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Abstract

This dissertation focuses on Superconducting circuits, a promising candidate for

building a scalable quantum computer. An important architecture employed in the field

is called Circuit Quantum Electrodynamics (circuit QED), where superconducting qubits

are combined with high quality microwave cavities to study the interaction between

artificial atoms and single microwave photons. The work on circuit QED performed in

this thesis consist of two topics divided into three main projects:

1) Proposing an spin - spin interacting system using 3D transmon qubits in a rectangular

cavity.

2) Characterizing a mesoscopic Josephson junction array resonator.

A 3D transmon qubit has a naturally occurring dipole moment. In project 1, from nu-

merical simulations I investigate the interaction between two superconducting transmon

qubits in a rectangular cavity. From this simulations, and along with theory collabora-

tors, a novel platform for quantum many body simulations is proposed.

Josephson junction arrays have been investigated extensively since the 1980’s, and have

proven to be a promising highly non-linear building block for superconducting quan-

tum circuits, ranging from qubits to parametric amplifiers, converters, quantum hybrid

systems, high characteristic impedance circuits, etc. In project 2, a device based on

1000 JJA’s has been characterized. As the device is in a so far unexplored regime where

the anharmonicity is on the order of the linewidth, the bistability appears for a pump

strength of only a few photons. The random switching between the two stable solutions

around the bi-stable region is investigated by performing continuous time measurement.

The interplay between the non-linearity of the Josephson junction array and the cou-

pling, provides a new resource for quantum non-demolition measurements. In project

3, an array of 18 Josephson junctions coupled to a superconducting qubit has been

engineered, fabricated and characterized. The modified version named JJAR.2.0 is

designed to maximize measurements speed, achieve single-shot QND readout of qubit

state.
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Chapter 1

Introduction

Quantum computation promises to solve certain problems more efficiently compared

to a classical computer [1]. In quantum information processing, the classical bit with

possible states 0 and 1 is replaced by the quantum bit or qubit that can assume any

superposition state |ψ〉 = α |g〉 + β |e〉, with qubit eigenstates |g〉 and |e〉. Due to the

fundamental principle of quantum entanglement, the quantum state of N interacting

qubits must be described by a common state in their joint Hilbert space of 2N dimensions

and in general cannot be decomposed into a product state of N single qubit states. When

solving a quantum problem on a classical hardware, the computer needs to keep track

of all probability amplitudes for any possible configuration of the system at any time,

leading to an exponential increase in the computational power and memory requirement.

A prominent example for an exponential speed-up of quantum computers is prime fac-

torization based on Shor’s algorithm [2]. This is known as a hard problem for classical

computers. Several proof-of-principle implementations of a compiled version of Shor’s

algorithm with a pre-defined small number have been demonstrated in nuclear magnetic

resonance [3], with cold atoms [4], on a Photonic chip [5], with trapped ions [6], and

with superconducting circuits [7].

9



Introduction 10

However, the implementation of a universal quantum computer capable of performing

useful calculations is challenging since it requires many error-corrected logical qubits

that involves overhead in number of physical qubits. To obtain a single logical qubit of

reasonable error rate, on the order of 103 to 104 physical qubits of present coherence

rates are necessary. For example, factorizing a 15 bit number using Shor’s algorithm,

a quantum computer would require up to ≈ 107 physical qubits, dependent on the

tolerated error rate and the time of the computation [8].

Near term applications of quantum computation is the simulation of quantum chem-

istry [9], optimization problems by quantum annealing [10], uncertainty and constrained

optimization to financial problems [11]. The most anticipated application is however

the simulation of quantum chemistry [12]. As an example, protein complexes such as

ferredoxin Fe2S2 or the Fenna-Matthews-Olson (FMO) complex are known to mediate

energy transfer in many metabolic reactions but are intractable on a classical computer.

Based on the FMO complex, the efficiency of light harvesting in photosynthesis has

been found to notable exceed the expectation based on classical models, such that a

quantum description is likely to be required in order to understand the mechanism [13].

Few examples of analogue quantum simulation are the study of fermionic transport [14],

magnetism [15] and a quantum phase transition in the Bose-Hubbard model with cold

atoms [16]. Using an array of semiconductor quantum dots a simulation of the Fermi-

Hubbard model was performed and the simulation of a quantum magnet [17] and Dirac

equation was demonstrated using trapped ions [18]. Digital simulation schemes with

superconducting devices were demonstrated for spin systems [19].

From the experimental point of view, there are two approaches for quantum simulations:

an analog quantum simulator and a digital quantum simulator. The principle of design-

ing an analog quantum simulator is to engineer a quantum system having a controllable

Hamiltonian Hsim, which can replicate a potentially hard-to-study Hamiltonian Hsys,

provided there exists a mapping between the Hsys and Hsim and vice versa.

A digital quantum simulator on the other hand is universal, and would have the capacity

to solve a wide range of Hamiltonian’s. In digital quantum simulation, one can break

the Hamiltonian into gates that are applied in a time-dependent manner. In principle,

any model that can be mapped onto a spin-type Hamiltonian can be encoded in a digital
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quantum simulator. Such a system might be experimentally challenging compared to

analogue quantum simulators, in the long run it would be advantageous [19].

This thesis focuses on Superconducting circuits, one of the promising candidates for

building a scalable quantum computer. The field of superconducting circuits has started

in the 1980’s with the goal of becoming a competitor in the race to build a universal

quantum computer. The key element in superconducting quantum circuits is a Josephson

junction. A Josephson junction [20] is a non-linear, dissipation-less element that connects

two superconducting islands by either insulating barrier or a metallic barrier. The initial

experiment that opened the possibility to use the macroscopic quantum states in a

Josephson-junction based superconducting circuits was the discovery of the quantum

tunneling effect [21].

Superconducting quantum systems feature individual control, readout and frequency

tunability and their properties are rather straightforward to tailor by circuit design [22].

During the past two decades, superconducting qubits experienced a rapid improvement

of their coherence properties allowing for demonstration of several major milestones in

the pursuit of scalable quantum computation [23]. Such as the control and entanglement

of multiple qubits [24], quantum supremacy [25], implementation of a quantum error

correction scheme [26], the demonstration of quantum algorithms [27] and encoding

quantum information in complex cavity states [28].

In this context, I present the numerical simulations to realize a dipolar analog quantum

simulator using an array of 3D transmon superconducting qubits [29]. 3D transmon

qubits have a naturally occurring dipolar interaction [30]. One can utilize this interac-

tions by realizing an interacting spin system which opens the way toward the realization

of a broad class of tunable spin models in both two- and one-dimensional geometries [31].

One way of classifying superconducting quantum circuits is based on the non-linearity

of the system and it’s quality factor (Q) as shown in the figure 1.1 [32]. For small an-

harmonicity and small Q’s, devices such as amplifiers(JBA [33], JPC [34], DJJPA [35],

JPA [36]), circulators [37] etc. have been already in use and rigorous research is in-

place to have better performance. The superconducting quantum bits have higher an-

harmonicity and higher Q’s [22]. In the very little explored intermediate regime, the

anharmonicity of devices is approximately equal to the quality factor Q’s.
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Amplifiers, circulators, etc..
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Figure 1.1: Different regimes of superconducting circuits as a function of the relative an-
harmonicity, and the quality factor. Here αK is the anharmonicity and ∆ corresponds to the
detuning frequency. Figure taken directly from [32].

The experimental part presented in this thesis focuses particularly in the interme-

diate regime, engineering a novel device using Josephson junctions array for QND-

measurement on a qubit (a key essential for building an analogue quantum simulator).

Josephson junctions arrays have been widely used in practical applications, such as, the

National bureau of standards uses series arrays of up to 1500 Josephson junctions to

define the U.S standard volt [38]. JJA’s have also been considered in applications as

oscillators [39], mixers, JPA’s [40] and an ideal candidate for building quantum hybrid

systems [41, 42]. Since the characteristic impedance of a JJAR is greater than the re-

sistance quantum (RQ = h/(2e)2 ≈ 6.5 kΩ), it is an ideal candidate to implement a so

called super-inductance [43].

The initial device characterized in this thesis consists of 1000 Josephson junctions in

series. From the initial characterization measurements mentioned in chapter 7 of the

thesis, I have acquired knowledge to engineer and characterized a JJAR device for a

QND-readout measurement. The device is engineered in the intermediate regime shown

in the figure 1.1, having an anharmonicity approximately equal to the linewidth for a

particular resonator mode. In this regime bi-stability appears at about few photon’s [44].
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Non-linear bistable systems for QND-readout scheme have already been demonstrated in

the past [33, 45, 46, 47]. However, these devices have some major drawbacks such as: un-

wanted qubit state transitions during readout [47, 48] and as the resonator is filled with

photons to achieve bi-stable hysteresis, it leads to excessive back-action on the qubit [49].

In our approach the modified design JJAR.2.0, utilizes the lowest two resonant modes

of the JJAR for QND-readout on a qubit. The first mode of the device is dispersively

coupled to the qubit [50]. Due to the cross-kerr interaction [51, 52, 44], the first mode

is coupled to the second mode of the JJAR.2.0 while the second mode of the array is

decoupled from the qubit. The second mode of the JJAR.2.0 is engineered to have an

anharmonicity equal to the linewidth [44]. The pump tone on mode one is used to enable

qubit readout via mode two. The pump is tuned on-resonant with the mode one when

the qubit is in the ground state. The readout tone is chosen on mode two at a fixed

frequency, when the qubit is in ground state low signal transmission is measured on

mode two. If the qubit is in the excited state the pump on mode one is off-resonant and

mode two is shifted by a few MHz higher in frequency, hence high signal transmission

is measured on mode two.

