of e−κt, the cavity will decay through the different
Fock states which are denoted by n in the phase space of the cavity. n =

√
β.

(C) Linecut and fit to Eq. (4.17) of the high Q cavity decay for each generalised
Husimi-Qn measurement up to n = 5, denoted by the different colours. We see
the cavity state decaying and changing its Fock state distribution with time.
Here, T1,cav = (120 ± 2)µs.
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4.4 Fock State Creation

Thus far, we have only worked with coherent states. Optimal control methods aside, we
can also deterministically form a single Fock state in the cavity, |1⟩. The first method is
with Selective Number-dependent Arbitary Phase (SNAP) gates [145]. The second method
is via driving the blue sideband transitions.

Such states are useful as another measurement of the cavity decay rate and can also serve
as a good calibration of the Wigner tomography scaling and normalisation. These methods
can also be extended to larger Fock states or more complicated superposition. Figure 4.21
are plots of a single Fock state |1⟩ Wigner map and marginal distributions.

The Wigner functions can be calibrated by a Wigner measurement of single photon Fock
state. The radius of the Fock state in phase space allows for the scaling of the displace-
ment factors used in the experiment while the measurement of the central parity allows to
calibrate of the Wigner measurement values.
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Figure 4.21: Wigner map and marginal distributions of single Fock state
|1⟩. The value at W (0, 0) reveals the parity of the state. The single Fock state
data can also be used to fit the measured W (β) values and the displacement
scaling β ∝ βV used in the experiment.

SNAP Gates SNAP gates work by imparting a geometric phase on some Fock states of
the system [24, 60, 145]. The pulse sequence is D̂(α1) − X̂(2π, n) − D̂(α2). The resulting
interference between all the Fock states will result in a non-trivial result that is usually
numerically solved with QuTiP [146].

With SNAP gate parameters: α1 = 1.14, n = 0, α2 = −0.56, the resulting quantum state
is |1, g⟩ with a 98% preparation fidelity. To form a state with |ψ⟩ = 1√

2(|0⟩ + |1⟩), we can
use α1 = 0.56, n = 0, α2 = −0.26.

Typically, this set of pulses is limited to the time taken for a selective 2π pulse, σf ⪅ χ.
Furthermore, the resulting state is sensitive to the displacement scaling factor errors.
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Blue Sideband Pulses We can also form single Fock states by using the blue sideband
pulses (Fig. 4.22A). This technique is similar to resolved sideband cooling techniques used
in ion traps [147] or atomic arrays [148].

Driving the 2 photon transition at freqeuncy fbsb = 1
2(fqb + fcav), the quantum state will

Rabi flop between |0, g⟩ and |1, e⟩ (Fig. 4.22B and C).

Figure 4.22: Blue sideband pulses to form Fock states in a cavity. (A)
Energy levels of a qubit system coupled to a harmonic oscillator. The blue
sideband pulse is a two-photon transition between the |0, g⟩ and the |1, e⟩ state.
(B) Map of time Rabi measurements with detuning centred at the 1

2 (fqb + fcav)
frequency. (C) Linecut and fit on resonance of the transition. The reduction in
oscillation amplitude with increasing pulse length is due to an AC Stark shift of
the cavity-qubit system. (D) Qubit spectroscopy of three different states, |g, 0⟩,
|e, 1⟩ and 1√

2 (|g, 0⟩ + |e, 1⟩). Additional selective qubit pulses can be played to
disentangle the qubit and cavity.

As the qubit is also Rabi flopping between |g⟩ and |e⟩, we can still do a usual readout of
the qubit to determine the correct Rabi amplitude. However, at the end of the cavity "π"
pulse, the final state is |e, 1⟩ or for the case of negligible qubit preparation errors, a global
X̂(π) pulse. Thus, we need to reset the qubit with a selective X̂(π, n = 1). Furthermore,
this blue sideband transition requires another mixing setup to play at the correct frequency
ωdrive = 1

2(ωcav −ωqb). With this technique, we can form the single-photon Fock state and
superpositions with the cavity ground state (Fig. 4.22D).



CHAPTER 5
Cat States

The Schrödinger thought experiment and Schrödinger cat state are used to highlight the
seemingly counterintuitive situation that challenges our classical intuition [1]. Until obser-
vation, the cat exists in a superposition of being both alive and dead simultaneously. The
paradigmatic example of the Schrödinger cat state is the superposition of two coherent
states in a bosonic mode. Such superposition states are a resource for quantum experi-
ments and can be used in quantum error correction protocols [36] or quantum metrology
[149–151]. The interference fringes in the cat state are often used as a goal to prove the
generation of a quantum state in an experiment [152, 153].

In this chapter, I outline the different methods to form such Schrödinger cat states. Using
the cQED toolbox, these methods realise non-unitary operations on the cavity state via
unitary operations on the whole qubit-cavity system. The detailed analysis of the different
protocols was done in collaboration with Thomas Agrenius from Prof. Oriol Romero-
Isart group and is described in [131]. Here, I provide the gist of the protocols in an
idealised setting. Section 5.3 deals with the imperfections arising from using the cQED
platform with higher order terms in the Hamiltonian. Finally, in the last section, we
demonstrate a closed-loop optimisation of the formation of a cat state. This work was
done in collaboration with Vasilisa Usova from the Kirchmair group, Dr. Phila Rembold
(now with Prof. Marcus Huber) and Marco Rossignolo from the group of Prof. Simone
Montangero.
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5.1 qcmap cat

The qcmap protocol is a method of deterministically forming cat states in the bosonic
mode [4]. It utilises the dispersive qubit-cavity interaction χĉ†ĉq̂†q̂ to impart a qubit-state-
dependent frequency shift on the cavity. The full pulse sequence is illustrated in Fig. 5.1A.
The qubit is placed in a superposition with a controllable phase ϕ. After a displacement
pulse on the cavity, the dispersive interaction entangles the qubit and cavity to the form
|ψ(t)⟩ = 1√

2

(
|α, g⟩ + eiϕ |αeiχt, e⟩

)
(Fig. 5.1B). This effectively implements a qubit-state-

dependent displacement on the cavity. After an evolution time of T̂
(

π
χ

)
, the entangled

qubit-cavity state is a Schrödinger cat state where the qubit state is entangled to a cavity
displacement in phase space Eq. (5.5).

qubit φ(π2 )
T (πχ ) X(π,N)

cavity D(α) D(α) D(−α)

Figure 5.1: qcmap generation sequence. (A) Pulse sequence for generating
cat states with the qcmap protocol. The phase of the first π/2 pulse determines
the phase of the cat state at the end of the protocol. (B and C) Phase space
representation of the qcmap pulse generation sequence. Red and blue colours
represent the qubit in the ground and the excited state respectively. In B, the
state of the qubit and cavity become entangled as only the |α, e⟩ will gain a
phase eiχt in α with time. In C, the qubit is disentangled by displacing the
|−α, e⟩ branch to the ground state and applying a selective π pulse (that only
affects qubit frequencies in the green dashed circle). Finally, the cat state is
brought back to |−α⟩ + |α⟩.

We can form a cat state by disentangling the qubit from the cavity (Fig. 5.1C). First, we
displace the cavity by D̂(α). The |g⟩ and |e⟩ branch of the entangled state are separated
in frequency due to the dispersive interaction and the cavity state in each branch (|e, 0⟩
and |g, 2α⟩). By choosing a long disentanglement pulse, the spectral width of the disen-
tanglement pulse is reduced, σf < χ, and the operation is selective on the cavity ground
state. Effectively, this is choosing a maximum Fock state N that a X̂(π,N) is applied to
the qubit state. The maximum Fock state N corresponds to choosing a radius in phase
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space of the cavity for which the qubit states are flipped (green dashed circle). Ideally, the
selective pulse can be written as

X̂(π,N) = X̂(π) ⊗
N∑

n=0
|n⟩ ⟨n| + Î ⊗

∞∑
n=N+1

|n⟩ ⟨n| . (5.1)

Finally, a displacement pulse D̂(−α) is applied to centre the cat state about the cavity
ground state.

The final state is a superposition of coherent states in the high Q cavity where the qubit
is disentangled. Explicitly written, the evolution of the quantum system is as follows

ϕ̂

(
π

2

)
: 1√

2
|0⟩ ⊗

(
|g⟩ + eiϕ |e⟩

)
(5.2)

D̂(α) : 1√
2

|α⟩ ⊗
(
|g⟩ + eiϕ |e⟩

)
(5.3)

T̂

(
π

χ

)
: 1√

2

(
|α, g⟩ + eiϕ |αeiχt, e⟩

)
(5.4)

= 1√
2

(
|α, g⟩ + eiϕ |−α, e⟩

)
(5.5)

D̂(α) : 1√
2

(
|2α, g⟩ + eiϕ |0, e⟩

)
(5.6)

X̂(π, n < Nmax) : 1√
2

(
|2α, g⟩ + eiϕ |0, g⟩

)
(5.7)

D̂(−α) : 1√
2

(
|α, g⟩ + eiϕ |−α, g⟩

)
. (5.8)

The idealised qcmap protocol can be written as the operator

Ŝqcmap ≡ 1√
2

(
1 − eiϕΠ̂

)
D̂(α). (5.9)

Effectively, this qcmap protocol applies a superposition of the identity and the parity
operation on the cavity state displaced by α, including a controllable phase ϕ. The phase
of the cat can be controlled via the phase of the first ϕ

(
π
2
)

pulse. The Wigner function
corresponding to the idealised qcmap operator is

W (β) = 1
2

[
W0(β − α) +W0(−β − α) − 4

π
Re
{

ei(4αIm{β}+ϕ)χ0(2β)
}]
, (5.10)

where χ0(β) ≡ Tr{D̂(β)ρ̂0} is the characteristic function of the initial state and W0 is
the Wigner function of the initial state ρ̂0. The first two terms represent a coherent
superposition of the initial state and the third term characterises the quantum coherence.

When the initial state is a thermal state, the initial Wigner function is

W0(β) = 1
2π

1
2nth + 1 exp{−(nth + 1/2)−1|β|2}, (5.11)
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and the characteristic function is χ0(β) = exp{−(nth + 1/2)|β|2}. The measured Wigner
function of a cat state with size α = 2 is plotted in Fig. 5.2A. By changing the phase of
the first π/2 pulse, we can change the phase of the interference fringes Fig. 5.2B.
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Figure 5.2: Measured Wigner function of a cat state.(A) Wigner Tomogra-

phy of a zero-parity cat α = 2. (B) The phase of the interference fringes of the
cat state can be controlled by changing the phase ϕ of the first ϕ̂

(
π
2
)

pulse. The
cQED toolbox allows us to deterministically form cat states with any parity.

In addition to parity measurement inaccuracies, imperfections in the final cat state can
arise. This can be due to qubit or cavity dephasing or relaxation events, the higher order
Kerr effect and qubit initialisation.

Imperfections in the cat state are most noticeable at the fringes of the cat state. For even
or odd parity cats, the central fringe height should be double that of the Gaussians. During
the formation sequence, the cavity undergoes decoherence due to photon loss. This results
in a flip in the parity of the cat state fringes. Coherent states decay at a rate of e−t/T1,cav ,
and the cat state fringes have a lifetime Tcat fringes = T1,cav

2α2 [2, 23]. Thus, larger cat states
have a much shorter fringe lifetime.

The Kerr effect during the time evolution and disentanglement part of the qcmap protocol
will distort the shape of the two Gaussians and fringes. This effect is discussed in detail in
Sec. 5.3.

Another imperfection comes from the qubit initialisation. An initial excited state will
result in a cat state with the opposite parity. If the qubit is not initialised perfectly in the
ground state, the fringe contrast is reduced by twice the initial excited state population.
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Qubit decoherence during the formation and measurement of the cat state can also reduce
the contrast of the fringes. If the qubit loses phase coherence during the time evolution of
the qcmap protocol, the cat state fringes will have a random phase and thus the ensemble
average will have a reduced contrast. To reduce the effect of qubit decoherence, the qcmap
protocol can be modified to include an echo pulse on the qubit.

5.2 ECD cats

The echo-conditional-displacement (ECD) protocol is very similar to the qcmap protocol,
except for a Ŷ (π) applied on the qubit in the middle of the time evolution [154]. The
echo pulse helps refocus low-frequency qubit noise. The waiting time T̂

(
π
χ

)
is divided into

two, with two displacements D̂(α/2(−1 − i)) pulse and a Ŷ (π) pulse in the middle. An
additional minor change is that the disentanglement pulse is now applied to the |−α, e⟩
branch. The pulse sequence is illustrated in Fig. 5.3A and phase space evolution before
and after the echo pulse is shown in B and C respectively.

Written without considering geometric phase factors from D̂(α) |β⟩ = |(α+ β)eiIm{αβ∗}⟩,
the evolution of the quantum system is as follows

ϕ̂

(
π

2

)
: 1√

2
|0⟩ ⊗

(
|g⟩ + eiϕ |e⟩

)
(5.12)

D̂(α) : 1√
2

|α⟩ ⊗
(
|g⟩ + eiϕ |e⟩

)
(5.13)

T̂

(
π

2χ

)
: 1√

2

(
|α, g⟩ + eiϕ |αi, e⟩

)
(5.14)

D̂

(
−α

2 (1 + i)
)

: 1√
2

(
|α2 (1 − i), g⟩ + eiϕ |α2 (−1 + i), e⟩

)
(5.15)

Ŷ (π) : 1√
2

(
|α2 (1 − i), e⟩ + eiϕ |α2 (−1 + i), g⟩

)
(5.16)

D̂

(
−α

2 (1 + i)
)

: 1√
2

(
|−αi, e⟩ + eiϕ |−α, g⟩

)
(5.17)

T̂

(
π

2χ

)
: 1√

2

(
|α, e⟩ + eiϕ |−α, g⟩

)
(5.18)

D̂(−α) : 1√
2

(
|0, e⟩ + eiϕ |−2α, g⟩

)
(5.19)

X̂(π, n < Nmax) : 1√
2

(
|0, g⟩ + eiϕ |−2α, g⟩

)
(5.20)

D̂(−α) : 1√
2

(
|α, g⟩ + eiϕ |−α, g⟩

)
. (5.21)

While the final cat state is similar to the qcmap, the idealised ECD protocol implements
the operator

ŜECD ≡ 1√
2

(
D̂(α) − ei(ϕ+|α|2)D̂(−α)

)
in̂. (5.22)
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The operator in̂ rotates the initial state by π/4 in phase space before displacement. This
goes unnoticed because of the rotationally symmetric ground state. The extra geometric
phase factor ei|α|2 is gained from the additional displacements acting on the cavity.

The ECD protocol effectively realises a state-dependent displacement to phase space loca-
tions α and −α. The resulting Wigner function of an idealised ECD cat state is

W (β) = 1
2 [W0(β − α) +W0(β + α) − 2 cos(4αIm{β} + ϕ)W0(β)] . (5.23)

where W0 is the Wigner function of the initial state ρ̂0. For an initial mean cavity thermal
photon, the initial Wigner function is Eq. (5.11). The first two terms represent a coherent
superposition of the initial state and the third term characterises the quantum coherence.
The measured Wigner function of an ECD cat with |α = 3⟩ is plotted in Fig. 5.3D.

qubit φ(π2 )
T
(

π
2χ

) Y (π)
T
(

π
2χ

)
X(π,N)

cavity D(α) D(ζ) D(ζ) D(α) D(−α)

Figure 5.3: ECD cat state generation and measurement. (A) Pulse se-
quence and (B and C) phase space representation of ECD cat state generation
sequence. Red and blue colours represent the qubit in the ground and the
excited state respectively. In B, after an evolution time of t = π

2χ , the cav-
ity is brought towards the centre of the phase space by a displacement pulse
D̂(ζ) = D̂

(
α
2 (−1 − i)

)
. After an unconditional echo pulse is played on the qubit.

The qubit state is swapped. In C, after another displacement, the second half
of the evolution is continued. Now, to disentangle the qubit and put it back
in the ground state, the disentanglement pulse should be played on the right
coherent state. (D) Wigner Tomography of an even-parity ECD cat state of
size α = 3.
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On top of the imperfections mentioned in the qcmap protocol, an additional imperfection
for the ECD cat state is due to an improper echo pulse. In Fig. 5.3D, faint parasitic
fringes pointing towards the bottom of the plot can be observed. Such fringes are caused
by undesired selectivity in the echo pulse that does not cover the entire qubit frequency
spectrum. At the time of the echo pulse, the cavity will have a coherent state of |±α

2 (1 − i)⟩
(Eq. (5.16)). This means the qubit will have some finite frequency spread. Instrumental
limitations will place a maximum pulse amplitude and minimum pulse length which re-
sults in unwanted selectivity of the pulses. The improper addressing of all possible qubit
frequencies results in population at the position (I,Q) = (0,−α) at the end of the proto-
col and additional interference fringes. The effects of undesired selectivity is discussed in
greater detail in Sec. 6.1.

5.3 Kerr Effect

The higher order Hamiltonian terms present will cause imperfections in the measured cat
state. On top of the cross-Kerr between the high Q cavity and readout resonator causing
measurement artefacts mentioned in Sec. 4.3.1, the Kerr effect will also distort the final
cat state.

During the time evolution of a coherent state, the higher order terms of K and χ′ will
distort the Gaussian shape. This results in the bending of the fringes and the reduction of
the parity of the cat state. The Kerr effect is introduced in two portions of the protocol.

Firstly, during the time evolution T̂ (π
χ), the Kerr effect will cause a distortion proportional

to e
i|α|2 K

2
π
χ for the cavity state in |α, g⟩. For the cavity state in |α, e⟩, the distortion is

greater due to the excited state of the qubit which enhances the Kerr shift by χ′. For large
χ′ or K, this can result in the final cat state with very distorted coherent states and fringes
that are washed out. This is shown in the Fig. 5.4. The ECD protocol divides the total
error from the higher order χ′ term between both left and right coherent states.

Secondly, to disentangle the qubit from the cavity, the qcmap and ECD protocol require
displacements and a disentanglement pulse. In this process, part of the cavity state occu-
pies a higher photon number |2α⟩ which results in a larger phase error ei|2α|2 K

2 t. As the
disentanglement pulse has to be selective on the cavity ground state, this pulse has to be
long and of the order t = π

Nχ , where N < |2α|2. The finite pulse time, t > π/(|2α|2χ)
results in a phase error ϕ > |2α|2 K

2 t = π
2

K
χ which distorts the |2α⟩ branch. In the ex-

periments, limitations on pulse amplitudes will result in an even lower time limit on the
disentanglement pulse and thus a larger Kerr error.



114 5.3 Kerr Effect

4 2 0 2 4
{ }

3

2

1

0

1

2

3

{
}

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Pa
rit

y

Figure 5.4: Wigner tomography of an entangled cat state formed with
qcmap in a system with large Kerr effect. The enhanced Kerr effect during
the evolution of |e, α⟩ branch results in the left coherent state being severely
distorted. The Kerr effect also causes problems in the parity measurement
which results in a non-zero background offset. In such situations, the generalised
Husimi-Q measurement method is more suitable for cavity state tomography. In
this experiment, the qubit and high Q cavity frequencies were very close together
resulting in a highly hybridised system with large Kerr. Here, fqb = 5.402 GHz,
fcav = 4.562 GHz, Kq/2π = 207 MHz, Kc/2π = 17 kHz, χ/2π = 4.915 MHz and
χ′/2π = 130 kHz.

A cat state formation protocol that circumvents this problem is with the Kerr cat [155].
This method involves displacing the cavity mode, allowing the system to evolve. With
a waiting time t = π/Kc, the resulting state is a zero parity cat without the need for a
disentanglement pulse. By starting in the qubit excited state, the waiting time can also
be shortened to π/(K + χ′). The evolution of the cat can then be stopped by resetting
the qubit to the ground state. The Kerr cat operator is equivalent to the qcmap operator
Eq. (5.9) with ϕ = π/2. Details on the Kerr cat protocol are shown in appendix G.

However, this method takes a longer time to form (tπ/(K+χ′) as compared to tπ/χ). This
method of Kerr cat formation is limited by T1,qubit or T1,cavity. To speed up the Kerr
cat formation, we can increase χ′, however, this will limit our parity measurement fidelity
and we have to use the Husimi-Q measurement method for full state reconstruction of our
cavity state. Furthermore, as the Kerr effect is parity preserving, arbitrary cat fringe phase
control is not possible. Importantly, the cat is transient and only occurs at t = π/(K+χ′),
after which the cat will continue to evolve.
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5.4 Closed-Loop Optimisation of cat states

In this section, we improved the fidelity of the qcmap protocol, by optimising the first
displacement value and time evolution.

Both open-loop optimisation and closed-loop optimisation approaches were used to find a
set of pulses to play on the cavity and qubit to improve the final state fidelity. For the
open-loop optimisation, the system was simulated with QuTiP [146] and the pulses were
optimised with dCRAB [156]. These open-loop optimised pulses were used as an initial
guess for the closed-loop optimisation. As a comparison, the closed-loop optimisation was
also performed for an initial guess of zero amplitude pulses.

In a quantum system where the qubit is coupled to a high Q cavity, the speed of operations
is usually limited by 1

χ . This factor can be reduced by using large coherent states to increase
the phase space separation between different coherent states [154]. However, this requires
large displacement amplitudes and will cause larger Kerr effects. Large χ will also result in
dephasing errors on the qubit [52]. Conversely, faster operations by increasing χ will result
in larger higher-order terms K or χ′. Together with the inaccuracies in instruments or
Hamiltonian characterisation, closed-loop optimisation offers a process to gain operation
speed or fidelity while accounting for these imperfections.

Closed-loop optimisation for generating a quantum state requires state tomography after
each iteration. This is prohibitively expensive for bosonic modes, as it requires consider-
ation of the entire phase space for state reconstruction. With careful consideration of the
distribution of sampling points in the phase space of the bosonic mode, a figure of merit
(FOM) can be constructed to serve as an approximation of the final state fidelity.

For a successful optimisation, tuning of the FOM was required. In cat states, two main
features need to be accounted for: two coherent states at |±α⟩ and the interference fringes
in the centre displaying the superposition of the two coherent states. Sample points around
the coherent state need to be distributed such that the shape of the coherent state can be
accounted for. For sample points at the fringes, we distribute the points to account for the
phase and height of the fringes. A total of 29 sampling points were picked over the entire
Wigner phase space shown in Fig. 5.5A. For comparison, we plot the analytical Wigner
function for an ideal cat state in Fig. 5.5B.
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Figure 5.5: Cat state figure of merit (FOM) sample point distribution
on the phase space of the system. In (A), the measured Wigner function
of a qcmap cat state with α = 3. This can be compared to the analytical theory
in (B). The black circles denote the sample points and the colours denote the
value at each sample point. The points are chosen to account for both the
fringes and coherent state distribution of the cat state. Here, we can see the
Kerr effect distorting the coherent states of the cat state. Eq. (2.69) was used
as the FOM. The initial FOM over the sample points was 0.4 and the entire
phase space was 0.5.

We used Eq. (2.69) to emphasise the phase coherence and size of the fringes. In the perfect
scenario, the optimiser can account for the Kerr effect by correcting for the phase errors
on the different cavity Fock states introduced throughout the whole qcmap protocol. Ad-
ditionally, the amplitude of the first displacement was optimised, this allows the optimiser
to account for imperfections of cat size due to cavity decay. The pulse sequence is shown
in Fig. 5.6A, where α0, Iq,c(t) and Qq,c(t) was optimised.

Plotted in Fig. 5.6B is the FOM with each iteration of the optimisation. Starting at an
initial FOM of 0.40, the optimiser reached a final FOM of 0.96. The big dips in FOM
during the search routine are due to the changes in the parameter search basis in the
dCRAB algorithm. In the dCRAB algorithm to find the global maximum, the basis of the
control pulses is redefined during the searching process. This changes the FOM "landscape"
[73]. Calculating the same FOM over the entire phase space of the cavity showed a FoM
increase from 0.50 to 0.74 (Fig. 5.6D). The discrepancy between the FOM over the sample
points and the full cavity phase space demonstrates the importance of the choice of the
distribution of the sampling points. Here, the Kerr effect on both coherent states could
not be completely corrected.
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)
I(t), Q(t) X(π, n)

cavity D(α0) I(t), Q(t) D(α) D(−α)

Figure 5.6: Closed-loop optimisation of a qcmap cat (A) Pulse sequence
of the cat state generation. The optimiser is allowed to play pulses during the
time evolution part of the qcmap cat state generation sequence. This was both
the in-phase I(t) and out-of-phase Q(t) for both the qubit and cavity control
fields E(t). An additional parameter is the amplitude of the first displacement
pulse α0. This is to account for imperfections from cavity decay. (B) Results of
the FOM during the optimisation process. The big dips in FOM are due to the
changes in the parameter search basis during the dCRAB search routine. (C)
The optimised pulses for the protocol at the end of the optimisation sequence.
These pulses can be analysed to gain a better understanding of the corrections
that the optimiser is correcting for. In this optimisation, the optimised value
of the first displacement is α0 = 3.003. (D) Wigner tomography map of the
optimised qcmap protocol. The overall FOM increased to 0.74 and demonstrates
a promising method to increase state preparation fidelities of bosonic states.
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The total optimisation time for one run took ≈ 8 hour for a total of 1008 iterations. Each
sample point required 1000 averages. The measurement time of a single experiment was
dominated by the long waiting time in between experiments. This was set to 1 ms to ensure
that the high Q cavity with a lifetime of T1,cav = 150µs was fully initialised to the ground
state.

The optimisation was done over 1601 control parameters over a large set of possible values.
In the experiment, the time evolution T̂ (π

χ) was 368 ns. However, initial open-loop optimi-
sation tests showed that the optimiser will have difficulty improving the fidelity of the cat
state in such a short time. Thus, the optimised pulses were chosen to be 400 ns long. The
AWG had a sampling rate of 1 GSample/s. This was done for the I and Q pulses on the
qubit and cavity, and the amplitude of the first displacement pulse.

The optimisation was repeated for two search setting step sizes. First, large search steps
were used to reach a faster convergence to a solution. The second search was repeated with
smaller step sizes and used the first optimiser solution as an initial guess. This allowed for
fine tuning of the optimised solution to improve the fidelity of the state preparation.

This proof-of-principle experiment demonstrated an improvement by ≈ 50% of the original
qcmap FOM. By studying the optimised pulse shape and frequency distribution, we can
get a better understanding of the errors that the optimiser is trying to correct and guide
us in improving our subsequent experiment setups. By going into a smaller dispersive
coupling regime and improving the maximum pulse amplitude of our instrument setup, we
anticipate an even greater increase in the state preparation fidelity.

The proposed method applies to any quantum platform and can be extended to more
complex states. Soon, we plan to optimise states such as a large Fock, Binomial or GKP
state, by selecting the corresponding FOM.



CHAPTER 6
Thermal Cats

Garfield Cat States

Work in this chapter was done with Vasilisa Usova from the Kirchmair group and a theory
collaboration with Thomas Argenius from Prof. Oriol-Romero-Isart group. This resulted
in a paper that is currently in the publication process [131].

The observation of quantum phenomena often necessitates sufficiently pure states, a re-
quirement that can be challenging to achieve. In this chapter, a non-classical state was
prepared originating from a mixed state. Utilising dynamics that preserve the initial pu-
rity of the state, we generate a Schrödinger’s cat state with a mode temperature of up to
1.78 ± 0.04 Kelvin, which is sixty times hotter than its physical environment of 30 mK.
Our realisation of non-pure but quantum coherent superposition states could guide the
preparation of similar states in other continuous-variable quantum systems.

The quantum superposition principle allows us to prepare a system in a superposition of
two arbitrary states. The paradigmatic example is the superposition of two coherent states.
While the superposition of coherent states is typically called a Schrödinger’s Cat state, in
Schrödinger’s original thought experiment, the cat, which is a hot and out-of-equilibrium
system, is prepared in a superposition of two mixed states dominated by classical fluctua-
tions [1].

The superposition of coherent states has been realised with various quantum systems rang-
ing from the motion of an ion [3], a cold cloud of atoms, molecules [157], microwave photons
[158] to the motion of a mechanical oscillator [153]. A shared description of these realisa-
tions is the preparation of the superposition of coherent states in a confined bosonic mode,
i.e. quantum harmonic oscillator. The state is prepared by either coherent manipulation,
engineered dissipation or preparation by measurement, starting with the quantum system
as pure as possible.

Low-purity states (P ≲ 1/2) are often thought of as classical since they typically arise
from dissipative dynamics in open quantum systems. However, purity is not a necessary
condition for quantum coherence in a state. In particular, mixed-state generalisations of
the Schrödinger cat state where a thermal state with non-negligible temperature is put
in a superposition with full quantum coherence and full-contrast interference fringes are
fully consistent with quantum mechanics and have been considered on several occasions
in theoretical works [159–167]. One may argue that these states are closer analogies to
Schrödinger’s original idea of a body-temperature cat in a quantum superposition state
than the cold cat states, which raises interest in their experimental preparation. In the
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laboratory, quantum interference fringes have been observed from thermal clouds of atoms,
both in a double-slit protocol [168] and a half-Stern–Gerlach interferometer [169]. Full state
tomography, such as direct measurement of the Wigner function, of low-purity Schrödinger
cat states has to our best knowledge not been previously reported.