1.1 Outline of the Thesis

This thesis consists of 8 chapters. The story starts with chapter 2, where I will discuss the

basic concepts of ’High-Q’ microwave resonators and rectangular waveguides. Followed

by the theory of Josephson junction arrays. Most of the work during the first year of my

PhD consisted of setting up the Kirchmair lab, designing and building the microwave

setup, which is the topic of chapter 3. In chapter 4, a brief overview on the fabrication

of JJA’s coupled to a qubit has been discussed, which is part of my work during the

last year of my PhD life. A significant part of my work was to engineer the qubit-

cavity and qubit-qubit interaction, the subject matter of chapter 5, which is a detail

review on qubit-qubit interaction. From numerical simulations, a novel platform for

quantum many-body simulations is proposed [29]. High − Q resonators are important

in reading out the state of a qubit. In chapter 6, a detail experimental characterization

of high-Q stripline resonators is discussed [53]. In chapter 7, a Josephson junction array

resonator is characterized, where the device shows bi-stability at very few photons.
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By performing continuous time measurements the switching events between two stable

solutions are measured for different drive and readout strengths. Finally, in chapter

8, I present the design and characterization of a novel setup using Josephson junction

array resonators, which will be a possible candidate for high-fidelity qubit readout in

rectangular waveguides.



Chapter 2

Theory of Circuit QED and

Josephson Junction Array

Resonators

I start the discussion with the basics of microwave resonators, waveguides which is fol-

lowed by the theory of Josephson junction array resonators. This theory is used to

characterize the device parameters which are discussed in a later chapters of this thesis.

An example of a driven mesoscopic nonlinear resonator is a duffing oscillator [54, 55],

which has two stable solutions for a given set of parameters. In the last section of this

chapter I explain Kramer’s theory to understand the dynamics of stochastic switching

between two stable solutions in a driven nonlinear mesoscopic Josephson junction array

resonator.

2.1 Microwave resonators and waveguides

One of the major challenges in the superconducting quantum circuits community is to

protect the qubit from external noise and to perform efficient readout. One approach

is placing the qubit in a three dimensional rectangular waveguide or cavity. Thus the

superconducting qubit is shielded inside the cavity environment[30].

15
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In this section, I will discuss microwave resonators, and focus mainly on rectangular

cavities and the rectangular waveguide used in our experiments discussed in the following

chapters of this thesis.

2.1.1 Rectangular cavities

A three-dimensional rectangular cavity fig. 2.1 has an inner volume V = abd. It forms a

rectangular microwave resonator, where a, b and d are the dimensions of the walls. The

cavity inner wall width a and the width b determines the fundamental mode frequency

TE101 of the resonator given by the formula (2.1) [56]. Microwave cavities can be

modeled by LC- circuits with resonance frequency in the microwave regime [56].

fmnl =
Cl
2

√(
m

a

)2

+

(
n

b

)2

+

(
l

d

)2

(2.1)

a

d
b/2

Figure 2.1: Two half’s of a rectangular copper cavity, a, b and d are the width, depth and the
height of the cavity respectively.

Here Cl is the speed of the light in vacuum, and the integers m, n, l are the anti-nodes

of the standing electric field (2.2) inside the cavity along the x, y and z axis respectively.

One of inner cavity dimension is smaller compared to the other dimensions, which leads

to the field becoming constant along the third dimension. A fundamental mode has

one of the integer (l) set to zero, and the other two integers (m and n) are set to one.

In our experiments, the resonator is designed to have the fundamental mode frequency

ωr = 2πfr in the range of a few GHz and the higher modes are far detuned from the

fundamental mode resonance frequency. To achieve a well defined frequency spacing
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between the modes of the cavity, similar dimensions are used along the two walls of

the cavity, (a = 25 mm, b = 25 mm, d = 10 mm). These will help to avoid unwanted

interaction between the qubits and higher resonant modes of the cavity.

a) b)

d)c)

Figure 2.2: Electric field intensity inside the cavity. a) First mode of the cavity having a
maximum electric component at the center TE101 (in our case the fundamental frequency of
cavity is ω1/2π = 8.504 GHz). b), c) and d) Electric field intensity for the second,third and fourth
mode of the cavity (TE201, ω2/2π = 13.51 GHz, TE021, ω3/2π = 13.54 GHz, TE110, ω4/2π =
16.1 GHz).

The electric field inside the rectangular cavity shows a cosine behaviour as shown in

figure 2.2a with maximum at the centre of the resonator for the fundamental mode. The

field inside the cavity induces the currents in the cavity walls. These currents oscillate

at the same frequency as the microwave field, having the field inside cavity alive.

2.1.1.1 Dissipation and participation ratio

The quality factor of a resonator (Q) sets the ultimate limit for the resonators perfor-

mance as a quantum memory or bus. The quality factor is defined as the ratio of the

amount of energy stored in the system and the amount of energy dissipated. It is given

by formula (2.2)

Q = ω
Total energy stored

Total energy dissipated
= ωT1 (2.2)
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Here T1 is the energy decay and is inversely proportional to the energy decay rate

(T1 = 1/κ). The source of dissipation in a microwave resonators can be due to many

sources, such as dielectric loss, conductor loss and seam loss [57]. One way of quantifying

the losses in any cavities is by using participation ratios [58]. These ratios can be useful

in understanding the limitations in performance. The participation ratio pn is defined

as

pn =
Amount of energy sensitive to loss mechanism

total energy stored
(2.3)

In most of our experiments, the cavities are made of ultra pure aluminium and typically

have a quality factor of 106. Cavities made out of oxygen free copper typically have a

quality factor of 104. Rectangular cavities are engineered having at least one seam. A

solid block of metal is cut into two half’s and a half cavity is milled into each of them

as shown in figure 2.1. Both milled blocks are then put together with indium to form

the actual microwave cavity. However, the seam causes dissipation thus decreasing the

cavity’s quality factor [57]. A solution to avoid the seam losses is by using Λ/4 coaxial

resonators [59].

2.1.2 Rectangular waveguides

The main objective of the waveguide is to guide electromagnetic energy. Waveguides

are transmission lines commonly used at microwave frequencies. In our experiments, a

waveguide can be described as a hollow tube with perfect electrical conducting walls

usually filled with vacuum (εr = 1) shown in figure 2.3. A rectangular waveguide

supports only TE and TM modes but not TEM modes.

xa

z

y

b

Figure 2.3: Geometry of a rectangular waveguide. The hollow region can be filled typically
with a vacuum.
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Let us now consider a rectangular waveguide with dimensions 0 < x < a, 0 < y < b and

a > b. There are two type of waves that can propagate, transverse electric waves (TE -

waves) and transverse magnetic waves (TM - waves). It is assumed that the waveguide

walls are perfect electrical conductor (PEC), such that no losses are present and the

propagation constant becomes γ = β. Where β is the propagation constant. It is also

assumed that the wave propagates along the z- coordinates which is infinitely long and

the electric ( ~E) and magnetic fields ( ~H) are harmonic in time.

~E(x, y, z, t) = ~E(x, y, z, t)eiωt (2.4)

and

~H(x, y, z, t) = ~H(x, y, z, t)eiωt (2.5)

Since the field along the x, y plane is independent from the z- position, the electric field

can be split in transverse, ~e(x, y) and longitudinal , ~ez(x, y), components [53]. Thus

the field is not depend on the z position. The electric and magnetic fields inside the

waveguide can be written as

~E(x, y, z) = [~e(x, y) + ẑez(x, y)]e−iβz (2.6)

~H(x, y, z) = [~h(x, y) + ẑhz(x, y)]e−iβz (2.7)

Assuming the waveguide is source free, and using Maxwell’s equations we can re-write

[56].

OX ~E = −iωµ ~H (2.8)

OX ~H = iωε ~E (2.9)

Inserting the e−iβz dependence z, the following relations are obtained

Ex =
−i
k2
c

(
β
∂Ez
∂x

+ ωµ
∂Hz

∂y

)
(2.10)

Hx =
i

k2
c

(
ωε
∂Ez
∂y
− β∂Hz

∂x

)
(2.11)

Ey =
i

k2
c

(
−β∂Ez

∂y
+ ωµ

∂Hz

∂x

)
(2.12)

Hy =
−i
k2
c

(
β
∂Hz

∂y
+ ωε

∂Ez
∂x

)
, (2.13)
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Where kc =
√(

mπ
2

)2
+
(
nπ
2

)2
= k2 − β2 is defined as the cutoff wave number, and

k = ω
√
µε is the wave number of material filling the waveguide. For transverse electric

waves the electric fields along the z- axis is zero (Ez = 0). Yhe magnetic field along

the z- axis is zero (Hz = 0) for transverse magnetic waves. Both waves have to satisfy

the Maxwell’s equations and the boundary conditions. The boundary conditions are the

tangential components of the electric field and the normal derivative of the tangential

components of the magnetic field are zero at the boundaries.

2.1.2.1 TE modes

In the case of TE modes, Ez = 0 while Hz 6= 0. Equation 2.11 and the equivalent

expression for the y component have to be solved, to obtain expressions for the fields. [56]

O2Hz + k2Hz = 0 (2.14)

∂Hz

∂x
(0, y, z) =

∂Hz

∂x
(a, y, z)

∂Hz

∂y
(x, a, z) =

∂Hz

∂y
(x, b, z) = 0

There are infinitely many solutions to these equations

Hzmn(x, y, z) = hmn cos
(mπx

a

)
cos
(nπy

b

)
e−jkzz (2.15)

The m,n values can take the values m = 0, 1, 2... and n = 0, 1, 2..., but (m,n) 6= (0, 0).