Considering that there are at least 2 distinct mixed-state generalisations of the pure
Schrödinger cat state with distinct quantum coherence properties. The preparation of
superposition states from thermal states in continuous-variable systems additionally serves
as proof-of-principle for proposals for thermal state quantum computing protocols [161,
163, 170].

We present the preparation of arbitrarily non-pure superposition states by generating co-
herent superpositions from initial thermal states, that is ‘hot’ Schrödinger cat states, in a
high-coherence microwave cavity through coherent operations. We run the protocol with
an initial thermal state of up to 7.6 ± 0.2 average photons on a cQED setup. We confirm
the quantum features of the states by imaging their Wigner function. Importantly, we do
not remove entropy or purify the system with measurement during these operations.

In this chapter, I begin by discussing important details when working with thermal states.
Section 6.2 describes the initialisation and characterisation of a thermal state in the bosonic
mode and illustrates our control of the bosonic environment. Section 6.3 and Sec. 6.4 are
the Wigner measurement results of the hot Schrödinger cat states we formed. The protocols
were numerically simulated and are explained in Sec. 6.5. Finally, in the last section, I
describe the conclusions and outlooks of the work from this chapter.

6.1 Protocols with Thermal States

While the techniques mentioned in chapter 5 are also applicable to initial thermal states,
imperfections in the final cat state become more apparent with a larger thermal popula-
tion. In this section, I discuss in greater detail the differences between the qcmap and
ECD protocols and the imperfections that become more apparent from the experimental
implementation of the protocols when dealing with thermal states.

The cavity state is initialised by coming into equilibrium with the heat bath. The heat bath
is then disconnected (to prevent it from causing decoherence) and the cat state preparation
commences immediately. The state preparation and measurement protocols take up to
1.9µs which is instantaneous compared to the cavity relaxation time T1,cav = (110 ± 2)µs.
Thus, there is no cooling nor heating of the cavity mode during the protocol.

To prepare hot cat states with this setup, we utilise the two different methods described
in Sec. 5.1 and Sec. 5.2. When applied to cold cats, only the ground state of the cavity
contributes significantly to the thermal mixture, so the differences between the protocols
go unnoticed. While these protocols prepare equivalent cold cats, we observe that they
lead to differing outcomes when applied to thermal initial states.
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At nth > 0, the coherence terms in Eq. (5.10) and Eq. (5.23) behave differently. For
the qcmap Wigner function, the coherence term shrinks in phase space with increasing
nth, resulting in localised fringes but its maximum amplitude remains constant at 2/π.
Conversely, the coherence term in the ECD Wigner function has an envelope that is 2W0(β).
This means that the interference fringes grow in radius in phase space with more oscillation
periods becoming visible but reduce in amplitude with increasing nth.

The different outputs of the qcmap and ECD protocol can be understood when considering
the formation sequence. The hot initial state of the cavity can be equivalently described
as a mixture of displaced ground states. A coherent state |γ⟩ = D̂(γ) |0⟩ will transform
under the qcmap and ECD protocols respectively as

Ŝqcmap |γ⟩ = eiIm{αγ∗}
√

2

[
|α+ γ⟩ − eiϕ |−α− γ⟩

]
, (6.1)

ŜECD |γ⟩ = 1√
2

[
eiRe{αγ∗} |α+ iγ⟩ − ei(ϕ+2|α|2−Re{αγ∗}) |−α+ iγ⟩

]
. (6.2)

The key point is to recognise that the qcmap output state is a superposition of |α+ γ⟩ and
|−(α+ γ)⟩, while the ECD output state is a superposition of |α+ iγ⟩ and |−α+ iγ⟩. The
final cat state is the sum of the individual cat states that are formed and weighted by the
initial distribution of the displaced coherent states.

We present a graphical version of this description, with step-by-step tracing of the state
through the protocol operations to explain the outcome, in Fig. 6.1 and Fig. 6.2. The
initial thermal state of the cavity is viewed as a distribution of displaced coherent states.
The distribution is split into two parts, coherent states that are displaced along the I or Q
axis of the cavity phase space. This is represented by the different colours.

The qcmap state is created by displacing the initial state by α and then putting it in a
superposition with its image under inversion through the phase-space origin. The individual
cat states out of a thermal distribution have different sizes and rotations. This results in
the interference fringes overlapping and only the fringes localised in the center of the cat
state will constructively interfere resulting in a maximum parity while the other fringes
will be washed out.

For the ECD protocol, the state is created by first rotating the initial state by π/2 coun-
terclockwise around the phase space origin, and then putting it in a superposition of being
translated to α and −α respectively. The individual cat states formed will always have
the same size and angle. This results in cat states with the same fringe period. Therefore,
interference from the cat states on-axis (along Re {β}) will constructively interfere and
off-axis (along Im {β}) cats will cancel each other out. This results in fringes that are
extended across the distribution of the initial states and have amplitudes that are smaller
as compared to the cold cat case.
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Figure 6.1: Hot Schrödinger cat state with qcmap. The different colours
represent the initial displacement of the cavity |γ⟩. The red and blue diamonds
refer to the ideal qubit state |g⟩ or |e⟩. Depending on the initial displacement,
the final Schrödinger cat state has a different size and rotation. This results in
the interference fringes overlapping and only the fringes localised in the center
of the Schrödinger cat state will constructively interfere resulting in a maximum
parity while the other fringes will be washed out.
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Figure 6.2: Hot Schrödinger cat state with the ECD protocol. The dif-
ferent colours represent the initial displacement of the cavity |γ⟩. The red and
blue diamonds refer to the ideal qubit state |g⟩ or |e⟩. Regardless of the initial
displaced state, the final Schrödinger cat state will always have the same size
and angle. This results in the same fringe period and therefore, cat states on-
axis will add up and off-axis cats will destructively interfere.
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6.1.1 Gaussian Pulses

In the experiment, qubit operations are implemented using Rabi pulses with a Gaussian
line envelope. The Gaussian envelope has a controllable standard deviation σt.

The Gaussian envelope, as compared to a square pulse shape, reduces frequency com-
ponents at the higher level of qubit transitions. Specifically, Fourier components at the
|e⟩ to |f⟩ transition frequency will lead to leakage of the qubit outside the computation
subspace.

The Gaussian profile of the qubit pulse leads to an n-dependent qubit |g⟩ ↔ |e⟩ transi-
tion probability approximately given by Pg↔e(n) = exp{−(nχqcσt)2} [171, 172]. Thus we
can tune the selectivity of our pulses by tuning σt. The smooth decay of Pg↔e(n) with n
limits the maximum selectivity that we can achieve in our disentanglement pulse. Con-
versely, instrument implementation of the pulses limits the desired unselectivity of qubit
operations.

The effects of the Gaussian line profile of our qubit pulses on the prepared cavity states
can be understood by deriving the second-order Magnus approximation [171, 173] to the
time-evolution operator for our total system under Ĥ when a Gaussian pulse resonant with
ωq is applied to the qubit. The resulting joint cavity-qubit operator is

R̂2(θ, ϕ, σt, T ) ≡
∞∑

n=0
|n⟩ ⟨n| exp{i[θ2e−(χqcσtn)2/2 (cos (ϕn) σ̂x + sin (ϕn) σ̂y)

− θ2

4
√
π
F (χqcσtn) σ̂z]} exp {iχqcTn |e⟩ ⟨e|} .

(6.3)

Here θ is the pulse area (either π or π/2 depending on the desired operation), T ≫ σt is
the pulse duration, ϕn ≡ ϕ+ χqcTn/2, and F (x) is the Dawson function.

In Eq. (6.3), we observe additional effects due to the Gaussian pulses. The term propor-
tional to σ̂z and the n dependent phase ϕn accounts for the detuning of the n > 0 Fock
state. It is these term that causes different phase rotations for different cavity Fock states
that result in a distortion of the final cat state and is more apparent when dealing with
thermal states. The last term with exponent proportional iχqcT n accounts for the duration
of the pulse.

In summary, the Gaussian pulses have three effects that cause the qubit operation to
deviate from the perfect σx pulse. The operator in Eq. (6.3) is a 2nd order approximation
which captures these effects. Firstly, the n-dependent transition probability is due to the
linewidth of the Gaussian pulses. This is accounted for by the exponential e−(χqcσtn)2/2.
Secondly, the n-dependent phase that the Gaussian pulse imparts on the qubit for different
cavity Fock states. This is considered for by the ϕn and term proportional to σ̂z. Finally,
the finite duration of the Gaussian pulses causes additional rotations in the cavity-qubit
system. This effect is captured by the final term in Eq. (6.3) which is proportional to
eiχqcnT |e⟩⟨e|. In Sec. 6.5, we compare the Magnus approximation of the Gaussian pulses
with numerical simulations in modelling our experimental protocol.
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6.1.2 Disentanglement Pulse

Attention to the thermal mixture character of the initial state must also be paid when
designing the disentanglement pulse (Fig. 6.3A). We need to apply a conditional flip oper-
ation on the qubit which is selective for the first N Fock states of the cavity (Eq. (5.1)).
The choice of N is effectively the choice of a radius in the α plane within which the qubit
state is flipped (Fig. 6.3B). To properly disentangle, one must choose |α| large enough so
that the displaced |g⟩ branch is not affected by the disentanglement pulse. This results in
the condition that we need α such that W0(α) = 0, where W0(β) is the Wigner function
of the initial state at β.

For cold initial states, it is sufficient to choose N = 1, which places no important restric-
tion on α. For hot initial states, N and consequently |α| must be chosen to comply with
Pnth(n). Experimentally, we are constrained in the choice of N and |α| because of instru-
ment limitations in the maximum pulse power. The phase space radius of the thermal
state is proportional to

√
nth + 1/2, so larger nth necessitates larger α. Since the cat state

lifetime decreases with α as T1,cav/2α2 [2, 174], this places stricter requirements on the
experimental parameters as nth increases.

A Bqubit X̂(π2 )
V̂j X̂(π,N)

cavity noise source D̂(α) D̂(±α) D̂(∓α)

Figure 6.3: Spectral considerations for disentanglement pulse. (A) Plot of
the qubit-conditional cavity Fock state distribution Pq(n) = ⟨n| ⟨q| ρ̂ |n⟩ |q⟩, (q ∈
{g, e}) in the total state ρ̂ just before the disentanglement operation X̂(π, n).
The plot uses α = 2 and nth = 2. The colours of the bar plots correspond to the
qubit in the ground state (red) and excited state (blue), with Pg(n) multiplied
by 5 for visibility. The green dashed line shows the probability of a Gaussian
Rabi pulse resonant with ωq and with standard deviation σt = 20 ns to flip the
qubit state from |e⟩ to |g⟩ while the qubit is entangled with the Fock state |n⟩
under the dispersive Kerr coupling. The overlap between the |g⟩ and |e⟩ Fock
state distributions will result in incomplete disentanglement of the qubit and
cavity in this scenario. This can be remedied by increasing α, which separates
the distributions further. (B) The choice of width of the disentanglement pulse
corresponds to the choice of a radius in the phase space within which the qubit
state is flipped with a certain probability.

The n-dependent transition probability will result in some residual entanglement between
the qubit and the cavity. Due to our Wigner function measurement method (Sec. 4.3.1), any
residual entanglement causes the subsequent measurement result to output Wmeasured(β) =
pgWg(β) − peWe(β), where the Wigner functions correspond to the cavity state operators
entangled to |g⟩ and |e⟩, and pg,e are the probabilities of the qubit being in the respective
state. This reduces the parity values of the measured results.
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6.2 Thermal Noise

Most initial states in practice are thermal states, the purity P of the initial state is related
to its average thermal occupation number nth via P = 1/(2nth + 1), and nth is in turn
related to the initial temperature T via the Bose-Einstein distribution. In this section, we
demonstrate control of the bosonic mode environment.

C D

B

A

qubit X(π, freq)

cavity noise source •

Figure 6.4: Intialisation and characterisation of thermal noise in the
cavity. (A) The theoretical frequency spectrum of added noise. The thermal
noise is only added at the cavity frequency and qubit frequencies are filtered out.
The added noise level is controlled by a digital attenuator. (B) Pulse sequence
of the thermal state measurement technique. A microwave switch was closed,
adding Johnson-Nyquist noise at the cavity frequency for 1 ms. The switch was
opened and a photon number selective π pulse was played on the qubit and the
qubit state was measured. (C) Qubit spectroscopy measurement result for a
single thermal state. The height in the qubit spectroscopy follows the thermal
photons distribution in the cavity. Here, nth = 3.3. (D) The measurement was
repeated for a sweep in added noise power.

In this experiment, we have experimental control of nth by deliberately adding noise on
top of the equilibrium thermal state via filtering and amplifying the Johnson-Nyquist noise
of a 50Ω resistor (Fig. 6.4A). To determine the initial thermal state, number-split qubit
spectroscopy was performed (Fig. 6.4B). We control the noise power at the cavity frequency
via a variable attenuator. A switch is used to initialise the cavity into a thermal state before
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the switch is opened to prevent additional decoherence. The coldest thermal state can be
achieved by leaving the switch open, which is a residual thermal population of nth = 0.03.

The relative heights of the individual qubit frequency peaks are split by the presence of
different numbers of photons in the cavity due to the dispersive qubit-cavity interaction
(Fig. 6.4C). The distribution of these peak heights directly reflects the distribution of
thermal photons within the cavity [175]. We fit the theoretical thermal photon distribution
to the experimental distribution (Eq. (2.17), Pn(nth) = nn

th
(1+nth)n+1 ), finding agreement and

allowing us to relate the noise attenuation to nth (Fig. 6.4D).

6.3 Hot Schrödinger Cat States

We run our experiment using both protocols for α = 3, starting from an initial thermal state
with an nth from 0.75 ± 0.01 to 7.6 ± 0.2 and then apply the Wigner function measurement
protocol to the resulting state. We use a disentanglement pulse width of σt = 20 ns.

We present the measurement results for qcmap in Fig. 6.5 and ECD in Fig. 6.6. We also
compare to the ideal Wigner function as predicted by Eq. (5.10) & Eq. (5.23) for the chosen
experimental parameters.

Independently of comparison to theory, the data shows clear Wigner negativities that
produce interference fringes and thus confirms the quantum nature of the prepared states
with a purity starting at P = 0.400±0.003 and going as low as P = 0.062±0.002 (without
accounting for the effects of decoherence).