The spatial dependence of these components are given by

Ex ≈ cos
(mπx

a

)
sin
(nπy

b

)
e−jkzz (2.16)

Ey ≈ sin
(mπx

a

)
cos
(nπy

b

)
e−jkzz

Hx ≈ sin
(mπx

a

)
cos
(nπy

b

)
e−jkzz

Hy ≈ cos
(mπx

a

)
sin
(nπy

b

)
e−jkzz

Each of these components satisfy the Helmholtz equation and the boundary conditions.

The electromagnetic field corresponding to (m,n) is called a TEmn mode. Thus there

are infinitely many TEmn modes. kz is the z- component of the wave vector. For a given
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frequency the wave vector is given by

kz =

√
k2 −

(mπ
a

)2
−
(nπ
b

)2
(2.17)

This means that for m and n values such that k2 −
(
mπ
a

)2 − (nπb )2 > 0 or, f >

cl
2π

√(
mπ
a

)2 − (nπb )2, kz is real and the TEmn mode is propagating.

For m and n values such that k2 −
(
mπ
a

)2 − (nπb )2 < 0 or, f < cl
2π

√(
mπ
a

)2 − (nπb )2, kz

is imaginary and the TEmn mode is a non-propagating mode. For a TEmn mode the

cut-off frequency is the frequency for which kz = 0. Modes above the cut-off frequency of

the waveguide propagate, and the modes below the cut-off frequency have an evanescent

field. The cut-off frequency for the TEmn rectangular waveguide is given by:

fcmn =
cl
2π

√(mπ
a

)2
−
(nπ
b

)2
(2.18)

The fundamental mode of a waveguide is the mode that has the lowest cut-off fre-

quency. For a rectangular waveguide it is the TE10 mode that is the fundamental

mode. It has fc10 = c
2a . The electric field of the fundamental mode is given by

E = E0 sin
(
πx
a

)
e−jkzzey. In the experiments I discuss in later chapters, the rectan-

gular waveguide is designed to have a cut-off frequency of fc10 = 6 GHz.

2.2 Theory of Josephson junction

In this section, I will start by a general introduction to the physics of Josephson junctions,

followed by the theory of Josephson junction arrays. To understand the properties of

JJA, it is easy to start the discussion with a single Josephson junction.

In 1962, [60, 20] Josephson predicted the coherent tunneling of cooper pairs through a

thin insulating barrier separating two superconductors as shown in schematic 2.4. The

amplitude of the supercurrent that is flowing between the two superconductors depends

on the phase difference ϕ of the two superconducting wave functions left and right of

the barrier.

I = IC sinϕ (2.19)

Where Ic is the maximum supercurrent that can flow through the junction, called critical

current of the junction. Equation 2.19 is known as the first Josephson equation [20]. For
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Superconductor Superconductor
Insulator

Cooper Pairs

Figure 2.4: Schematic of a Josephson junction: A Josephson junction is an insulating layer
between two superconductors.

SIS (superconductor-insulator-superconductor) tunnel junctions, the critical current is

related to the normal state resistance RN of the junction and to the superconducting

gap of the electrodes ∆ = ∆(T ) via the Ambegaokar-Baratoff relation 2.20 [61].

ICRN =
π∆

2e
tanh

(
∆

2kBT

)
(2.20)

Where T is the temperature, e the elementary charge and kB the Boltzmann constant,

Close to T = 0 equation 2.20 simplifies to

ICRN =
π∆0

2e
(2.21)

Where ∆0 is the superconducting gap at zero temperature.

If the voltage drop over the junction exceeds 2∆
e , Cooper-pairs can be broken into quasi-

particles so that a normal current can flow through the junction.

If there is a finite voltage drop at the junction, the superconducting phase evolves in

time according to
dϕ

dt
=

2e

~
V (2.22)

Equation 2.22 is generally referred to as the second Josephson equation. By equation

2.19, this phase evolution gives rise to an oscillating supercurrent.

I(t) = IC sin

(
2eV

~
t

)
(2.23)

To understand the AC response of a Josephson junction to a voltage bias, the time

derivative of equation 2.19 and using equation 2.22 to obtain

dI

dt

~
2eIC cosϕ

= V (2.24)
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Equation 2.24 is equivalent to the current-voltage relation of an inductance L given by

L =
~

2eIC

1

cosϕ
= LJ

1

cosϕ
(2.25)

Where the Josephson inductance is given as LJ = ~
2eIC

. The energy stored in a Josephson

junction can be found by integrating the power from t = 0, the time where ramping of

the current is started, to t = τ where the ramping is stopped

E =

∫ τ

0
I(t)V (t)dt (2.26)

Using Eqs. 2.19 and 2.22,

E =

∫ τ

0
IC sinϕ

~
2e

dϕ

dt
dt =

~IC
2e

∫ φ

0
sinϕdϕ = EJ(1− cosφ) (2.27)

where φ = ϕ(τ) is the final phase difference over the junction. The Josephson energy

EJ = ~
2e

1
LJ

is one of the important energy scales that will be shown to determine the

dynamics of Josephson junctions.

A second important energy arises from the electrostatic energy of the Cooper-pairs in

the leads forming the Josephson junctions. The two electrodes of a SIS-junction form a

capacitor that enables the junction to carry a charge Qc = CV under a voltage bias V .

The Josephson capacitance C defines the electrostatic energy

EES =
Q2
C

2C
=
Q2
C

e2
EC (2.28)

where EC = e2

2C is the charging energy of a Josephson junction. The junction capacitor,

together with the Josephson inductance LJ , forms a LC-resonant circuit with a resonance

frequency

ωp =
1√
LJC

=
1

~
√

8EJEC (2.29)

often referred to as the junctions plasma frequency.

2.2.1 Influence of external fluctuations on Josephson junctions

A Josephson junction also suffers from influence of external fluctuations, such as fluctua-

tions induced by its electromagnetic environment [62, 63]. In the circuit shown in figure
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2.5, a current biased junction with Josephson energy EJ and junction capacitance C is

subject to phase fluctuations δϕ created by the impedance Z(ω). Adding the fluctua-

tions to the phase in 2.27 and performing a time average, the energy of the Josephson

junction yields

E = EJ cos (ϕo + δϕ(t)) = EJ cos 〈cos ∆ϕ(t)〉/t = E∗J cosϕ0 (2.30)

where the term −EJ0 sinϕ0 〈sin ∆ϕ(t)〉 averages to zero. The Josephson energy EJ is

effectively reduced by the fluctuation introduced by the impedance Z(ω). As EJ ∝ IC ,

the critical current IC will be affected

I = IC sin(ϕ0 + δϕ(t)) = IC sinϕ0 〈cos δϕ(t)〉 /t = I∗C sinϕ0 (2.31)

and the term Ic cosϕ0 〈sin δϕ(t)〉 also averages to zero. Hence the presence of fluctuations

in the environment of a junction effectively re- normalizes the Josephson energy to

E∗J = EJ 〈cos δϕ(t)〉 and the critical current to I∗C = IC 〈cos δϕ(t)〉.

XIb

C
EJ

Z���

Figure 2.5: A Josephson junction with Josephson energy EJ and junction capacitance C in a
current biased circuit with bias current Ib. The circuit also includes an impedance Z(ω) which
creates a current noise δI

.

2.3 Josephson junction arrays

In this section I will extend the discussion from single junctions to an array of Josephson

junctions, assuming all junctions in the chain to be identical [64, 51, 43]. Since the

Josephson junction arrays are designed to have a large Josephson energy, charging effects

as well as quantum and thermal fluctuations can be neglected. The whole array can be

described by a global phase and charge variable (adopted from chapter 3 of [62]).



Theory 25

To derive the energy-phase and current-phase relations [65], I will consider a Josephson

junction chain of identical junctions with Josephson energy EJ and a charging energy

EC with an applied phase bias δ as depicted in figure 2.6. Further assuming EJ � EC

XXXXX XX

�

Figure 2.6: Chain of N Josephson junctions with applied phase bias δ. The junctions are
assumed to be identical.

and EJ � kBT . In equilibrium the phase δ will drop uniformly across the individual

junctions.

ϕi =
δ

N
(2.32)

The total energy of the chain is obtained by summing over the Josephson energies of the

individual junctions

E =
∑
i

EJ(1− cosϕi) = NEJ

(
1− cos

δ

N

)
(2.33)

2.4 Dispersion relation in Josephson junction Arrays

In this section I will derive the dispersion relation of extended plasma resonances in

Josephson junction array resonator. The circuit considered is shown in figure 2.7 [51,

52, 66, 67], a Josephson junction array resonator is modeled by a series of parallel LC -

circuit of Josephson inductance LJ and junction capacitance CJ . The LC- resonators of

the individual junctions are connected to each other via superconducting islands with

a small ground capacitance C0. The whole circuit shown in figure 2.7 and resembles

a simple transmission line, when the charging energy of the Josephson junction is set

to CJ = 0. For the moment let’s consider a chain of infinite length, and fluxes on

the superconducting islands Φx as coordinates. The island flux Φx is related with the

superconducting phase ϕ of the island via ϕ = 2π
Φx

0
Φx. where Φx

0 is the superconducting

flux quantum [51, 43].

The Kirchhoff’s law for current conservation for each island of the array using these

coordinates is given by equation 2.34. To simplify the treatment lets consider the circuit
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�

LJ

CJ

CJ LJ

C0C0C0 C0 C0 C0

CJ LJ CJ LJ CJ LJ CJ LJ CJ LJ

C0

CJ LJ
���� ������

Figure 2.7: Circuit diagram considered for the derivation of the plasma resonance of a Joseph-
son junction chain. The junctions are modeled by a series of LC- circuits formed by the Josephson
inductance LJ and the junction capacitance CJ . The plasma resonances get coupled in the pres-
ence of the ground capacitance C0 of the superconducting islands.

�x

C0�x
..

Figure 2.8: Current conservation for a superconducting island. The directions of the currents
are indicated by arrows.

shown in figure 2.8.

1

LJ
(Φx−1−Φx)+(Φ̈x−1− Φ̈x)CJ −

1

LJ
(Φx−Φx+1)− (Φ̈x− Φ̈x+1)CJ +C0Φ̈x = 0 (2.34)

We can solve eq. 2.34 by making a general plane wave ansatz for the flux on the islands

Φx = Aei(ωt−kx). (2.35)

Using 2.34 and 2.35, we obtain

−2

LJ
+
−2

LJ
cos kx− ω22CJ + ω22CJ cos kx+ ω2C0 = 0 (2.36)
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which yields the dispersion relation

ω(k) =
1√
LJCJ

√
1− cos kx

1− cos kx+ C0
2CJ

. (2.37)

The dispersion relation 2.37 is plotted in figure 2.10. The dispersion relation shows two

distinct regimes. At low k-vectors the dispersion relation grows linearly with k like the

dispersion relation of a transmission line. For large k-vectors the dispersion relation

saturates at the plasma frequency of the single junctions ωplasma = 1√
LJCJ

. Josephson

junction chains show a low phase velocity compared to conventional waveguides in the

microwave regime such as coaxial cables, microstrip or co-planar waveguides. For more

information please refer to [43].

2.4.1 Modification of JJ array frequencies by adding an extra shunt

capacitance

In this section I will discuss the influence of the capacitively shunted Josephson junction

array resonator as shown in figure 2.9. The capacitance pads at the end of the JJ array

lowers the eigenmode frequencies. Circuit 2.9 can be treated as a single transmission line

CJ LJ

C0C0C0 C0 C0 C0

CJ LJ CJ LJ CJ LJ CJ LJ CJ LJ

CS C0

CJ LJ
�� ���� ������ �x

C0

CS CS

a)

b)
Zk

Figure 2.9: a) Circuit representation of a capacitively loaded Josephson junction array res-
onator. CJ is the Josephson junction capacitance, LJ is the Josephson inductance, C0 is the
ground capacitance of Josephson junction and CS is the shunt capacitance. b) Transmission line
model for k modes of a N-junction capacitively loaded JJA. In this case the junction capacitance
is not taken into account.

resonator (neglecting the Josephson junction capacitance CJ) [43]. The lower eigenmode

frequencies of the capacitively shunted Josephson junction array are more influenced by

the shunt capacitance. If the transmission line is cut in to half, and the impedance
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Figure 2.10: Dispersion relation as a function of the wave vector k for a unloaded (blue dots)
and capacitively loaded CS (red dots) to a Josephson junctions array.

of both the left and right halves is compared, the situation Im[Zleft] = Im[Z∗right]

corresponds to an odd k mode resonance. Additionally, from symmetry we have Zleft =

Zright (always true). Since the impedance’s are strictly imaginary, the impedance looking

into the resonator section must be zero on odd k resonances. The input impedance is

given as (taken directly from [43]).

Zin = Zk
(jωkCs)

−1 + jZktan(βkN/2)

Zk + j(jωkCS)−1tan(βkN/2)
= 0 (2.38)

Here the propagation constant is approximated by βk = ωk/ν
0
k . The odd mode fre-

quencies of the modified JJA using the impedance Zin = 0 is given as (equation taken

directly from [43])

(ωkCSZk)
−1 = tan

(
ωk
ω0
k

kπ

2

)
(2.39)

where ωk is the mode frequencies of the modified JJA, Zk = 1
2

√
LJ
CJ

. The even mode

frequencies of modified JJA using the admittance Yin = 0, and is given as (equation

taken directly from [43])

− ωkCSZk = tan

(
ωk
ω0
k

kπ

2

)
(2.40)
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2.5 Kerr effect in Josephson junction arrays

In this section I will first derive the effective Hamiltonian of the Josephson junction

arrays in the linear limit [51, 52]. The non-linearity of the Josephson junctions is then

reintroduced as a second order perturbation to this linear Hamiltonian in a later section.

In this way we derive the Kerr coefficients of the Josephson junction arrays.

2.5.1 Derivation of Kerr coefficients

2.5.1.1 Hamiltonian

To derive the Hamiltonian of the circuit shown in figure 2.9, lets start by writing down

the Lagrangian of the circuit. The Lagrangian is given by

L =
CS
2

Φ̇2
0 +

N−1∑
x=1

(
C0

2
Φ̇2
x

)
+
N−1∑
x=0

CJ
2

(Φ̇x+1 − Φ̇x)2

−
N−1∑
x=0

EJ

(
1− cos

(
2π

Φ∗0
(Φx+1 − Φx)

))
(2.41)

Where Φx is the flux on islands. In order to obtain the Hamiltonian the conjugate

momenta (charges) to the fluxes on the defined islands Φx are derived

Q0 =
∂L
∂Φ̇0

= (Φ̇1 − Φ̇0)CJ + Φ̇0C0 + Φ̇0CS (2.42)

QN =
∂L
∂Φ̇N

= Φ̇NC0 + (Φ̇N − Φ̇N−1)CJ (2.43)

Qx =
∂L
∂Φ̇x

= Φ̇xC0 + (Φ̇x − Φ̇x−1)CJ − (Φ̇x+1 − Φ̇x)CJ (2.44)

One can rewrite the charges in a matrix representation

~Q = Ĉ ~̇Φ (2.45)
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With the derivative of the flux vector with respect to time and the capacitance matrix

~̇ΦT = (Φ̇0, Φ̇1, ...., Φ̇N )

Ĉ =



C0 + Cj + CS −CJ 0 · · ·

−CJ C0 + CJ −CJ 0 · · ·

0 −CJ C0 + CJ −CJ 0 · · ·
... 0

. . .
. . .

. . .
. . .

0 0
... −CJ −CJ + C0


With this and the inverse inductance matrix

L̂−1 =



2
LJ

−1
LJ

0 · · ·
−1
LJ

2
LJ

−1
LJ

0 · · ·

0 −1
LJ

2
LJ

−1
LJ

0 · · ·
... 0

. . .
. . .

. . .
. . .

 , (2.46)

Where LJ = (~/2e)2(1/EJ), the Lagrangian equation 2.41 can be rewritten as

L =
1

2
~̇ΦT Ĉ ~̇Φ− 1

2

(
~
2e

)2
~ΦT L̂−1~Φ, (2.47)

By performing the Legendre transformation using the momentum vector

~QT = (Q0, Q1, Q2, ..., QN ) (2.48)

We obtain the Hamiltonian of the Josephson junction chain in the linear limit

H = ~QT ~̇Φ− L = ~QT Ĉ−1 ~Q− 1

2
~QT Ĉ−1 ~Q+

1

2

(
~
2e

)2
~ΦT L̂−1~Φ

=
1

2
~QT Ĉ−1 ~Q+

1

2

(
~
2e

)2
~ΦT L̂−1~Φ (2.49)

Since the Hamiltonian is quadratic, it can be diagonalized and represented in the form

H =
1

2

N−1∑
K=0

~ωKa†KaK . (2.50)

Where a†K and aK are the creation and annihilation operators of the electromagnetic

modes in the Josephson junction array. The frequencies ωK as function of k constitute
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the dispersion relation of these modes along the chain 2.37. These eigen modes can be

found by solving for the eigenvalues[51]

Ĉ−1/2L̂−1Ĉ−1/2 ~ψK = ω2
k
~ψk. (2.51)

2.5.2 Introducing the non-linearity of Josephson junction by pertur-

bation

In this section, the non-linearity of the Josephson junction is re-introduced as a pertur-

bation to the linear Hamiltonian. Therefore adding the quartic term of the expansion

of the Josephson energy [51, 52], as the quadratic part was already taken into account.

EJ(1− cos

(
2π

Φ0
∆Φ

)
) = 1− 1 +

1

2

4π2

Φ2
0

EJ∆Φ2 − 1

24

16π4

Φ4
0

EJ∆Φ4 (2.52)

Where the phase drop across the Josephson junction ∆Φx = (Φx+1 − Φx) and the Φx

are given byas

Φ̂x =
∑
m,j

Ĉ−1/2
x,m ψm,j

√
~

2ωj

(
âj + â†j

)
. (2.53)

The Hamiltonian thus transforms into

ĤNL = Ĥ + ÛNL (2.54)

with the nonlinear potential energy

ÛNL = − 1

24

16π4

Φ4
0

EJ

N−1∑
x=0

∑
y,j

(
Ĉ
−1/2
x+1,y − Ĉ

−1/2
x,y

)
ψy,j

√
~

2ωj

(
âj + â†j

)4

. (2.55)

By utilizing the RWA and neglecting the terms containing more than two creation or

annihilation operators, the Hamiltonian of the Josephson junction array resonator is

given by
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ĤNL =
∑
j

~ω′j â
†
j âj −

∑
j

~
2
Kjj(â

†
j âj)

2 −
∑
j,k

(j 6=k)

~
2
Kjkâ

†
j âj â

†
kâk (2.56)

Where Kjj and Kjk are the self and cross-kerr coefficients given as (equation taken

directly from [51])

Kjj =
2~π4EJηjjjj

Φ4
0C

2
Jω

2
j

Kjk =
4~π4EJηjjkk
Φ4

0C
2
Jωjωk

(2.57)

where

ηjklm =
∑
x

[∑
y

((√
CJ Ĉ

−1/2
x,y −

√
CJ Ĉ

−1/2
x−1,y

)
ψy,j

)∑
y

((√
CJ Ĉ

−1/2
x,y −

√
CJ Ĉ

−1/2
x−1,y

)
ψy,k

)
∑
y

((√
CJ Ĉ

−1/2
x,y −

√
CJ Ĉ

−1/2
x−1,y

)
ψy,l

)∑
y

((√
CJ Ĉ

−1/2
x,y −

√
CJ Ĉ

−1/2
x−1,y

)
ψy,m

)

Hence the frequency re-normalization shift is given as

ω′j = ωj −Kjj/2−
∑
k

Kjk/4 (2.58)

2.6 Difference of a driven linear and a non-linear oscillator

2.6.1 Driven linear oscillator

A well-known example of a linear oscillator is shown in figure, where mass m is suspended

by a spring. A linear oscillator can oscillate with only one frequency, with different am-

plitude. The response of a linear oscillator system due to a driving force is sum of two

parts [68]:

• A steady state part with the frequency of the driving force. The amplitude is com-

pletely determined by the strength of the damping force, based on how far the driving

frequency is detuned from the natural frequency, and also on how strong the driving

force is.