For qcmap, the fringe envelope is given by the characteristic function, the variance of which
shrinks with nth and the height of which is saturated to the parity bound independently of
nth.

For the ECD state, the amplitude of the fringe envelope is twice the envelope of W0(β).
Since the amplitude of W0(β) shrinks and its variance increases with nth, the same applies
to the ECD fringes. In particular, the number of visible fringes increases with nth. The
−i phases in the ECD cat state arguments vanish due to the rotational symmetry of the
thermal state. Furthermore, the issue of unwanted selectivity in the echo pulse (mentioned
in Sec. 5.2), is exacerbated by the larger spread of qubit frequencies due to the thermal
state of the cavity.
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A

B

Figure 6.5: Hot Schrödinger cat state created with qcmap protocol. (A)
Starting from an initial thermal state with nth = 3.48 ± 0.07, the result of
the Wigner function measurement on the hot Schrödinger cat state (centre)
and marginal distributions (top, right) are shown. For comparison, the Wigner
function W1(eiφ(β)) (nth = 3.48, α = 3.47, φ = 0.05, ϕ = π) is shown (bottom).
Note the nonlinear change of the colour brightness across the colourbar to in-
crease the visibility of small parity values. (B) The experiment was repeated
up to a mode temperature of 1.78 ± 0.04 Kelvin or a mean of 7.6 ± 0.2 thermal
cavity photons. The colours denote the starting mean thermal cavity photon
number. In all linecuts, we observe negativity in the interference fringes.
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B

A

Figure 6.6: Hot Schrödinger cat state created with ECD protocol. (A)
The result of the Wigner function measurement on the hot Schrödinger cat state
(centre) and marginal distributions (top, right) are shown. For comparison, the
Wigner function W2(eiφ(β)) (nth = 3.48, α = 3.00, φ = −0.03, ϕ = π) is
shown (bottom). Note the nonlinear change of the colour brightness across the
colourbar to increase the visibility of small parity values. (B) The experiment
was repeated up to a mode temperature of 1.78 ± 0.04 Kelvin or a mean of
7.6±0.2 thermal cavity photons. The colours denote the starting mean thermal
cavity photon number. In all linecuts, we observe negativity in the interference
fringes.
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6.4 Fringe lifetime

The quantum nature of the coherence in the hot cat states is further confirmed by measuring
the decay of the central fringe as the cavity undergoes decoherence due to photon loss. We
first initialise the cavity to a hot thermal bath resulting in an initial thermal state with
mean photons nth. The hot bath is then disconnected and the cavity is only connected
via residual coupling to a bath nb. An interesting feature of the hot cat states is that the
lifetime of the fringes is independent of the initial thermal state nth. It is only dependent
on the thermal bath nb that the high Q cavity is connected to [2, 164, 174]. For short
timescales, the fringe lifetime is

Tfringe ≡ T1,cav/[2(2nb + 1)|α|2] < T1,cav (6.4)

where nb is the bath thermal population that the cavity is connected to and T1,cav is
the lifetime of the high Q cavity. We see that Tfringe defines the time at which quantum
coherence is lost from the system, whereas T1,cav defines the rate at which energy dissipates
out of the system. Since Tfringe ≪ T1,cav, the fringes will usually decay before α(t) changes
noticeably from α. We then also clearly see that the quantum coherence time Tfringe is
independent of nth. So the quantum coherence time of a hot qcmap or ECD state is the
same as that of a cold cat.

The fringe is measured to decay exponentially with a time constant of 3.38±0.08 µs. This is
consistent with the theoretical prediction of the cat lifetime 5.2±0.8 µs independent of nth
when accounting for state preparation and measurement time of 1.9 µs. The measurements
are shown in Fig. 6.7, where the fringe decay does not change significantly with increasing
nth.
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Figure 6.7: Measured central fringe lifetime. The lifetime was measured for
both (A) qcmap and (B) ECD hot cat states. The labels denote the nth of the
initial thermal state. The data is scaled to the measured parity immediately
after state preparation to emphasise the decay rate of the hot cat state fringes
after preparation. The data was fitted to an exponential decay and with a mean
fringe lifetime of 3.38 ± 0.08 µs which does not significantly change with an
increase in nth. The grey area denotes an exponential decay with the combined
mean lifetime with a 3σ deviation in the time constant.



130 6.5 QuTiP Simulations

6.5 QuTiP Simulations

6.5.1 Increasing Thermal Noise

QuTiP simulations of the pulse sequence with different starting cavity thermal populations
are plotted Fig. 6.8. The operations were implemented as follows: Displacement operators
and thermal initial states are implemented using QuTiP’s built-in functions. The qubit and
cavity-conditional qubit operations are implemented using either Eq. (6.3) or a dynamical
simulation of the system under a driving Hamiltonian. The time evolution operations T̂ (t)
are implemented using QuTiP’s built-in mesolve function to solve the Lindblad master
equations with collapse operators representing the decoherences in the system.

To test the viability of the simulation model, simulations were done with instantaneous,
ideal unselective σ̂x,y pulses and disentanglement pulse with linewidth σt = 10 ns. Here,
higher order terms in the Hamiltonian such as K and χ′ are neglected, and cavity and
qubit decoherence terms Γq,c are set to zero.
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Figure 6.8: QuTiP Simulations of idealised cat state generation sequence.
Hot Schrödinger cat states were simulated with an increasing thermal state
population (left to right) and nth for qcmap (top row), ECD (centre row) and
Kerr (bottom row) sequences. To increase the visibility of small parity values,
the colour brightness changes nonlinearly across the colourbar.

In all cases of the simulation, interference fringes in the Wigner function can be observed.
This demonstrates the feasibility of our QuTiP simulation model when comparing the
simulation results to the measured data and analytical theory. For an initial ground state
of the cavity nth = 0, the three sequences result in a similar cat state. However, the results
are noticeably different for higher thermal population. In the qcmap cat states, the fringes
are localised to the centre while in the ECD cat states, the fringes follow the total phase
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space extend of the cavity state. Included in the bottom row is the Kerr cat method of
forming cat states (Sec. 5.3, [155]) which results in a similar fringe structure to the qcmap
ones except for a zero-parity fringe phase.

6.5.2 Comparison with Experiments

Using our experimental characterisation of the setup, we model the known imperfections
in an ab initio numerical simulation which reproduces all the features of the measured data
within the expected accuracy of the experiment.
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Figure 6.9: Comparison of QuTiP Simulations to measured data and
analytical fit. A to D are for qcmap and E to H is for ECD. The panels
correspond to (A and E) measured data, (B and F) full simulation with all the
experimental parameters, (C and G) analytical fit and (D and H) simulation
in a Kerr free, ideal unconditional pulses and decoherence free environment.
The Magnus 2nd order approximation is used as the operator for the Gaussian
disentanglement pulse. To increase the visibility of small parity values, the
colour brightness changes nonlinearly across the colourbar.
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6.5.3 Effects of Kerr, Gaussian pulses and Decoherence

To explain the different features present in the map, we plot QuTiP simulations with differ-
ent effects turned on for both the qcmap (Fig. 6.10) and ECD (Fig. 6.11) protocol. These
can be compared to the full experimental parameters simulation (panel A) and the Mag-
nus approximation model (panel B) where the Magnus 2nd operator (Eq. (6.3)) is used for
the qubit rotations. We identify four areas that result in imperfections in the experiment
(panels C to F). These are the higher-order Kerr effects (K,χ′), the undesired selectivity
of the pulses (finite width of X̂(π) and X̂(π/2) pulses), the timing of the imperfect disen-
tanglement pulse (X̂(π,N)) and the qubit and the cavity decoherence and relaxation rates
(Γq and Γc).

Firstly, the undesired selectivity of qubit pulses results in imperfect flipping of the qubit
population for high cavity photon numbers. This results in unequal populations between
the left and right cavity state distributions. For the case of ECD, comparing Fig. 6.11 panel
B to C, there are additional parasitic fringes at the bottom of the map due to the undesired
selectivity of the echo π pulse that results in a small population at β = (0,−α).

Secondly, the Kerr effect results in the bending of fringes due to a photon number dependent
phase shift during the evolution of the the cavity state (|n(t)⟩ = ein2Kt |n⟩).

Thirdly, the timing of the disentanglement pulse results in additional distortion of cavity
distributions. This disentanglement pulse timing is typically a significant proportion of
the waiting time required during the formation protocol (t = π/χqc). When this effect is
turned on at the same time as the Kerr effect, this results in additional bending of the hot
cat state interference fringes. During the disentanglement pulse, the |2α, g⟩ branch will
occupy a larger Fock state, this results in a larger Kerr effect and bigger distortion of the
coherent state.

The similarity between panels B and E illustrate the accuracy of the Magnus second-order
approximation operator as an accurate description for the Gaussian pulses used. Detailed
simulated linecuts are displayed in the following section.

Finally, decoherence of the cavity or qubit will result in a loss in interference fringes con-
trast. By comparing panels B and F, we see that our decoherence rates are so low that
they can be neglected.
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Figure 6.10: QuTiP Simulations of hot Schrödinger cat states with
qcmap. Hot Schrödinger cat states were simulated with different imperfections
turned on. The simulations are compared to the cases for (A) full experimental
parameters simulation where all the imperfections are turned on and (B) Mag-
nus approximation model where the Magnus 2nd operator (Eq. (6.3)) is used
for the qubit rotations. The imperfections are the (C) undesired selectivity of
qubit pulses (X̂(π, π/2)), the (D) higher order Kerr effect (Kc, χ

′
qc), the (E)

timing of the long disentanglement pulse (X̂(π,N)) and (E) decoherence rates
of the qubit and cavity (Γq,c). To increase the visibility of small parity values,
the colour brightness changes nonlinearly across the colourbar.
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Figure 6.11: QuTiP Simulations of hot Schrödinger cat states with ECD.
Hot Schrödinger cat states were simulated with different imperfections turned
on. The simulations are compared to the cases for (A) full experimental pa-
rameters simulation where all the imperfections are turned on and (B) Magnus
approximation model where the Magnus 2nd operator (Eq. (6.3)) is used for the
qubit rotations. The imperfections are the (C) undesired selectivity of qubit
pulses (X̂(π, π/2)), the (D) higher order Kerr effect (Kc, χ

′
qc), the (E) timing

of the long disentanglement pulse (X̂(π,N)) and (E) decoherence rates of the
qubit and cavity (Γq,c). To increase the visibility of small parity values, the
colour brightness changes nonlinearly across the colourbar.
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Magnus Approximation Model

Importantly, we observe that calculating the final state of our protocols using R̂2(π, 0, 20 ns)
in place for X̂(π,N) in the disentanglement operation, in the absence of both K, χ′, and
qubit and cavity relaxation and decoherence, produces a bending distortion of the coherence
fringes similar to that observed in Fig. 6.5A and Fig. 6.6A. For the qcmap protocol, the
qualitative behaviour of the linecuts with increasing nth observed in Fig. 6.5B is also
reproduced by this model (Fig. 6.12).
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Figure 6.12: Magnus approximation model simulations. Simulated linecuts
for qcmap (A and B) and ECD (C and D) across the cavity distributions (A
and C) and fringes (B and D) of the hot cat state. The legend denotes the
starting thermal state nth. The simulations were done in a Kerr free, decoher-
ence free and ideal unconditional qubit pulses. The simulated values of α and
nth are the same as the fitted experimental values in Fig. 6.5 and Fig. 6.6. The
disentanglement pulse was replaced with the Magnus 2nd order approximation
operator for Gaussian operators, R̂2(π, 0, 20 ns). The linecuts across the (A and
C) cavity distributions and (B and D) interference fringes illustrate the effect
of the Gaussian pulse during the disentanglement on the final Hot Schrödinger
cat state.

We note that using either the Magnus approximation model or numerical simulation of the
Gaussian pulse will reach the same result.

We conclude that to prepare the interesting sharp and saturated phase-space features
of Wqcmap(β) using the qcmap protocol, one would need to replace our Gaussian pulses
with engineered pulses which achieve a disentanglement operator such as X̂(π,N) =∑N

n=0 |n⟩ ⟨n| σ̂x + ∑∞
n=N+1 |n⟩ ⟨n|, in addition to minimising higher-order Kerr effects as

well as decoherence.
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6.6 Summary and Outlook

Our investigation proves that quantum superposition states with perfect quantum features
(phase coherence, interference fringes) can be prepared from initial states of low purity
(high temperature) without entropy removal up to an initial thermal photon occupation
of nth = 7.6 ± 0.2 (cavity mode temperature T = 1.78 ± 0.04 K). These values are to
be compared to P = 0.9367(1), nth = 0.0338(7), T = 63.7(4) mK when the cavity is in
equilibrium with residual excitations in the experimental setup and the initial state can be
considered pure.

The enabling feature of the demonstrated quantum state preparation protocols is the ability
to imprint a deterministic phase difference between different components of the state.
Purity, a global number of the quantum state, does not convey information about the
presence of quantum features of a state. Rather, it is phase coherence, a non-global property
of the state defined via the coherence function, which is a useful indicator of quantum
features.

Although we have prepared the “hot cat states” (Garfield states) in a cQED setup, they
are realisable in any continuous-variable quantum system. This holds particular relevance
for systems where the quantum degree of freedom is intermittently in contact with a heat
bath but where unitary dynamics otherwise take place. Examples include levitated op-
tomechanical systems, where a laser or electric field is typically used for initialisation and
measurement but turned off during quantum state preparation [166, 176–181]. Our investi-
gation highlights that achieving a high purity of the initial state, e.g. through ground-state
cooling, is not a necessary prerequisite for the preparation for a quantum state [166], but
the required experimental resources and coherence time increase with the decreasing purity
of the initial state.

The sharp, omnidirectional fringes in the phase space of the cavity for the hot qcmap cat
state represent a distinctive feature with practical implications. These fringes exhibit a
narrow width and a substantial gradient in all directions. This feature could have potential
applications in force or displacement sensing. Moreover, the observation that the hot qcmap
state always has fringes that take on perfect parity values might have practical advantages
in quantum information processing protocols with bosonic modes. Further exploration of
their utility in this context is a topic for future investigation.

The observed difference between the hot Schrödinger cat states produced by the two dif-
ferent protocols highlights the importance of the chosen pulse generation sequence, partic-
ularly in the presence of residual thermal photons. While echo pulses are conventionally
integrated to refocus low-frequency qubit fluctuations, their impact on the cavity state
should not be disregarded. This insight adds nuance to the understanding of state prepa-
ration protocols within the context of realistic experimental conditions specifically, the
temperature of the bosonic mode.