• A transient part which oscillates at the frequency fd, which is the frequency that the
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m

k

Figure 2.11: Illustration sketch of a simple linear oscillator, where mass m is suspended to a
spring k.

system would oscillate without any external drive.

In the steady-state part of the motion, the frequency of the driving force and its am-

plitude depends on the damping. Figure 2.12 a) show how the steady state amplitude

depends on the frequency for different values of damping. When the damping is in-

creased, the maximum possible amplitude is decreased. The differential equation for the

damped, driven oscillator is given as [68]

ẍ+ γẋ+ ω2
0x = F (t)/m. (2.59)

Here x is the displacement of the oscillator from equilibrium, ω0 is the natural angular

frequency of the oscillator, γ is a damping coefficient, and F (t) is a driving force.

b)a)

0
1

2
3

4
5

6

A
m

p
lit

u
d
e 

(a
. 

b
. 

u
n
it
s)

-4 -3 -1 20 1-2
�P (MHz)

0.0 1.01.0
�P (MHz)

0

1

2

3

4

A
m

p
lit

u
d
e 

(a
. 

b
. 

u
n
it
s)

2.0

nP = 6nP = 4

Figure 2.12: Oscillation amplitude of a linear and non-linear oscillator as a function of the
detuning frequency for increasing pump strengths. a) The shape of a resonance doesn’t change
with the pump strength. b) The resonance curve bends over as the pump strength increases
and has two stable solutions for certain parameters. Two different pump strengths (np = 4, 6)
is shown in figure, red, blue, blow and magenta in the plot corresponds to the stable solutions
and the dotted line between them corresponds to the metastable solution.
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2.6.2 Driven non-linear oscillator

Nonlinear oscillators in physics, engineering, mathematical and related fields have been

the focus of attention for many years and several methods have been used to find ap-

proximate solutions to these dynamical systems. In conservative nonlinear oscillators

the restoring force is not dependent on time, the total energy is constant [69, 70] and any

oscillation is stationary. An important feature of the solutions of conservative oscillators

is that they are periodic and range over a continuous interval of initial values [69]. The

nonlinear oscillator is described by a differential equation with third- and fifth-power

nonlinearity [70]. One of the simplest nonlinear system is a duffing oscillator, which is

a x3 non-linear system. The equation of motion for a duffing oscillator is given by

ẍ+ δẋ+ βx = F0 cos θv − αx3. (2.60)

Where α is the non-linearity in the system, x is the displacement, k is the spring constant,

δ is damping coefficient and F0 is the magnitude of the driving force. Based on the

nonlinearity the α can be either positive or negative. For β = 0 in eq. 2.60, a bifurcation

occurs having two stable solutions. It has two stable states corresponding to the steady

state oscillations differing in their amplitude and phase as shown in figure 2.12 b). In

our experiments shown in chapter 7, the dynamics of the stable steady state solution is

studied by using kramer’s model which is discussed in the following section.

2.7 Theoretical Model for calculating the switching Rates

(Γ)

In this section, I discuss the details regarding the theoretical model based on Kramer’s

theory of switching [71], used to obtain the fits in figure 7.10b of the chapter 7. The

Hamiltonian considered is given in 2.61 and focuses only on one resonant mode of JJAR

(indexed by P in what follows) and include in addition a constant shift due to the

cross-Kerr interaction KPRn̄R with the readout mode (indexed by R):

H/~ =
∑
i=P,R

(ωia
†
iai +

Ki

2
a†iaia

†
iai) +KPRa

†
PaPa

†
RaR +KRPa

†
RaRa

†
PaP . (2.61)
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H/~ = (∆̃PP +KPRn̄R)â†P âP +
KPP

2

(
â†P âP

)2

+iηP (â†P − âP ). (2.62)

Here, the Hamiltonian is written in a rotating frame with respect to the drive with

Figure 2.13: Schematic of the potential landscape for bistable switching. n̄P is the mean
number of photons in the pump mode, Eb,(L,R) is the barrier height of the left and right potential,
ωL is the oscillating frequency of left potential well, ωR is the oscillating frequency of the right
potential well, n̄L,R is the mean number of photons in the left and right potential well and ω0 is
the oscillating frequency at top of both potential wells.

strength ηP and with frequency ωd and the detuning parameter ∆̃P = ωP − ωd with

respect to the bare frequency of the pump mode ωP . Taking the classical limit of the

Heisenberg-Langevin equation for mode âP , the following equation is obtained for the

complex amplitude αP = 〈âP 〉 mode (ignoring noise terms)

dαP
dt

=
[
−i(∆̃PP +KPP /2 +KPRn̄R)

−iKPP |αP |2 −
κP
2

]
αP + ηP . (2.63)

The steady state solution for this equation, defining δ = ∆̃P +KPP /2 +KPRn̄R written

in terms of the average photon number n̄P = |αP |2 is

n̄P =
η2
P

[δ +KPP n̄]2 + κ2
P /4

. (2.64)

This equation can have either one or three real roots. When it has three real roots, the

system shows bi-stability, two roots are stable solutions and one is metastable. For a
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given value of δ and KPP , it has three real solutions when |δ| >
√

3κP /2 [72, 73], and the

drive strength falls in the range η− ≤ ηP ≤ η+, where η2
± = nc,±

(
[δ +KPPnc,±]2 + κ2

P /4
)

,

with the external photon numbers given by

nc,± =
−2δ

3KPP

1∓

√
1− 3

4

(
1 +

κ2
P

4δ2

) . (2.65)

One key ingredient to analyze the switching rates in a bistable system within the Kramers

framework is a potential landscape in which the two stable solutions occur as local

minima. A simple choice for such a potential is obtained by integrating Eq. 2.64 [72]

with respect to n̄P (and dividing by η2
P to make it dimensionless) giving

U(n̄P ) =
K2
PP bn

4

4η2
P

−
2KPP δn̄

3
P

3η2
P

+

1

2η2
P

(
δ2 +

κ2
P

4

)
n̄2
P − n̄P . (2.66)

Note that this is not a real potential in the Hamiltonian sense, but a fictitious one for the

average photon number n̄P treated as an independent degree of freedom. The critical

points of U(n̄P ), namely points where dU/dn̄P ≡ 0 precisely satisfy Eq. 2.64 and the

solutions to the equations identify the extrema of the potential landscape. From the

quartic form of the potential, as shown in Fig. 2.13, one can see that in the bistable

region the potential has a double well shape with two local minima at n̄P = n̄L, n̄H

and the local maxima (top of the barrier between the two wells) at n̄P = n̄0 (with

n̄L < n̄0 < n̄H). Let us denote the oscillation frequencies at the bottom of the wells

(top of the barrier) as ωL, ωH (ω0). The barrier height between n̄L (n̄H) and n̄H (n̄L)

is given by Eb,L = U(n̄0) − U(n̄L) (Eb,H = U(n̄0) − U(n̄H)). Given these parameters,

Kramers formula [71] predicts that the rate of transition out of the wells are of the form

ΓL→H = Γ0,L→H exp(−βeffEb,L) (ΓH→L = Γ0,H→L exp(−βeffEb,H)) with the functional

form of the pre-factor decided by the relative strengths of the damping rate and the

well frequencies ωL,H , ω0. In our treatment note that βeff is an effective dimensionless

temperature. In addition in the limit of a two state model with localized states at n̄L

and n̄H , the average state population will be given by

PL =
exp(−βeffU(n̄L))

[exp(−βeffU(n̄L)) + exp(−βeffU(n̄R))]
(2.67)
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and PH = 1 − PL. The total switching rate, ΓH→L + ΓL→H , is maximised when the

energy barriers are the smallest and happens for a symmetric configuration with the

same barrier height for both directions which is denoted as Eb.



Chapter 3

Experimental techniques

This chapter describes the experimental setup for our 3D circuit QED experiments and

measurement techniques used to characterize the Josephson junction array resonator.

The design and assembly of the cryogenic microwave setup was a large part of the work

performed during the first year of this thesis. In detail, I will present aspects of the

cryogenic environment, followed by a description of the input and output lines with their

additional component. In the end I will discuss the experimental setup for characteri-

zation of the samples and setup for semi-continuous time measurements to evaluate the

stochastic switching between two stable solutions in the bi-stable regime.