Thermal noise coupling into a quantum system is unavoidable. This problem is made worse
for optomechanical setups and other bosonic quantum systems. Due to the characteris-
tic low mechanical frequencies, the mechanical modes often possess a substantial thermal
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population, rendering attainment of the ground state through cooling a challenging en-
deavour. Consequently, real-world experiments inherently possess some level of residual
thermal population within the initial state.

To imprint a deterministic phase on the state, decoherence during the state preparation
protocols must be limited. In our present experiments, the decoherence rates were so low
that they could be neglected. It is interesting to consider how far, in terms of nth, the
present experimental method could be pushed. Improvements could be made by the use
of a purpose-designed setup, which can mitigate imperfections from the disentanglement
sequence by using larger displacements. Alternatively, the need for large displacements
could be avoided by utilisation of the Kerr cat pulse generation sequence. While this
method demands stronger higher-order terms in the Hamiltonian, it eliminates the necessity
for a disentanglement step during the generation process.

The ‘burlesque’ character of Schrödinger’s thought experiment [1] arises in our opinion
not only because of the size of the cat-box system, but also because the involved states of
the cat are room temperature, highly mixed states, and the cat is strongly entangled with
its environment before it is placed in a superposition. Nonetheless, quantum mechanical
theory allows for quantum superposition states to be prepared from arbitrarily non-pure
initial states, as long as the preparation itself is unitary. This remarkable, falsifiable as-
sertion has hitherto received very little dedicated experimental investigation. We therefore
see the preparation of increasingly hot Schrödinger cat states as a new potential direction
for fundamental tests of quantum mechanics and the quantum-to-classical transition. Our
reported experiment shows that this new line of investigation is immediately accessible for
further laboratory investigation.
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CHAPTER 7
Flexible Multi Qubit gates

Quantum algorithms’ advantage over classical computers relies on the quantum proper-
ties of entanglement and superposition. In such algorithms, multi-qubit gates are a vital
resource to produce such entanglement.

A proposal from Friis et. al. [71], demonstrates a scheme for implementing a flexible control
unitary (Fig. 7.1). The proposed protocol allows for flexibility while retaining performance
that is independent of the required control gate.

qubit2 U(θ1) •

qubit1 U(θ2) U(θ3)

Figure 7.1: Simplified diagram of a two qubit gate protocol. Figure
adapted from [71].

This scheme is modular, flexible and extendable to multiple qubits. The flexibility of the
target unitary can reduce the number of pulses needed in an algorithm. The gate can
be used to realise quantum switches, a novel tool that can open new fields of research
explained in Sec. 7.5. Furthermore, the gate will have applications in quantum subroutines
and learning algorithms [182].

In the first section, I describe the pulse sequence and technical requirements of the protocol
on the superconducting circuits platform. In Sec. 7.2, I describe a modification to the
protocol to account for experiment inaccuracies. Section 7.3 describes a proof of principle
experiment that realises a simplified version of the full pulse protocol. Finally, I describe the
imperfections in the experiment, possible improvements and some immediate applications
of such gates.

139
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7.1 Protocol

The flexible multi-qubit gate protocol uses qubits coupled via a high Q cavity acting as
a quantum bus. The entire sequence is made up of fast, unselective displacement pulses
on the cavity and both unconditional qubit rotations and cavity-photon number selective
operations on the qubit.

The proposed protocol requires that the individual qubits are far detuned and have small
direct coupling. The cavity is coupled to all qubits with a dispersive interaction between
the nth qubit and the cavity being χqn,c = χ1c

n . In the experiment, this can be achieved by
in-situ tuning of the qubit frequency or effectively by introducing echo pulses during the
time evolution.

The pulse sequence of the full gate protocol is shown in Fig. 7.2A with the phase space
evolution of the system in Fig. 7.2B.

A

B

qubit2 U(θ1)

T
(

π
χ2

)
T
(

π
χ2

)
cavity D(α) D(α) • D(−2α) • D(−α) D(α)

qubit1 U(θ2, n) U(θ3, n)

Figure 7.2: Full proposed protocol for flexible two qubit gates. (A) Pulse
sequence of ideal two qubit gate protocol. In this protocol, the coloured gates
can be any single qubit gate. The flexible two qubit gate is realised by condi-
tioning the target single qubit gate on zero photons in the cavity. By mapping
the state of one qubit onto the cavity photon state, we can effectively implement
two qubit gates. (B) Phase space evolution of the system during gate protocol.
Figure taken from [71].
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Consider some initial two qubit state and the cavity in the ground state with the couplings
required. Here, qubit 1 and 2 are the target and control qubits respectively. First, qubit 2’s
state is mapped onto the cavity photon state via a process similar to the qcmap protocol

|c, q1, q2⟩ = |0⟩ ⊗ (a |00⟩ + b |01⟩ + c |10⟩ + d |11⟩) (7.1)
D̂(α) : |α⟩ ⊗ (a |00⟩ + b |01⟩ + c |10⟩ + d |11⟩) (7.2)

T̂

(
π

χ2

)
:
(
a |α00⟩ + b |αe

−iχ2

(
π

χ2

)
01⟩ + c |αe

−iχ1

(
π

χ2

)
10⟩ + d |αe

−i(χ1+χ2)
(

π
χ2

)
11⟩
)

(7.3)
=a |α00⟩ + b |−α01⟩ + c |α10⟩ + d |−α11⟩ (7.4)
= |α⟩c ⊗ (a |0⟩ + c |1⟩)1 ⊗ |0⟩2 + |−α⟩c ⊗ (b |0⟩ + d |1⟩)1 ⊗ |1⟩2 (7.5)

D̂(α) : |2α⟩c ⊗ (a |0⟩ + c |1⟩)1 ⊗ |0⟩2 + |0⟩c ⊗ (b |0⟩ + d |1⟩)1 ⊗ |1⟩2 . (7.6)

During the time evolution, the states with qubit 2 in the excited state, gain a phase
e−iπ. This is equivalent to the phase of the entangled coherent state to |−α⟩. Thus by
doing another displacement pulse, the state of qubit 2 is mapped onto the cavity state.
|ψ⟩ = |αψ10⟩ + |−αψ11⟩. Next, operations on the second qubit are applied conditioned on
the cavity photons

Û(θ2, n < N) : |2α⟩c ⊗ (a |00⟩ + v |10⟩) + |0⟩c ⊗
(
b′ |01⟩ + d′ |11⟩

)
(7.7)

D̂(−2α) : |0⟩c ⊗ (a |00⟩ + c |10⟩) + |−2α⟩c ⊗
(
b′ |01⟩ + d′ |11⟩

)
(7.8)

Û(θ3, n < N) : |0⟩c ⊗
(
a′ |00⟩ + c′ |10⟩

)
+ |−2α⟩c ⊗

(
b′ |01⟩ + d′ |11⟩

)
(7.9)

where we have used Û(θ2, n < N)(b |0⟩1 + d |1⟩1) = b′ |0⟩1 + d′ |1⟩c and likewise for Û(θ3).
The operations Û(θ2) and Û(θ3) acting on qubit 2 have to be selective on the ground state.
The pulse’s spectral width must not exceed σf ≪ |2α|2χ2. During this time, the part of the
cavity state in |2α⟩c will start rotating due to the dispersive shift. This can be accounted
for by choosing the length of selective operations to be π

χ1c
and changing the phase of the

displacement pulses afterwards.

Finally, the two qubit system is disentangled from the cavity by reversing the first part of
the protocol

D̂(α) : |α⟩c ⊗
(
a′ |00⟩ + c′ |10⟩

)
+ |−α⟩c ⊗

(
b′ |01⟩ + d′ |11⟩

)
(7.10)

=a′ |α00⟩ + b′ |−α01⟩ + c′ |α10⟩ + d′ |−α11⟩ (7.11)

T̂

(
π

χ2

)
:a′ |α00⟩ + b′ |−αe−iπ01⟩ + c′ |αe−i2π10⟩ + d′ |−αe−i3π11⟩ (7.12)

= |α⟩c ⊗
(
a′ |00⟩ + b′ |01⟩ + c′ |10⟩ + d′ |11⟩

)
(7.13)

D̂(−α) : |0⟩c ⊗
(
a′ |00⟩ + b′ |01⟩ + c′ |10⟩ + d′ |11⟩

)
. (7.14)

These operations are effectively a controlled gate between the two qubits with the cavity
acting as a quantum bus. The total time taken of the protocol is Tgate ≈ 4π

χ2
and is

dominated by the waiting time T̂
(

π
χ2

)
and the time for the selective pulses Û2 and Û3.
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7.2 Echoed Protocol

A major obstacle in the protocol is the relative qubit-cavity dispersive coupling ratio
needed. This requires in-situ fine-tuning of qubit frequencies that will also introduce added
noise. χ ratios that are not carefully tuned will result in evolution times that are not con-
sumerate and residual entanglement between the qubit and the high Q cavity mode.

An alternative method is to introduce an unconditional π pulse to the qubit 1 in the middle
of the time evolution Eq. (7.3) (Fig. 7.3B). Effectively, this results in a circuit shown in
Fig. 7.3A. The phase space evolution of the system during the echo sequence is illustrated
in Fig. 7.3C.
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Figure 7.3: Echoed two qubit gate protocol. (A) Effective two qubit gate
circuit of the protocol with an echo pulse. (B) Pulse sequence during one part of
the evolution of the circuit in Eq. (7.3) where an echo pulsed is used to refocus
the qubit states in the cavity phase space. (C) Phase space evolution of the
system during echo sequence. The time evolution is split into two parts and an
echo pulse is played on the target qubit. This will refocus the qubit states in
phase space with only an overall phase term in the cavity state.

Written without considering geometric phase factors from D̂(α) |β⟩ = |(α+ β)eiIm{αβ∗}⟩,
the quantum system will evolve as follows

T̂

(
π

2χ2

)
:a |α00⟩ + b |αe−iπ/201⟩ + c |αe−iπ

χ1
2χ2 10⟩ + d |αe−iπ

χ1+χ2
2χ2 11⟩ (7.15)

X̂1(π) :a |α10⟩ + b |αe−iπ/211⟩ + c |αe−iπ
χ1

2χ2 00⟩ + d |αe−iπ
χ1+χ2

2χ2 01⟩ (7.16)

T̂

(
π

2χ2

)
:a |αe−iπ

χ1
2χ2 10⟩ + b |αe−iπ/2e

−iπ
χ1+χ2

2χ2 11⟩ (7.17)

+ c |αe−iπ
χ1

2χ2 00⟩ + d |αe−iπ
χ1+χ2

2χ2 e−iπ/201⟩ (7.18)

= a |αe−iπ
χ1

2χ2 10⟩ + b |αe−iπ/2e
−iπ

χ1+χ2
2χ2 11⟩ (7.19)

+ c |αe−iπ
χ1

2χ2 00⟩ + d |αe−iπ
χ1+χ2

2χ2 e−iπ/201⟩ (7.20)
= a |α′10⟩ + b |−α′11⟩ + c |α′00⟩ + d |−α′01⟩ (7.21)
=
[
|α′⟩c ⊗ (a |1⟩ + c |0⟩)1 ⊗ |0⟩2 + |−α′⟩c ⊗ (b |1⟩ + d |0⟩)1 ⊗ |1⟩2

]
(7.22)
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where the global phase on the high Q cavity state has been included in |α′⟩ = |αe−iπ
χ1

2χ2 ⟩.
This phase factor can be accounted for by a simple rotation of the cavity frame. These
phase factors do not change the important dynamics of the gate and can be accounted
for by a change in the phase of the cavity or qubit pulse. The echo pulse will refocus the
evolution of the cavity-qubit states. This echo pulse has to be used during the steps that
take a longer time such as both time evolution steps and both Û(θ2) and Û(θ3) gates.

7.3 Simplified Experiment

In a proof-of-principle experiment, the pulse sequence up to the first conditional Û(θ2)
pulse was carried out. The experiment was repeated for different initial qubit states and
the different amplitudes of the target unitary. This results in a final state given by |ψ⟩ =
X̂(π)X̂(π) |ψ⟩1 ⊗ |0⟩2 + X̂(π)Û(θ2)X̂(π) |ψ⟩1 ⊗ |1⟩2.

To understand the action of the two qubit gate, we can limit the target unitary and consider
the different initial states of the two qubits. This is presented as a logic table table 7.1

Initial State
Û(θ2) |ψ⟩f|target⟩i |control⟩i

|0⟩ |0⟩ X̂ |00⟩
|0⟩ |1⟩ X̂ |11⟩
|1⟩ |0⟩ X̂ |10⟩
|1⟩ |1⟩ X̂ |01⟩
|0⟩ |±⟩ X̂ |Φ±⟩
|1⟩ |±⟩ X̂ |ψ±⟩

Table 7.1: Two qubit gate logic table. In this example, the target unitary is
an X̂ gate that implements a CNOT gate.

Here, the chosen target unitary is a Û(θ2) = X̂. The strength of the protocol is that the
target unitary is not fixed to any specific single qubit gate unitary. Thus, we can easily do
any controlled Rabi oscillation on the target qubit without adding or changing any other
of the qubit or the cavity pulses.
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Figure 7.4: Flexible target unitary through controlled Rabi oscilla-
tions. The legend labels represent the initial state of the two qubit system
|target, control⟩. (A) Background Rabi oscillations on qubit 1 for different ini-
tial qubit 2 states. The offset between |00⟩ and the maximum of the background
Rabi measurements are due to residual entanglement between the high Q cavity
and the qubit. This results in additional cross-Kerr to the readout resonator
and a different readout contrast. These measurements are used to scale and
account for the difference in readout contrast in the other measurements with
the same initial qubit 2 state. (B and C) Controlled Rabi oscillations on qubit
1 for different initial states. The red and blue lines in the different plots serve
as a visual guide as the two qubit gate has no action on these initial states.
The green and yellow lines show full Rabi oscillations of qubit 1 when qubit 2 is
excited. Similarly, for qubit 2 in the |+⟩ eigenstate, the Rabi oscillations only
have half the amplitude. At Û(θ2) = 0.25, the state is 1√

2(|00⟩ + |11⟩).

Fig. 7.4A shows the background measurements used to scale the subsequent measurements.
Normal Rabi oscillations are done on qubit 1 for different initial states of qubit 2. There
is a small difference in readout levels due to cross-Kerr terms between qubit 2 and the
readout resonator for qubit 1. These levels are used to scale and account for the difference
in readout contrast for the measurements according to the initial state of qubit 2. For the
qubit system in |ψ10⟩, the two qubit gate does not have any action on the qubits. The
difference in readout level is due to the imperfect disentanglement between the high Q
cavity and the qubit system. Photons in the high Q cavity, through the cross-Kerr effect,
will shift the optimal readout point for the readout resonator.

Fig. 7.4B and C show Rabi oscillations with amplitudes that follow the truth table. This
demonstrates the realisation of the flexible target unitary. The green and yellow lines



7 Flexible Multi Qubit gates 145

show full Rabi oscillations of qubit 1 when qubit 2 is excited. Similarly, for qubit 2 in the
|+⟩ eigenstate, the Rabi oscillations only have half the amplitude. At Û(θ2) = 0.25, the
state is 1√

2(|00⟩ + |11⟩).In the next section, imperfections in the experiment and possible
improvements are discussed.

7.4 Imperfections and Improvements

Imperfections arise from residual cavity photons that cause incomplete disentanglement
between the qubit and cavity states. This can be due to the cavity self-Kerr effect or the
qubit-qubit coupling.

To first order, the Kerr effect will be a detuning of the cavity frequency and can be ac-
counted for with a phase change of the cavity frame, ϕ ≈ nK

2χ2
. However, the full Kerr effect

and higher-order terms such as χ′ cannot be easily accounted for and require additional
correction pulses.

The unwanted terms, K,χ′ and qubit-qubit coupling χq1q2 scale with the dispersive shift
χ. For a larger χ, the qubit gate operation is faster while a small χ will cause the higher
order effects to reduce. A balance must be found between the qubit coherence time and
interactions due to higher-order effects. We can compare the speed of operations, bounded
by χ to the higher-order terms parameterised by K. Using Eq. (3.11), we can calculate the
relative ratio χ

K for a particular coupling strength g and qubit anharmonicity α. Thus, to
reduce the unwanted interaction terms, we can use a regime of smaller χ.
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Figure 7.5: Comparision of χ and K magnitudes. Plot of magnitudes of χ
(blue) which determines the speed of the operation and K (red) which deter-
mines the unwanted terms against qubit-cavity detuning. We want to maximise
the χ/K ratio (yellow) while not being limited by qubit relaxation time or de-
coherence time. Not accounted for in the plot is the effect of χ′ which is a com-
parable effect to the Kerr effect. Here, α/2π = 150 MHz and g/2π = 150 MHz.
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Another improvement is to use optimal control for the state transfer during the evolution
times of the protocol. A closed-loop routine can account for such higher order unwanted
terms. However, the optimiser needs to work on a state transfer and not a state preparation.
This means that the optimised gate must work on all possible input states and their
superpositions. While this increases the complexity of the optimisation process, methods
used in Sec. 5.4 can be adapted to improve the fidelity of the state transfer.

Currently, two qubit gates can have a gate fidelity benchmark by doing process tomography
[72, 183] or interleaved randomised benchmarking [184]. Process tomography is done by
initialising all possible input states and for every input state, do state tomography of the
output state of the target gate. This method is very resource-intensive to determine the
gate fidelity. Interleaved randomised benchmarking involves applying random pulses to the
qubit system that are interleaved with the two qubit gate. The decay of coherence with
the number of gates applied is a proxy function of the gate fidelity.

The flexibility of the controlled unitary gate places a question on the difficulty of placing
a fidelity of the controlled gate. The strength of the scheme is its possibility to do any
controlled unitary. While it is possible to determine the gate fidelity for a particular target
gate, there has yet to be a defined metric on the fidelity on the set of all possible two qubit
gates that can be applied.
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7.5 Summary and Outlook

With qubit coherence improvements and an experimental parameter regime with lower
higher order effects, the complete multi-qubit gate protocol can be realised with small er-
rors. The gate is fundamentally different as it can realise all possible controlled single qubit
gate unitary. Thus, a simple gate or process fidelity does not capture the full capability
of the realised flexible gate. A new method of benchmarking such flexible gates should be
considered.

One immediate application of a flexible target unitary is the operation of a quantum switch
[185, 186]. In quantum mechanics, it is possible to use a time-like superposition of quantum
gates. This means a coherent control of the order of a quantum circuit applied to one qubit
conditioned on the state of another qubit.

The order of gates Û1 and Û2 are controlled by another qubit. For a two qubit system,
the operator implements the gate |ψcontrolψtarget⟩ = αÛ1Û2 |0ψt⟩ + βÛ2Û1 |1ψt⟩. This can
be implemented by the flexible multi-qubit gate protocol shown in Fig. 7.1 by choosing
Û(θ1) = Û1Û2 and Û(θ2) = Û2Û1.

A B C

Figure 7.6: Working principle of the quantum switch. The order of gates Û1
and Û2 are controlled by another qubit. For a two qubit system, the operator
implements the gate |ψcontrolψtarget⟩ = αÛ1Û2 |0ψt⟩ + βÛ2Û1 |1ψt⟩. This can
be realised with the flexible multi-qubit gate protocol shown in Fig. 7.1, by
choosing Û(θ1) = Û1Û2 and Û(θ2) = Û2Û1. Figure from [187].

This novel resource is a useful tool to open new research avenues such as in fundamen-
tal science in studying quantum causal structures [185, 186], quantum error mitigation
protocols [188], quantum communication [189–191], quantum computation [187, 192].

An exciting use case is for quantum error mitigation [188]. The protocol considers the
operator in which Û(θ1) = Û(θ2), the action of the two qubit gate will split the quan-
tum system into two possible quantum channels. The recombination of the two channels
allows for constructive or destructive interference of errors that occur in the quantum sys-
tem. Thus, allows for the study of possible phase differences between the two quantum
channels.
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CHAPTER 8
Conclusions and Outlook

In this thesis, I have introduced a setup for fundamental quantum physics research with
bosonic modes. The platform was built to realise vastly different experiments. This was
possible with the help of many internal and external collaborators. In the following para-
graphs, I outline the anticipated results in the near future and pose some further research
questions.

Part 1: Concept and Characterisation. In chapter 2, 3 and 4, I introduced and outlined
the working principles of the superconducting circuits with high Q cavities platform and
characterisation of experiments. I improved on key areas for the next generation devel-
opment of the platform. This includes a more efficient superconducting flux hose design
(Sec. 4.1) and a modular Purcell filter with an integrated SMA pin for 3D architectures
(Sec. 3.6). Finally, the ongoing efforts in optimisation of qubit fabrication and adopting
Tantalum qubits with longer lifetimes will improve the experiment results.

Part 2: Quantum Superpositions. In chapter 5, I demonstrate the different ways to
form Schrödinger cat states in a bosonic mode. These cat states are a useful quantum
resource and are the basis of many other experiments such as quantum error correction
protocols and quantum meteorology. To improve the preparation of such cat states, I used
closed-loop optimisation on a bosonic mode. However, measuring the bosonic mode is
resource-intensive due to the fundamental problem of enormous Hilbert space. Thus, a
figure of merit was carefully chosen as a proxy for the state fidelity of the bosonic state.
With closed-loop optimisation, state preparation fidelity was improved and the optimised
pulses can be used to understand the imperfections of the system. While the optimisation
was done on a cat state, the novel and general method can also be used for optimising the
preparation of many other complex states and platforms.

Part 3: Quantum Superpositions of Thermal States. In chapter 6, I explore the fun-
damental question of forming quantum superpositions of a mixed state. The results show
that thermal states with low purity can still be used to form states with quantum features
and high visibility. The formation of quantum superpositions of low purity states demon-
strates that coherence, rather than purity, is the crucial ingredient for the "quantum-ness"
of a state.
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The existence of the hot cat state poses many follow-up research directions:

We can consider if such hot cat states can be a resource for quantum computation and
quantum meteorology. The results show that there are at least 2 types of hot cat states and
that they have the same lifetime as their cold counterparts. Furthermore, the sharp features
of the hot qcmap cat state could be used for highly sensitive displacement measurements.
This also poses a more fundamental question of how increasing the noise of the system
might improve the sensitivity of the state.

While these experiments were performed on a cQED setup, the results can be applied
to any bosonic system. Such as in optomechanics setups, where a big challenge is the
cooling of the quantum system to the ground state. The existence of hot cat states shows
that reaching the ground state is not a strict condition for quantum features. Thus, this
alleviates the obstacles to forming a cat state with mechanical systems.

Fundamentally, the theoretical results do not place a fundamental limit on how hot the
thermal state can be. The experimental results were limited only by instrumental con-
straints. With the setup used, we could reach a cavity mode temperature of 1.8 K which is
sixty times larger than its physical temperature. Given an improved experimental setup of
smaller coupling ratios χ, we can explore what is the hottest thermal state superposition
achievable.

Part 4: Flexible Multi-qubit Gate. Finally, in chapter 7, based on the gate protocol
in [71], I demonstrate a proof of principle experiment to achieve a flexible multi-qubit
gate. This method uses the high Q cavity as a quantum bus for flexible conditional qubit
operations.

The gate is fundamentally different with respect to other fixed two-qubit gates as it can
realise any possible controlled single-qubit gate unitary. Thus, a simple gate or process
fidelity does not capture the full capability of the realised flexible gate. A new method of
benchmarking such flexible gates should be considered.

The most exciting application is the quantum switch gate [185, 186]. The superposition
of the order of quantum gates is a novel tool that opens new research areas. The possible
application covers a wide area which includes fundamental studies in quantum causality
[185], quantum communication [191], quantum computation [187, 192], and quantum error
mitigation [188].

Final Remarks The large Hilbert space of bosonic modes allows for investigating complex
quantum phenomena while being hardware-efficient. The coherence and controllability of
bosonic modes are unique to superconducting circuits. The field of using bosonic modes
in quantum computing has many possible research directions and it is still possible to find
novel and exciting fundamental research or expand the rich circuit QED toolbox.
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APPENDIX A
Useful Relations

A.1 Coherent states

Some useful relations that are used in this thesis

• D̂†(α) = D̂(−α)

• D̂(α)D̂(β) = D̂(α+ β)eiIm(αβ∗)

• ⟨β|α⟩ = ⟨0|D̂†(β)D(α)|0⟩ = e− 1
2 (|α|2+|β|2)+αβ∗)

• |⟨β|α⟩|2 = e−|α−β|2

• ⟨α|αe±iχt⟩ = e|α|2(cos χt−1) (cos |α|2 ± i sin |α|2
)

sin (χt)
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A.2 Wigner Coordinates Normalisation

Considering the generalised dimensionless position X̂ and momentum P̂ operators, we have
a choice of writing these coordinate operators as the raising â† and lowering â operators

X̂ = 1
N

(â† + â) (A.1)

P̂ = i

N
(â† − â) (A.2)

where the raising and lowering operator obey the commutator relation [â, â†] = ââ† − â†â =
1 and N is our choice of normalisation factor. Equivalently, the raising and lowering
operators can be written as â† = N

2 (X̂ − iP̂ ) and â = N
2 (X̂ + iP̂ ).

Consider the commutator relation of the dimensionless position and momentum opera-
tors

[X̂, P̂ ] = i

N2 [(â† + â)(â† − â) − (â† − â)(â† + â)]

= 2i
N2 .

(A.3)

As a result, the choice of N will affect the commutator relation. The commutator relation
is used in many equations. For example, the uncertainty relation obeys

∆X̂∆P̂ ≥ 1
2 |[X̂, P̂ ]| = 1

N2 . (A.4)

This means that the ground state with the minimum uncertainty will have a size ∆X̂vac =
∆P̂vac = 1

N .

Similarly, the choice of N will have a scaling factor in the displacement operator: D̂(α) =
eαâ†−α∗â = e

N
2 (α(X̂−iP̂ )−α∗(X̂+iP̂ )) = e

N
2 ((α−α∗)X̂−i(α+α∗)P̂). When working with numerical

methods to calculate the Wigner function over the phase space, these factors will need to
be accounted for. Knowledge of the normalisation used and its impacts on the functions
are essential for avoiding confusion. For example, in qutip, the default scaling factor is
â = 1√

2(X̂ + iP̂ ) which results in displacements looking smaller than anticipated.

In this thesis, we use N = 2. Thus, we expect the ground state to have an uncertainty of
1
2 .



APPENDIX B
Optimisation and Searching Algorithms

The optimisation problem and search routine used to find the ideal Ecavity(t) and Equbit(t)
is outlined here. For a more in-depth discussion, the following sources provide a good
description [73, 74].

The target unitary defined in Eq. (2.66) is split into a piecewise function with N steps with
length δt for a total time T = N × δt

ÛQOC(t,E) = ÛN ÛN−1...Û1, (B.1)

Ûi = e−i δt
ℏ Ĥ(E(iδt). (B.2)

Instrument limitations will impose some constraints on the search space. This includes
the voltage resolution of the Digital-Analog-Converter (DAC) used or the sampling rate
of the Arbitrary Waveform Generator (AWG). Such experimental limits can be placed on
the objective function by introducing constraints on the fidelity.

Open-loop Optimisation In open-loop optimisation, an objective function with the proper
constraint functions needs to be defined to properly construct the optimisation problem
Sec. 2.3.3. There is some finesse in choosing the multiplier values correctly and will require
a few trials. However, the constraint functions can be carefully designed based on exper-
imental requirements, such as giving a linear or non-linear cost to the objective function.
In this subsection, I outline some examples of constraint functions.

The AWG has some maximum voltage where instruments are still linear. Or one might
want to limit the power sent into the fridge that is proportional to the integrated power.
Such constraints can be accounted for by including

gamplitude linear cost(E) =
∑

i

(|Ei|2)

where Ei is the control field applied at time interval i.

Importantly, the optimised pulse might contain quickly oscillating terms, which break RWA
and result in complex system dynamics and a departure from the dispersive Hamiltonian.
Thus, it is important to use the correct Hamiltonian or limit the bandwidth of the pulses

gbandwidth linear cost(E) =
∑

i

(|Ei − Ei−1|2).
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We can penalise the occupation of higher cavity photon numbers by introducing

gcavity photon occupation =
N∑
i

| ⟨nmax|ψ(i)⟩ |2

where |ψ(i)⟩ is the state vector of the system at time interval i.

Other than experimental limitations, one can also reward certain properties of the pulses.
Such as robustness under Hamiltonian variation by optimising under different Hamiltonians
F = 1

N

∑N
i F(Ĥ).

Search Methods For N elements, with I and Q voltages, we have Nelements × 2 ×Nsteps

parameters in a large search space of voltage parameters. In many cases, the number of
possible parameters is too large to calculate every single possible trajectory. The number of
parameters can be reduced by allowing for some degrees of freedom in the search routine.

One simple degree of freedom is the global phase invariance of the desired gate ÛQOC ≡
eiϕÛ ′

QOC . Some techniques do not optimise a full pulse but only some parameterised
amplitudes of applied gates [154].