3.1 Cryogenic microwave setup

In circuit QED experiments, all the experiments are typically engineered to have tran-

sition frequencies ω01 in the microwave range 4 GHz to 12 GHz. In order to achieve

superconductivity of the devices and to initialise the qubits into the ground state and to

prevent spontaneous thermal excitation, it is necessary to cool the devices to a temper-

ature well below the corresponding temperature Tq = hω01/κB ∼ 230 and 430 mK. The

devices are placed inside a dilution refrigerator and thermally anchored to its 10 mK

base, and shielded from any thermal radiation. Cooling to this low temperature also

brings our quantum electrical circuit into the superconducting state, eliminating resis-

tive dissipation. This is one of the fundamental requirements to enable coherence of the

qubit, and to avoid unwanted thermal excitation’s in the system. The material of the

38
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circuit in our case is ultra-pure aluminium with a critical temperature of TC ≈ 1.2 K.

The other material of choice for our circuits is the oxygen free copper if we want to

apply for thin film magnetic-fields. In the same manner, the 3D cavity acquires a high

quality factor only when its interior walls are superconducting, because photons would

dissipate rapidly in the walls with a finite conductivity. In addition to the low tempera-

ture, our experiments require the interaction of the qubits or Josephson junction arrays

with a single photon, i.e. a single quantum of energy, which in effect means controlling

microwave signals to extremely low powers, on the order of less than 10−17 W. This

requires careful designing of appropriate microwave wiring and thermalisation, magnetic

shielding, cryogenic filtering, low-noise amplification, up- and down- conversion mixing

techniques, and fast data acquisition [74].

3.1.1 Cryostat setup

Cooling a device to roughly 1.2 K is relatively simple, by using liquid Helium (LHe)

and pumping on it. Firstly, the boiling temperature of liquid Helium is 4 K, and so any

device can be cooled to this temperature by simply immersing it in an Liquid He dewar,

typically with a probe stick. By additionally pumping on the liquid helium, the vapour

pressure is reduced and the liquid is forced to boil, thereby cooling it down further to

reach 1.2 K. To reach even lower temperatures, in the mK regime, requires an adiabatic

demagnetization Refrigerator or a dilution Refrigerator [75, 76].

The cryostat used in the Kirchmair lab is a oxford Triton 400 Cryofree Dilution Re-

frigerator (DR) [75, 76] from Oxford Instruments, shown in figure 3.1b. It is a“dry”

fridge using a mechanical Pulse-Tube Cooler for reaching roughly 4 K, as opposed to

the older “wet” fridge technology which uses a bath of liquid He to achieve the 4 K

stage. Both systems then use a closed circuit He3− He4 mixture dilution unit to attain

10 mK [76]. The Pulse-Tube technology is significantly cheaper since it does not require

the expensive liquid helium bath to run, only electricity. This characteristic eliminates

the need to refill the liquid helium manually every couple of days and typically gives the

base plate more experimental space.
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Figure 3.1: Pictures of the lab and the experimental setup: a) Lab space for dilution refrigerator
on the left side (first day of my PhD life). b) Close up view of the open fully assembled fridge
showing the different temperature stages. c) One Section of soldered stainless steel input lines
mounted on to a copper bracket. d) Picture of input lines mounted to a gold coated oxygen
free copper brackets anchored on a fridge plate. The gold coating helps in thermalizing the
input-lines.

3.1.2 Heat flow and wiring

The experimental devices are fixed onto the 10 mK base plate of the dilution refrigerator

(hereafter simply referred to as ’fridge’) and are measured by sending microwave signals

via stainless steel coaxial microwave cables from the room-temperature electronics down
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all the different temperature stages of the fridge, passing through a hermetic vacuum

feed through at the top of the fridge which is under high vacuum, see Figure 3.2

In circuit QED experiments, one of the key challenges is to be able populate the mi-

crowave cavity or waveguide with a coherent state of a single photon on average or less.

It is therefore necessary to firstly shield the system from the radiation of the higher

temperature stages. This is achieved by thermal anchoring the microwave coaxial ca-

bles at each temperature stage, via attenuators and feed through connectors. Secondly,

thermal noise picked up by the propagating signal must be minimised. Indeed, classical

control signals generated at room temperature are inevitably accompanied by electrical

Johnson-Nyquist noise [77] (created by the charge carriers in the conductor being ther-

mally agitated) along the lines to the resonator. At the same time though, the signals

must keep a good signal to noise ratio (SNR) throughout the experiment. It is important

to choose a large source voltage and a strong attenuation. The entire signal should be

attenuated and filtered at different temperature stages by several orders of magnitude, so

the noise picked up along the input route is kept low. The weak fields thereafter exiting

the experiment through the output line must be strongly amplified to be detected, up

to a factor of 108 in power. In parallel to these considerations of noise, the entire wiring

must not allow for the transport of more heat than the cooling power of the cryostat can

handle at each cooling stage, therefore requiring careful selection of cable materials [78].

The heat load of a structure connecting from one stage (Temperature T1) to another

stage (Temperature T2) is given by:

P =

∫ T2

T1

k(T )
A

d
dT (3.1)

Where k(T ) is the temperature dependent heat conductivity, A is the area of the struc-

ture and d is the length. In our fridge the heat load per stainless steel cable from 4 K

plate to the still plate (1 K) is 6.8 µ W . For total of 12 input lines the total heat load

on this stage is about 0.082 mW.

3.1.3 Input lines and attenuation

Considering that the choice of material for the cables is forced upon us by the require-

ments on heat loads as given in eq. 3.1, the task is then to minimize the noise created



Experimental setup 42

b)

55 k

4 k

4 k

a) b)

< 20 mkd) e)< 20 mk

-2
0 

dB

L
P

F

dc Blocks @RT

c)

-30 dB

Figure 3.2: a) Picture of the 4 K and 55 K stage of input lines inside the cryostat. The red box
on the 4 K plate shows the −20dB attenuation. b) Zoom-in picture of the −20 dB Attenuators
at the 4 K plate of the cryostat. c) Picture of the K & L low pass filters after −30 dB attenuators
at the base plate. d) Zoom- in picture of the LPF and -30 dB attenuators. e) DC blocks mounted
on top of cryostat for isolating the fridge and preventing ground loops.

along the input lines. Microwave control signals directed to the experimental device

are generated by a microwave source at a power much higher than room temperature.

Hence, the signals start off with a good signal-to-noise ratio (SNR). The RMS voltage

created by a noisy resistor R is given by Planck’s law of black body radiation

Vnoise =

√
4~ωBR

e~ω/kBT − 1
(3.2)

where B is the bandwidth of the system, ω/2π is the centre frequency of the bandwidth,

and T is the resistance of the noisy resistor. In the Rayleigh-Jeans approximation,

for microwave frequencies in the regime 1-10 GHz with temperatures above 2 K, the
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condition ~ω � kBT holds and reduces Vnoise to

Vnoise =
√

4kBTBR (3.3)

This noise power is independent of frequency and depends linearly on the temperature

T. The intensity of black body radiation emitted at 300 K in the range up to 40 GHz is

roughly 80 times more intense than the radiation emitted at 4 K. A 20 dB attenuator

is mounted (reduces input power by a factor of 100) for each microwave input line at

the 4 K stage as shown in figure 3.2a. The noise from room temperature is thereby

reduced below the noise generated at 4 K. Another set of 30 dB attenuators is mounted

at the base plate of the cryostat, as shown in Figure 3.2b reducing noise below 20 mK.

The attenuators also simultaneously serve the purpose of achieving the ultra-low power

required to have a single photon interacting with the device.

All the input lines are mounted onto gold plated oxygen free copper brackets at each

stage of the cryostat for proper thermalisation. For the purpose of planned experiments,

two ’sets’ of 6 cable lines have been built in total extending down into the cryostat, as

seen in Figure 3.1C. Tube A has six cable lines each with −20 dB attenuation at the

4 K plate of the cryostat and −30 dB attenuation at the base plate of the cryostat.

All stainless steel microwave cables have soldered SMA connectors and should present

minimal reflections (< −20 dB) at each connector along the line as shown in figure 3.3.

When microwave pulses propagate along the cable line and reflections at connectors are

significant, then the percentages of the pulse’s power being reflected several times will

lead to constructive and destructive interference and the original pulse will be distorted

and followed by reflected smaller pulses. This is an unwanted effect for controlling the

state of a system. Achieving low reflections when soldering SMA connectors is a difficult

and tedious task, and it depends on several practical techniques. In short: the centre

conductor must not be scratched; the centre pin should not have traces of solder on it

after being soldered via the small hole onto the centre conductor; the dielectric of the

coaxial cable must be prevented from expanding from the heat applied when soldering

the connector onto the outer conductor. An expanded dielectric leads to an unwanted

impedance mismatch, which in turn leads to strong reflections. After soldering both

connectors of each microwave cable’s, its reflection coefficients were measured. These
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Figure 3.3: VNA measurements: a) shows the reflection measurements |S11|, |S22| for one
typical soldered cable between the 100 mK stage and the base plate of the cryostat. Achieving
low reflections when soldering SMA connectors is most important. b) Direct transmission mea-
surement of two input lines in one of the microwave sets, with a −20 dB attenuator at the 4 K
plate.

measurements are performed with a vector network analyser (VNA) from Keysight. The

VNA measures the four S-parameters (S11, S21, S12, S22) as Sii = 10 log(Pout/P in)[dB].