We require a search algorithm that can reduce the number of parameters we need to
calculate. Some common search methods include:

• Newton: Searching the parameter space and calculating second derivatives to find
the global maxima

• Trust region: searching a local parameter space and then updates the region center
and radius to find new local maxima

• Gradient: search in a direction given by the gradient of the objective function

• Randomised basis: A gradient-based search of the parameter space in a randomised
basis

The Newton search method requires finding the second derivative of the objective function
and is very computationally expensive. However, the other methods might not always
find the global maximum. To avoid this, the optimisation is repeated for different random
starting points. With enough iterations, the optimisation routine will then converge on
the global maxima.

The randomised basis search defines the control pulse in a basis with the coefficients of
the basis being optimised for. In a variant of this search method, the dressed Chopped
Randomised Basis (dCRAB) algorithm changes the basis of the pulse after the optimization
reaches a plateau in the objective function [76, 77]. This will redefine the objective function
"landscape" and allow the optimisation routine to search for a global maximum or minimum
without having to repeat the optimisation for different starting points.



APPENDIX C
Black Box Quantisation Expansions

Consider the case of a single qubit coupled to a cavity. The phase through the junction
can be written as

ϕ̂ = ϕ̂c + ϕ̂q = ϕc(ĉ† + ĉ) + ϕq(q̂† + q̂). (C.1)

The fourth-order expansion in the cosine in Eq. (3.8) results in ϕ̂4 = ϕ̂4
c + 4ϕ̂3

c ϕ̂q + 6ϕ̂2
c ϕ̂

2
q +

4ϕ̂cϕ̂
3
q + ϕ̂4

q . We can expand and drop the non-energy-conserving terms.

The first and fifth term results in the anharmonicity of the cavity and qubit mode respec-
tively: ϕ̂m ≈ ϕ4

m(6m̂†m̂†m̂m̂ + 12m̂†m̂ + 3). The coefficients are not trivial due to the
commutation relation of the raising and lowering operators. Immediately, one can note
some effects due to the introduction of the junction. The zero point energy is shifted by
3
4!

EJ

ϕ4
0

(ϕ2
c + ϕ2

q)2. Each mode m will have an eigenfrequency shift due to its coupling to
the other mode n, 12

4!
EJ

ϕ4
0
ϕ2

m(1 + ϕ2
n). Finally, all modes will inherit some non-linearity

Km
2 = 1

4!6
EJ

ϕ4
0
ϕ4

m.

The second and fourth term results in: ϕ̂3
mϕ̂n ≈ 4ϕ3

mϕn(3m̂†m̂†m̂n̂+ 3m̂†m̂m̂n̂† + 3m̂n̂† +
3m̂†n̂). All these Rabi-like terms are fast oscillations that are dropped with the RWA.
Similarly, all odd powers of the flux operator are also dropped.

Finally, the third term results in ϕ̂2
c ϕ̂

2
q ≈ 6ϕ2

cϕ
2
q(ĉ†ĉ†q̂q̂+ 4ĉ†ĉq̂†q̂+ ĉĉq̂†q̂† + 2ĉ†ĉ+ 2q̂†q̂+ 1).

Likewise, with RWA, many terms will drop and we arrive at the Hamiltonian

Ĥup to fourth order =
(

1 − EJ

8ϕ4
0
(ϕ2

c + ϕ2
q)2
)

+
(
ℏωc − EJ

2ϕ4
0
(ϕ4

c + ϕ2
cϕ

2
q)
)
ĉ†ĉ−

(
ℏωq + EJ

2ϕ4
0
(ϕ4

q + ϕ2
qϕ

2
c)
)
q̂†q̂

− EJ

4ϕ4
0
ϕ4

c ĉ
†ĉ†ĉĉ− EJ

4ϕ4
0
ϕ4

q q̂
†q̂†q̂q̂ − EJ

ϕ4
0
ϕ2

cϕ
2
q ĉ

†ĉq̂†q̂.

(C.2)

We arrive at the same dispersive Hamiltonian as using the frame transformation Eq. (2.49).
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To find higher-order interaction effects, one can carry the expansion to the sixth order:
ϕ̂6 ≈ ϕ̂6

c + 15ϕ̂4
c ϕ̂

2
q + 15ϕ̂2

c ϕ̂
4
q + ϕ̂6

c . After working it out, we find higher-order correction
terms proportional to lower-order operators. Importantly, we find new terms in the Hamil-
tonian

Ĥsixth order = EJ

36ϕ6
0

∑
m

ϕ6
mm̂

†m̂†m̂†m̂m̂m̂

+ EJ

6ϕ6
0
ϕ4

cϕ
2
q ĉ

†ĉ†ĉĉq̂†q̂

+ EJ

6ϕ6
0
ϕ4

qϕ
2
c ĉ

†ĉq̂†q̂†q̂q̂.

(C.3)

1 cavity, 2 qubits Doing the fourth order expansion for a quantum system with one cavity
and two qubits, we arrive at the Hamiltonian

Ĥ1 cavity, 2 qubits = ℏωq1 q̂
†
1q̂1 + ℏωq2 q̂

†
2q̂2 + ℏωcĉ

†ĉ

− 1
4

(
EJ1
ϕ4

0
ϕ4

11 + EJ2
ϕ4

0
ϕ4

12

)
q̂†

1q̂
†
1q̂1q̂1

− 1
4

(
EJ1
ϕ4

0
ϕ4

21 + EJ2
ϕ4

0
ϕ4

22

)
q̂†

2q̂
†
2q̂2q̂2

− 1
4

(
EJ1
ϕ4

0
ϕ4

c1 + EJ2
ϕ4

0
ϕ4

c2

)
ĉ†ĉ†ĉĉ

−
(
EJ1
ϕ4

0
ϕ2

11ϕ
2
c1 + EJ2

ϕ4
0
ϕ2

12ϕ
2
c2

)
q̂†

1q̂1ĉ
†ĉ

−
(
EJ1
ϕ4

0
ϕ2

21ϕ
2
c1 + EJ2

ϕ4
0
ϕ2

22ϕ
2
c2

)
q̂†

2q̂2ĉ
†ĉ

−
(
EJ1
ϕ4

0
ϕ2

11ϕ
2
21 + EJ2

ϕ4
0
ϕ2

12ϕ
2
22

)
q̂†

1q̂1q̂
†
2q̂2.

(C.4)

The first 3 terms are the usual Harmonic oscillator modes. The next 3 terms are the
respective mode anharmonicities. Now, each term has contributions from each junction,
the mode anharmonicity is now due to the inherited anharmonicity of both junctions.
Similarly, the dispersive interaction between both modes has terms from both junctions.
The Hamiltonian coefficient is the sum of contributions from both qubits Kmn = ∑

r Kmn,r,
where Kmm is the respective mode anharmonicity.



APPENDIX D
Fabrication and Etching Recipes

In this appendix chapter, I summarise the details of the recipes I used for fabrication and
etching of the samples in the thesis.

D.1 Aluminium Qubits

Step Equipment/Chemical Description
Piranha Cleaning H2SO4 : H2O2 = 3 : 1 Cleaned for 5min

Cleaned with H2O
Blow Dry with N2

Resist Static Spinning MMA (8.5) EL13 1500 rpm for 100 s
Baked at 200◦C for 5 min
Thickness of 1122 nm

950 PMMA A4 1500 rpm for 100 s
Baked at 200◦C for 5 min
Thickness of 268 nm

Gold Sputtering Cressington 108auto
Sputter Coater

Current of 40 mA for 50 s

e-beam Lithography
Raith eLINE Plus 30 kV Base dose = 80µCcm−2

Dose Factors:
Aperture: 10µm
Step Size: 5 nm
Writefield size: 200µm

undercut: 1.7
undercut proximity: 1.2
small structures: 5
junction trenches: 7

Aperture: 120µm
Step Size: 40 nm
Writefield size: 1000µm
Zoom factor: ×1.01

large structures: 4
chip cut lines: 3

Gold Etching Solution of I2, KI and H2O
5%Lugold : H2O
= 2 ml : 30 ml

Etch for 10 s
Quench reaction with H2O
H2O rinse in first beaker
H2O rinse in second beaker
Blow Dry with N2
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Development IPA : H2O = 3 : 1 1 min45 s at 6◦C
Quench reaction with H2O
Blow Dry with N2

Evaporation

Plassys Bestek MEB 550S Pump Overnight
Loadlock: 1.0e−7 mbar
Chamber: 2.2e−8 mbar

Descum
Vbeam: 200 V
Vacc: 50 V
Ibeam: 5 mA
Ar flow: 10 sccm
O2 flow: 5 sccm
Sample: Rotating
Duration: 3 min
Gattering
Crucible: Ti
Rate: 0.2 nms−1

Duration: 2 min
First layer
Crucible: Al
Rate: 1 nms−1

Angle: 25◦

Thickness: 25 nm
Oxidation
Pressure: 5 mbar
Time: 5.5 min
Second layer
Crucible: Al
Rate: 1 nms−1

Angle: −25 ◦

Thickness: 50 nm
Capping Layer
Pressure: 30 mbar
Time: 5 min

Laser Dicing Coherent 430
Laser Parameters
Peak Power: 340 W
Pulse Width: 0.2 ms
Burst Frequency: 600 Hz
Average Power: 40 W
Pulse Energy: 68 mJ

Structure facing down
Bridge size: 300µm

Liftoff Acetone at 40◦C for 4 + hour
Ultrasonic Cleaning Power: 40%

Frequency: 135 kHz
Acetone at 40◦C for 10 min
IPA at 40◦C for 5 min

Table D.1: Aluminium Qubit Fabrication Process
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D.2 Tantalum Pads Fabrication

Step Equipment/Chemical Description
Ultrasonic Solvent Cleaning Power: 40%

Frequency: 135 kHz
Acetone at 40◦C for 10 min
IPA at 40◦C for 5 min

Resist Static Spinning Ma-N 2403 1000 rpm for 45 s
Baked at 90◦C for 1 min
Thickness of 590 nm

e-beam Lithography Raith eLINE Plus 30kV
Aperture: 120µm
Step Size: 40 nm
Writefield size: 1000µm
Zoom factor: ×1.01

Base dose = 80µCcm−2

Dose Factor: 3

Development Ma − D525 1 min30 s
Quench reaction with H2O
Blow Dry with N2

Post Bake Baked at 100◦C for 5 min

Etching
Sentech ICP SI 500 Chamber Preconditioning

Pressure: 2 Pa
O2 flow: 50 sccm
RF Power: 5 W
ICP Power: 400 W
Time: 10 min

Soft O2 Cleaning
Pressure: 10 Pa
O2 flow: 60 sccm
RF Power: 40 W
ICP Power: 0 W
Duration: 30 s
Tantalum Etching
Pressure: 1 Pa
O2 flow: 2 sccm
CF4 flow: 20 sccm
RF Power: 50 W
ICP Power: 50 W
Duration: 5 min + 30 s over-etching

Table D.2: Tantalum Qubit Pads Fabrication Process
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D.3 Purcell Filter

Here, I present the in-house fabrication recipe for the Purcell Filter that was developed by
Stefan Oleschko.

Step Equipment/Chemical Description

Backside Gold sputtering
AJAA ATC1800-HY

Argon Ion Milling
Pressure: 10 sccm
Vbeam : 400 V
Vacc : 80 V
Ibeam : 400 W
Sample : Rotation 10 rpm
Time: 3 min
First Layer
Crucible: Ti
Rate: 0.1 nms−1

Thickness: 5 nm
Second Layer
Crucible: Au
Rate: 0.1 nms−1

Thickness: 5 nm

Resist Static Spinning
Adhesion Promoter,
AR3000-80

6000 rpm for 60 s
Baked at 180◦C for 2 min

AR-P-5350 4000 rpm for 60 s
Baked at 105◦C for 4min

AR-P-3740 4000 rpm for 60 s
Baked at 100◦C for 4 min

Optical Lithography Microtech 405nm Gallium Nitride laser
Optical Lens: 3
D-step: 4
Gain: 9.2
Filter: 30%
Dose: 111 mJcm−2

Development Ar − 300 − 35 : H2O = 4 : 1 1 min
Quench reaction with H2O
Blow Dry with N2

Ar − 300 − 47 : H2O = 2 : 3 1 min
Quench reaction with H2O
Blow Dry with N2

Evaporation

Plassys Bestek MEB 550S Pump
Time: 3 hour
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Descum
Vbeam: 200 V
Vacc: 50 V
Ibeam: 5 mA
Ar flow: 10 sccm
O2 flow: 5 sccm
Sample: Rotating
Duration: 3 min
Gattering
Crucible: Ti
Rate: 0.2 nms−1

Duration: 2 min
Aluminium layer
Crucible: Al
Rate: 1 nms−1

Thickness: 50 nm
Capping Layer
Pressure: 30 mbar
Time: 5 min

Liftoff Acetone at 40◦C
Ultrasonic Cleaning Power: 40%

Frequency: 135 kHz
Acetone at 40◦C for 10 min
IPA at 40◦C for 5 min

Resist Static Spinning AZ-1505 4000 rpm for 100 s
Baked at 100◦C for 50 s

Optical Lithography Microtech 405nm Gallium Nitride laser
Optical Lens: 3
D-step: 4
Gain: 25
Filter: 10%
Dose: 100 mJcm−2

Development AZdeveloper : H2O = 4 : 1 1 min
Quench reaction with H2O
Blow Dry with N2

Contact Pads
Gold Evaporation

AJAA ATC1800-HY
Argon Ion Milling Pressure: 10 sccm
Vbeam : 400 V
Vacc : 80 V
Ibeam : 400 W
Sample : Rotation 10 rpm
Time: 3 min
First Layer
Crucible: Ti
Rate: 0.1 nms−1

Thickness: 5 nm
Second Layer
Crucible: Au
Rate: 0.1 nms−1

Thickness: 5 nm
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Liftoff Acetone at 40◦C
Ultrasonic Cleaning Power: 40%

Frequency: 135 kHz
Acetone at 40◦C for 10 min
IPA at 40◦C for 5 min

Table D.3: Purcell Filter Fabrication Process

D.4 Aluminium cavities

Step Description
Ultrasonic Solvent Cleaning Power: 40%

Frequency: 135 kHz
Acetone at 40◦C for 10 min
IPA at 40◦C for 5 min

Aluminium Etching Duration: 2 hour
Temperature: 50◦C Rate: 10 nms−1

H2O Rinse Multiple Rinsing cycles
Blow Dry with N2

Aluminium Etching Duration: 2 hour
Temperature: 50◦C Rate: 10 nms−1

H2O Rinse Multiple Rinsing cycles
Blow Dry with N2

Table D.4: Aluminium Cavity Etching Process

D.5 Niobium cavities

Step Description
Ultrasonic Solvent Cleaning Power: 40%

Frequency: 135 kHz
Acetone at 40◦C for 10 min
IPA at 40◦C for 5 min

Niobium Etching Duration: 1 hour
Temperature: 6◦C
Chemicals: HF : HNO3 : H3PO4
Ratio: 1:1:1

Niobium Polishing Duration: 1 hour
Temperature: 6◦C
Chemicals: HF : HNO3 : H3PO4
Ratio: 1:1:2

H2O Rinse Multiple Rinsing cycles
Blow Dry with N2

Table D.5: Niobium Cavity Etching Process



APPENDIX E
Cryostat

The cryogenic fridge operates with two cooling methods. A good overview of cryogenic
considerations can be found in [193].