Figure. 3.2 e) shows the installation of DC blocks on the room temperature plate of the

cryostat which is necessary to prevent ground loops. A ground loop occurs when there is

more than one ground connection path between different instruments. As there are many

different instruments and cables connected to the cryostat, it can easily happen that the

grounds of two instruments attached to different power lines are both connected to the

cryostat, creating a so called ground loop. Since these two grounds can be on slightly

different potentials, equalizing currents will flow along unpredictable paths within the

cryostat. These stray currents can create unwanted magnetic fields, being a major

problem for flux bias lines and noise that can affect the coherence of devices. Thus

the microwave lines going into the fridge are isolate with DC blocks shown in figure 3.2

e), so that the fridge is electrically isolated and only grounded via single conducting

ground cable. Nevertheless it is still challenging to get rid of ground loops from other

instruments used for measurements [76], especially if DC currents are necessary in the

experiments.
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3.1.3.1 Calibration of input lines

To precisely achieve the desired low power of the control signal the transmission of the

entire input line is measured. For the cryogenic setup shown in fig 3.6 a. As the input

lines are frequency dependent, I consider the values between 4 - 8 GHz as that is the

typical working regime for most of the experimental designs. The (microwave cables)

have a strong frequency dependence of their attenuation per meter, which is about -6

dB/m at 6 GHz.

The plot shown in figure 3.3 b) shows a typical transmission measurement on two cable

lines of the input lines, with −20 dB attenuator at the 4 K plate. These results indicate

that the transmission through the cryostat at RT behaves as expected and proves that

the wiring was successfully installed combined with S11 measurements. When cold, the

transmission of the input lines within the cryostat might change a bit, as the components

and cables will have lower resistance and hence lower attenuation.

3.1.4 Sample thermalisation

Thermalising the samples is a crucial and important step for all the experiments. Devices

which are not thermalized can show strong dephasing, suffer from the creation of quasi-

particles and thus to dissipation and have reduced energy relaxation times. Hence

thorough thermalization of cables, attenuators and microwave components at the various

temperature stages of the fridge is not only important for reducing the heat load, but

also protecting the devices from thermal radiation.

In our cryostat design, all the input and output lines are thermalised using gold plated

copper brackets as shown in figure 3.1 c) and d). The samples are mounted on oxygen

free copper T-beam holders which are connected to a copper circular bracket 3.4 c). The

copper bracket is bolted against the base plate of the cryostat for a good better thermal-

isation of samples 3.4 a). Feed through’s are mounted on top of the T-beam holder to

connect the devices to the input and output lines of the cryostat. Each T-beam holder

is designed to hold up to maximum of three experiments in each cool down. A total of 6

feed through’s are mounted on top of the circular bracket as shown in figure 3.4 a). The

devices are connected to the feed through’s with copper microwave coaxial lines soldered

with SMA connectors. Optimizing the thermal anchoring requires specific considerations



Experimental setup 46

a)

< 20 mK

b)

Feed throughs

�-
 m

et
al

 s
hi

el
ds S

am
ple holder

�
- m

etal shields

< 20 mK 

W
av

eg
ui

de

C
opper or N

b shields
C)

Figure 3.4: Mounting brackets and shields: a) At the base plate of the cryostat two circular
brackets are attached at the bottom of the base plate with vacuum feed-throughs. b) Picture
of 3D-rectangular waveguide on a T-beam holder thermally anchored to the base plate of the
cryostat. The µ− metal shields is bolted to the circular bracket shielding the samples. c)
Schematic Picture of the circular brackets with cooper sample holder shielded with 2 layers of
µ- metal shields and a copper or Nb shield as the outer shield.

on heat conduction across solid/solid interfaces. The heat flow across a pressed contact

is insensitive to changes in contact area for a given total force pressing the two surfaces

together. Indeed, the thermal conductance increases approximately linearly with pres-

sure, as has been observed experimentally [79]. The opposite occurs for solder and glued

joints. Hence, a good thermal connection between two solid interfaces requires a strong

force, and not a large area. In conclusion, one should minimize the number of thermal

interfaces and to maximize the force of bolting. Using brass screws to mount samples

on the T-beam will thermalise better than using the stainless steel screws. Since the

thermal conductivity of the brass is 6.6 times higher than the thermal conductivity of

the stainless steel. Other techniques include using molybdenum washers with stainless

screws, as the brass screws are two fragile and can break the threads easily by tighten-

ing. Molybdenum washers have higher thermal conductivity (139W/(mK)), effectively

compresses the bracket.

3.1.4.1 Magnetic shielding

Shielding the samples is another important aspect in performing circuit QED experi-

ments. As superconducting devices are sensitive to stray magnetic fields, this fields can

lead to dephasing and microwave losses. This can be understood in terms of the effect
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of stray magnetic fields on the quality factor (Q) which is given by [80].

Q =
G

Rs
(3.4)

Where, G is the geometric factor of superconducting device and Rs is the surface resis-

tance. Rs can be seen as the contributions from the surface magnetic field and other

components. The high stray magnetic field increases the surface resistance, thereby de-

grading the quality factor (Q). These can be effectively addressed by appropriate use

of magnetic shields that reduce the magnetic field in a prescribed region. Figure 3.4

C shows the schematic of two layered amumetal shields, The material we are using is

amumetal 4K with a thickness of 1.01 mm. Amumetal 4 K is a high nickel content alloy,

having higher permeability at lower temperatures. A single layer of amumetal has a

magnetic field attenuation (A) of about 1860 at DC and 350 at 50 Hz. In our case we

have two layered amumetal shields which have attenuation of 1200,000 at DC and 43000

at 50 Hz. One can calculate the shielding performance using the following formula 3.5.

A = 1 + S1 + S2 + S1S2N12

S1 = µ/4(1−Ri12/Ro1
2)

S2 = µ/4(1−Ri22/Ro2
2)

N12 = 1−Ro2
1/Ri

2
2

(3.5)

Here Ri, Ro is the radius of the inner and outer layer of amumetal. On the outside of

the amumetal shields oxygen free copper shields or Nb shields are used to thermalise

and shield the whole sample holder as shown in figure 3.4 C.

3.1.5 Cryogenic amplification chain

In order to measure the transmitted signal with room-temperature microwave electron-

ics, the average signal (n̄ = 1 photon) coming out of the devices must be amplified by at

least 108 times to attain voltages in the mV regime to be detected by analog-to-digital

converter [81]. Thermal photons and amplifier noise are larger than the signal itself, and

so along the output line any additional losses of the signal power between the sample and

the first amplification at 4 K plate would require significantly more averaging to detect
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Isolators

HEMT

a) b)

K & L Low pass filters

Figure 3.5: a) A picture of the ultra low noise HEMT amplifier with a gain of 40 dB is mounted
on the 4k stage on the output lines. b) Picture of the Quinstar isolators and K & L low pass
filters at the base plate on the output stage.

the signal. For example, a loss of 3 dB, in power requires two times more averaging to

achieve a good signal-to-noise ratio (SNR).

To avoid the problem of having any losses along the output chain a special type of

superconducting cable made out of NbTi is mounted up to first amplifier placed at the

4 K stage. Ultra low noise HEMT (High Electron Mobility Transistor) amplifiers from

Low noise factory, designed to operate at cryogenic temperatures have been used. See a

picture of it in fig 3.5 a). The 4 - 8 GHz HEMT amplifies the signal by a gain G = 46

dB, and the 1-12 GHz HEMT amplifies the signal by a gain of G = 39 dB and noise

temperature of 6 K. The reason behind thermally anchoring the HEMT at 4K plate

and not at the base plate is that it dissipates 4 mW of power. The noise output of

the HEMT using the noise power generated by a lossy component with equivalent noise

temperature T e and a bandwidth B is given by:

N = kBBT
e (3.6)

A electrical component with gain G then amplifies the input noise power Nin and also

amplifies its intrinsic noise power Na coming from the noise generated by the component

itself. The output noise power Nout is then given by

Nout = GNin +GNa = GkB(BinT
e
in +BaT

e
a ) (3.7)
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For example one of our HEMT, has a bandwidth Ba of 4−8 GHz, the noise temperature

is specified to be between T ea = 5.5 k. The input noise source of the amplifier is the noise

generated by the coaxial superconducting cable with specified gain of GSC = +26 dB

over bandwidth of up to Bin = 20 GHz thermalized at T ein = 4 K. By substituting this

values into equation 3.7 with a gain of G = +46 dB, the total output noise at the output

of the HEMT amplifier is NHEMT
OUT = 4 dBm. Further the noise travels up the fridge

through the stainless steel coaxial cables and propagates through room temperature

cables into the room temperature amplification which has a gain of around +40 dB,

with typical noise < 1.2 dB. It is crucial to calculate the noise amplification through

this chain in order to make sure the various amplifiers do not get saturated by the noise,

i.e. that the amplified input noise for each amplifier does not reach its 1 dB compression

point. The total signal-to-noise ratio(SNR) is principally governed by the noise added

by the first amplifier when its gain G1 is large according to Frii’s law [56].

Ta = Ta,1 +
Ta,2
G1

+
Ta,3
G1G2

+ ....,

With Gi representing the gain of each individual amplifier and Ta,i the noise temperature

of the i’s amplifier. Where the noise temperature Ta,i is obtained from its specified noise

figure Fi = 1+Ta,i/T0, where T0 is room temperature and the noise figure fi is commonly

expressed in dB as NFi = 10log(1 + Ta,i/T0).