The first cooling system is a pulse tube refrigerator which compresses helium that undergoes
adiabatic expansion at the cold plate to provide the cooling. This allows the fridge to reach
a temperature of 4 K.

The second cooling system is a 3He/4He mixture that undergoes a phase transition at the
base plate. This mixture separates between a fermi liquid 3He and a superfluid 4He. 3He
going through a phase transition between concentrated and dilute phases provides cooling
power. The mixture concentration needs to be chosen so that the phase boundary is in the
mixing chamber and below the still plate.

The operation cryostat has many finer details such as pre-cooling of the mixture so as not
to bring too high a thermal load to the base plate or the need for liquid N2 cold traps to
capture any contaminants to avoid plugging the lines.

In the past decades, cryogenic systems in research labs have been automated to a large
degree such that experimentalists can almost just push a full cooldown button. This allows
for more time available to spend on experiments and other instrument problems. However,
with many experiments that try to push the instrumental limits, one needs to understand
what the cryostat can do. For example, the mechanical decoupling of the pulse tube to
reduce vibrations in the cryostat.

E.1 Heat Load

Adding cables and sending signals to the experiments will result in a heat load on the
different cryostat plates. This is the thermal conduction between plates through the cables
and the dissipation of the signal and room temperature noise in attenuators at each plate.
We can account for the thermal conduction from the cables with

Pthermal conductance = σA∆K
L

. (E.1)

where σ is the thermal conductivity of the wire used. A and L are the cross-sectional area
and length of the wire respectively. ∆K is the temperature difference across the wire. The
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thermal conductivity for the different wires used, taking into account the cross-sectional
area of the SMA cable is, σCuNASMA = 2.18e−4 WcmK−1, σSSASMA = 4.3e−5 WcmK−1 1.

Due to the lower cooling powers of the bottom plates of the cryostat, we cannot add all
the attenuators to the base plate. One must take care of the heat load on each plate. In
addition to the power dissipated from the incoming drive signal, using Eq. (3.27), we can
calculate the total power dissipated from Johnson-Nyquist noise

PThermal noise dissipation =
∫ ∞

0

V 2
RMS
R

df =
∫ ∞

0
4hfnth(f, T )df

= 4kBT

h
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∫ ∞

0
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e
hf

kBT − 1
d

(
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)
= 4(kBT )2

h

(
π2
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)

= π

3ℏk
2
BT

2

(E.2)

which is the one-dimensional analogue of the Stefan Boltzmann law. In electronic circuits,
the classical limit hf ≪ kBT approximates hfnth(f, T ) ≈ kBT . This recovers the typical
condition that the total Johnson-Noise is kBT

2. The blackbody radiation from hotter
plates irradiating the colder plates is also enough to heat the lower plates which prevents
the base plate from reaching colder temperatures. Thus, line-of-sight ports must be closed
to reduce the absorption of thermal radiation.

In the following simplistic scenario, an input drive power 1µW is sent into the cryostat
with a reflection configuration. This means that the thermal photons from the input and
output lines add up. The power level is derived from the usual case where most of the
power sent to the fridge is the readout pulse which is around ≈ 1 mW with an effective duty
cycle of ≈ 0.1%. A table of the wiring scheme and the resulting cavity photons and heat
load per line on each plate is shown in table E.1. The main contribution is the thermal
conduction through each line.

Plate Cooling Power Thermal Conduction Input Line (4 K, 100 mK, Base)
SS CuNi 20-10-20 20-10-30/40 20-0-10

50 K 40 W 0.7 mW 4 mW - - -
4 K 1 W 0.1 mW 0.8 mW 1.5µW 1.5µW 1.5µW
1 K 10 mW 8.6µW - - - -

100 mK 10µW 2.6µW - 13.9 nW 13.9 nW -
20 mK 1µW 0.2µW - 1.5 nW 1.5 nW 15 nW

Table E.1: Table showing the heat load and attenuation in the cryostat.
The second column is the nominal cooling power of the cryostat. The third col-
umn shows the heat load due to thermal conduction through the lines. Finally,
the other columns show the heat load due to the dissipation of a signal plus the
thermal dissipation. For these calculations, the input power is 1µW.

1These values are measured values at 4 K obtained from the supplier Coax Co for the SC-219/50-SCN-CN
and SC-219/50-SS-SS models. We do not consider the superconducting NbTi (SC-219/50-NbTi-NbTi).

2In some cases, the factor 4 in SV V (f, T ) is dropped as the maximum power that a resistor can transmit
is when the resistor is impedance matched with another Thevenin equivalent resistor. This means only
half the voltage is dropped across the first resistor and the maximum power that one can measure is
kBT .



APPENDIX F
Diagnostic Toolbox

In experiments, many problems can arise. Thus to be able to properly diagnose different
types of possible problems (instrument, qubit system, experimental setup), it is useful
to know more techniques to figure out the exact cause of the measurement problems 1.
Additional examples of common problems in measurements can be found in [103].

F.1 Amplified Phase Error (APE) Calibration

Small errors in pulses can be difficult to detect. By repeating the pulse several times, small
errors can be amplified and can be detected. Such a measurement can tune up the qubit
pulse amplitude more accurately as compared to a simple Rabi experiment.

0.0 0.2 0.4 0.6 0.8 1.0
Pulse Amplitude (a.u.)
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Figure F.1: Measurement data of an APE calibration experiment. Mul-
tiples of the same pulse are repeated for different pulse amplitudes (coloured
lines 1 to 5). Such a measurement can tune up the qubit pulse amplitude more
accurately. In this case, the oscillation period does not increase linearly with
the number of pulses played. This signals a problem with the qubit pulses such
as leakage of some signal or a shortening of the played pulses.

1In the lab, I call these obvious problems. Problems that become obvious once the solution is known.
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F.2 Phase Ramsey

A phase Ramsey is similar to a qubit T2 Ramsey experiment. Two π
2 pulses and the phase

of the second pulse is swept. Such a measurement can reveal errors in the implementation
phase or frequency of the pulses used. The errors can arise from hardware or wiring
issues.
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Figure F.2: Measurement data of a phase Ramsey experiment. Two π
2

pulses and the phase of second pulse is swept. Such a measurement can reveal
errors in the phase or frequency of the pulse used.

A fixed time delay can be added between the pulses. The amplitude of the oscillations will
represent the decay of coherence of the qubit.

F.3 High Q Cavity Lifetime

Additional measurements of the lifetime of the high Q cavity can be obtained. Forming a
Fock state in the cavity and measure its decay via a cross-Kerr interaction to a readout
resonator or a generalised Husimi Q measurement with a qubit.
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Another quick way to measure the high Q cavity lifetime can be found in [92]. In this
measurement, a square pulse with some duty cycle is sent to the high Q cavity. The
reflected signal is analysed with time (in this case a spectrum analyser set to zero span and
on resonance with the drive tone). Based on the ring up and down of the reflected signal,
we can fit the reflected power and obtain the coupling quality factors and the lifetime of
the cavity.

An example of a trace is shown in Fig. F.3.
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Figure F.3: High Q cavity lifetime measurement via the measurement of
a reflected signal of the cavity. A square pulse with some duty cycle is sent
to the high Q cavity. The reflected signal can be fitted to obtain the coupling
quality factors and decay lifetime [92].

F.4 Readout Errors

To infer the state of the qubit, we need to probe the resonator. Thus, we need to measure
the amplitude and phase response of the probe signal. The readout circuit can be done in
a reflection or transmission configuration.

Due to instrument imperfections, the digitised signal is often at some arbitrary angle
and has some DC offset in I or Q Fig. F.4A. If we do not account for these imperfections
properly, they will result in measurement artefacts in the measurement result. For example
in Fig. F.4C, shows the case where the signal is not properly rotated. The figure shows a
Rabi measurement where the qubit flops between the |g⟩ and |e⟩ state. However, looking
at the Q or absolute of the signal, we see a reduced contrast or worse, the qubit having
small oscillations near the ground state. This occurs due to the separation of the readout
signal for the qubit in |g⟩ and |e⟩, being close to a readout value of 0.
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Figure F.4: Measurement artefacts due to improper readout calibration.
(A and B) Phase space plots of the probe signal for different initial states of the
qubit. (C and D) calculated Rabi measurement values for the readout case A
and B respectively. In an experiment, depending on the qubit population, the
readout value can be anywhere between the two distributions of the qubit in
the ground and excited state. In A, the data that is not properly rotated to one
of the quadratures. This results in reduced readout contrast in the quadratures
and measurement artefacts in the absolute of the signal shown in C. In B and
D, the probe signal is properly treated such that all the information is along
the I quadrature. Thus, the Rabi measurement has maximum readout contrast
and we can just look at the I quadrature.

By properly rotating the signal to get contrast only in I or Q, we can maximise the readout
contrast and avoid any readout artefacts.

Other readout errors can also occur due to improper calibration of the readout signal.
Unaccounted cross-Kerr terms can result in a shift in the frequency of the readout signal.
This will affect the amplitude and phase of the probe signal when the other elements
are populated. Thus, it is crucial to account for such differences by doing background
measurements. For example, a comparison between two protocols where the qubit is excited
or left in the ground state.
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F.5 Other Methods

For other measurement artefacts, it is often difficult to pinpoint the exact cause of the
underlying problem. In this section, I write a few actions that can be taken to help figure
out the source of errors.

The first check is usually the operating conditions of instruments, amplifiers, and switches.
This includes loose cables or power supplies that may have a broken cable due to improper
soldering.

Pulse Tube Off. The operation of the cryostat requires the pulse tube to be on. However,
the cryostat can still operate without the pulse tube for 15 min. The pulse tube causes
mechanical vibrations in the fridge. If the qubit chip is loosely clamped or pushed against a
surface, these pulse tube vibrations can adversely impact the qubit coherence and lifetime.
A quick check would be to turn off the pulse tube and do fast measurements of qubit T1, T ∗

2
and TE

2 and only requires 45 min for the cryostat to cool back down to normal operating
range.

Retightening of cables and clamps. If clamps are loose, qubit position can change re-
sulting in a different coupling or greater losses. In our experience, after 2 to 3 cooldowns,
the clamps and SMA cables should be checked for tightness.
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Changing Frame of Reference. Instrument errors can be checked by changing the frame
of reference used. For example, the qubit state could be read out by probing the readout
resonator at fres,|g⟩ or fres,|e⟩. The measurement result should be the opposite (that is,
obtaining the measurement results P|g⟩ or P|e⟩ = 1 − P|g⟩).

Similarly, high Q cavity displacement pulses can be changed to on resonant with the cavity
for the qubit in the ground state fcav or the excited state fcav −χqc/2π. Evolutions of the
cavity qubit system in phase space will reflect the change in frequency.

This test is illustrated in the plots in Fig. F.5. When the qubit is in the ground state, the
cavity will not evolve for the drive fcav. For this drive frequency, the qubit being in the
excited state will mean the cavity frequency is detuned below by the drive tone by χqc/2π.
This results in a counter-clockwise evolution at rate χqc.
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qubit state

Figure F.5: Measurement results from different cavity drive frequencies
and initial qubit state. In these measurements, the qubit is initialised in the
ground (A and C) or excited (B and D) state. Then, the cavity is displaced
with D̂(α = 2). Finally, the cavity-qubit system is allowed to evolve for a time
of T̂

(
π

4χqc

)
= 80 ns. This experiment is done at two cavity drive frequencies;

on resonance with the qubit in the ground state, fcav (A and B) and similar
for the qubit in the excited state, fcav − χqc/2π (C and D).

These checks allow for testing of the instruments in frequency up and down conversion and
digitisation of the signals.
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Thermal Cycling and Temperature Ramps of Cryostat. We can also consider cycling
the cryostat above TC and back down to the base temperature. This causes the redis-
tribution of frequency of lossy two-level systems (TLS) or changes in qubit frequencies.
The new distribution of frequencies might lead to a smaller coupling to lossy TLS. The
thermal cycling to 10 K and back to base will only take a night to cool back down to base
temperature of the cryostat. This is shorter in comparison to the 50 − 60 hours needed for
a full cooldown from room temperature.

Temperature ramps to 10 K can also be considered. The behaviour of different resonators
with temperature depends on the distribution of TLS or the non-linear inductance present
in the resonators. This will allow for the identification of the different loss models of the
resonators [92] or different resonators in the experiment.

An example of results from a thermal sweep of cavity spectroscopy is shown in Fig. F.6.
According to the Mattis-Bardeen theory [194], an increasing temperature leads to Cooper
pair breaking and the formation of quasiparticles, which results in a change in kinetic
inductance and a decrease in the quality factor of the cavity [195].
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Figure F.6: Fiting results from cavity spectroscopy done across a sweep
of base plate temperature. (A) The internal quality factor with the base
plate temperature is plotted. At temperatures below 3 K, the internal quality
factor has risen above the ratio of Qint

Qc
> 100. This results in the circle fit routine

being inaccurate and cannot properly extract the internal quality factors as the
cavity is too overcoupled. At higher temperatures, an increase in quasiparticle
population in the superconductor will result in higher loss and thus a lower
internal quality factor. In this regime, we can properly determine the internal
quality factor. (B) In the same thermal sweep, the frequency of the cavity will
be shifted down due to a higher kinetic inductance as described by the Mattis
Barden theory [194].
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APPENDIX G
Kerr Cat State

The Kerr cat state can be formed by displacing the cavity state and allowing the system
to evolve

X̂(π) : |0, e⟩ (G.1)
D̂(α) : |α, e⟩ (G.2)
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We can spilt the final state into two parts with ein2 π
2 |n⟩ = |neven⟩ + i |nodd⟩. Writing
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where we have used neven/odd : (αeiθ)n = 1
2

[
(αeiθ)n ± (−αeiθ)n

]
. The final state is thus a

zero parity cat at an angle of θ.

For a system where we have in-situ control of the strength of Kerr terms K + χ′, one can
envision turning on and off these interactions to do a gate.

The Kerr cat state implements a similar operator to the qcmap protocol Eq. (5.9) with a
ϕ = π/2 phase.
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