3.1.5.1 Isolators

The signal coming out of the cavities or the waveguide is sent through (K&L) 1−12GHz

low pass filter connected to a set of isolators as shown in fig 3.5 b). The set of isolators

are used to reflect thermal noise coming from the HEMT amplifier. These circulators

are passive non-reciprocal three port devices, But the third port of the isolators are

terminated by placing 50 Ω and use port 1 as input and port 2 as output. So the

noise traveling back down the line from the amplifier enters the isolator at port 2 and is

redirected into the absorbing load at port 3, providing an isolation of > 25 dB. On the

other hand, the signal coming from the cavity or waveguide traveling up the cryostat

to be amplified and detected passes through the isolators with a minimal attenuation of

< 0.5 dB. Two such isolators are placed in series to maximise the effect.
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3.2 Experimental setups

Figure 3.6 a) shows the experimental setup for measuring the devices mentioned in this

thesis. Since the samples are coupled capacitively to the rectangular cavities or waveg-

uides. The scattering matrix S11, S12, S21, S22 can be obtained from the direct trans-

mission measurements using a vector network analyzer (VNA). Unlike the impedance

and admittance matrices which relates the total voltages and currents at the ports, the

scattering matrix relates the voltage waves incident on the ports to those reflected/-

transmitted from the ports [56].

A two tone spectroscopy can be seen as a pump probe experiment [43]. A two-tone

spectroscopy consists in measuring the resonator transmission using two microwave sig-

nals. The first one, the probe tone, comes from the VNA and has a constant frequency.

This frequency is the one of the resonator modes of the device. The second one, the

pump tone, comes from a microwave source. It varies in frequency with a constant pump

strength. When the probe tone frequency matches the pump tone frequency, the probe

tone shifts in frequency as the probe and pump resonant modes are coupled to each

other. From the transmission and two-tone measurements, the photon number on the

resonant modes are calibrated.

3.2.1 Time-domain measurements

This sections deals with the measurement scheme used to measure the stochastic switch-

ing between two stable solutions around the bi-stable region in a mesoscopic Joseph-

son junction array resonator. The experimental setup for time-domain measurement is

shown in figure 3.6 a), where the VNA ouput is replaced with a signal generator and the

VNA input is replaced by an ADC setup. The ADC setup is shown in the schematic

3.6 c). Two microwave sources are used at different frequencies, one for the readout

resonant mode and the other source for exciting the resonant mode. Phase stability

between the different devices is very important and in our setup the VNA, signal gener-

ators and other devices are referred to a rubidium clock distributing 10 MHz as external

reference.

For the experiments discussed in this thesis, a down mixer is used instead of an IQ-

mixer. The advantage of the down mixer is the higher bandwidth than the IQ-mixers,
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Figure 3.6: Experimental setup. a) Block diagram of our experimental setup for measurements
using a Vector network analyzer and two-tone spectroscopy. The total attenuation used along
the input lines of the cryostat is −50 dB. The signal coming out of device is amplified and the
frequency response of device is measured at the input of a VNA. b) Schematic of an IQ-mixer, I
and Q corresponds to the in-phase and quadrature and R is the output signal of the IQ-mixer.
c) Time-domain measurement setup: The amplified signal coming out of the cryostat is down-
mixed to an intermediate frequency ωIF and amplified further with three stages of a standford
amplifier (SR830) before recording the signal with ADC acquisition board (SDR 14 from SP
devices).

and cheaper compared to the IQ-mixers. A down mixer has three signal ports, these

three ports are the radio frequency (RO) input, the local oscillator (LO) input, and the

intermediate frequency (IF) output. A mixer takes an RF input signal at a frequency

(ωRO), mixes it with a local oscillator (LO) signal at a frequency (ωLO), and produce

an intermediate frequency (IF) output signal that consists of the sum and the difference
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frequencies. When the sum frequency is used as the IF, the mixer is called upconverter,

when the difference is used the mixer is called a downconverter. The frequencies of the

microwave RF source ωRO and the local oscillator ωLO is different and the output of the

mixer is given as follows in the equation 3.8.

I = C ′IR cos (∆ωt+ ∆ψ) (3.8)

Here C ′I is the conversion factor, R is the RF input signal and ∆ψ is the phase difference

between the two signals that depend on the length of the cables. I is a signal oscillating

with the frequency difference ∆ω = ωRO − ωLO between the microwave RF source and

the local oscillator signals. Where as in a IQ-mixer (schematic shown in figure 3.6 b)),

the local oscillator signal is split up in a 90 degree hybrid, which are then in phase

quadrature. Each of the mixers multiplies then one of the split signal with one of the

IF (I and Q) inputs which are then added in the Hybrid without any additional phase

shift. So, the output signal at the RF-port can be calculated by assuming three input

signals.

LO = ALO cos (2πfLOt)

I = AI(t) cos (2πfIt)

Q = AQ(t) cos (2πfQ(t− φ))

The LO-signal with time independent amplitude ALO is first split up into two 90 degree

phase shifted signals. The output of each mixer is given by the product of the LO

and IF signals. If the two IF signals are in phase quadrature, i.e φ = π/2 with the

same frequency FI = fQ = fIF and assuming the same time dependent amplitude, i.e

AI(t) = AQ(t) the upper side band at frequency fLO + fIF vanishes. In the second

hybrid, the signals of two mixers are combined without any phase shift

R(t) =
ALOAI(t)√

2
cos (2π(fLO − fIF )t). (3.9)

To understand the stochastic switching between two stable solutions of JJAR, a down-

mixer and one channel of the acquisition card is used to record the amplitude response

of the resonator (since we are mostly interested in the amplitude response).
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3.2.2 Data acquisition

In this section I will discuss how the transmitted voltage at the output of the mixer is

digitized and how the real time data processing on the measurement computer is done.

For the semi continuous measurements, I used the SP devices SDR14 (800 Msamples/s)

acquisition board to semi-continuously monitor the amplitude of the transmitted signal.

The setup is shown in figure 3.6 c). Two signal generators, one for the readout mode

(ωR0) and the other for the excitation mode (ωP ) of the Josephson junction array res-

onator are used to apply a signal to the input of the device. The RF signal coming out

of the cryostat (RF) and the local oscillator reference signal (LO) are down-converted to

an intermediate frequency (ωIF ). This is done by mixing the readout signal oscillating

at ωRO with a local oscillator (LO) running at ωLO +ωIF . The signal and the reference

are down-converted to an intermediate frequency ωIF = 2π ∗ 10 MHz that can be re-

solved with an ADC. The mixer multiplies the inputs, producing an output signal with

components oscillating at the sum ωRO + ωIF + ωRO and difference ωRO + ωIF − ωRO

frequencies. The down converted RF signal (RO) and reference (LO) can be written as

RO(t) = ARO(t) cos (ωIF t+ θRO(t)). (3.10)

and

LO(t) = ALO cos (ωIF t+ θLO). (3.11)

both oscillating at the intermediate frequency.

Further, the signal coming out of the down mixer (ZMX-10G+) is fed through a mini-

circuits 10 MHz low pass filter that damps out the fast oscillating component leaving

behind the intermediate frequency. The signal is later amplified with three stages of a

standford amplifier (SR830) with gain of +25 dB and later recorded with ADC acquisi-

tion board (SDR 14).
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Fabrication of a Josephson

junction array resonator and

single junction based transmon

qubit

In this chapter I will present the procedure for fabrication of a Josephson junction array

resonator and superconducting qubits. The development, implementation and optimisa-

tion of micro- and nano-fabrication processes were a central effort for the last chapter of

my thesis. It is a crucial part of circuit QED to precisely engineer defined properties of

the devices to enable quantum information processing, and this chapter illustrates how

to achieve them.

4.1 Fabrication of a JJA coupled to a qubit

The basic general lithographic procedure is presented in Figure 4.1: first, a substrate

surface is coated with a radiation-sensitive polymer film (resist) and exposed to radiation

in some desired pattern; following exposure, a development step removes the exposed

resist, thereby leaving the pattern in relief on the substrate surface; the substrate itself

can then be patterned by depositing a metal into the open areas of the resist relief

pattern; finally, the resist is removed in the lift-off step and the result is the desired

54
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device. The substrate used for our devices is a high resistive > 10000 Ωcm double side

polished intrinsic Silicon substrate from TOPSIL with a thickness of 530 µm .

4.1.1 Cleaving and cleaning the substrate

Fabrication of Josephson junctions requires a very clean and precise procedure in order

to achieve the long coherence times for the qubits, and high yield for JJA’s. A small

residue or dirt on the substrate will limit the coherence. As a first step in fab process the

4’ substrate is cleaved into 4 quarter’s. One quarter of the substrate is later sonicated

in Acetone for about 1 - 2 hours followed by isoproponal and distilled water.

4.1.2 Resist

The spin coating is done by depositing droplets of resist onto the chip with a precise

pipette, making sure that the resist does not flow over the edge of the chip. Any resist

reaching the underside of the chip will prevent the chip from laying flat in the e-beam

lithography system later. The first layer of resist spun onto the chip with the spin coater

is a pure Copolymer of methyl methacrylate (MMA) and methacrylic acid (MAA), which

is 3-4 times more sensitive than a pure poly methyl methacrylate (PMMA). It is very

sensitive to the direct, secondary and back-scattered electrons from the beam during

lithography. It basically serves as a spacer between the substrate and the second resist

layer. The spin coating is done at 500 rpm for 40 s and followed by a dynamic ramp to

1500 rpm for 60 s with a very quick ramp up time. This spinning speed creates a layer

of thickness of roughly 250 nm. The wafer is later baked at 200◦ C for 5 minutes on

the hotplate. The second layer is a pure low sensitivity, but high resolution polymethyl

methacrylate PMMA950k (a large molecular weight) that is spun directly thereafter at

2000 rpm for 60 s creating a thickness of approx. 550 nm, followed by baking again at

200 ◦ for 5 minutes. Figure 4.2 a) shows the thickness of PMMA resist measured using

the Ambios profilometer at the center of the substrate. b) shows the total thickness of

resists (copolymer and PMAA).
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Figure 4.1: Fabrication of the device. a) A layer of co-polymer of thickness 450 nm is spun on
the clean silicon substrate and then baked. Followed by the second layer of PMMA of thickness
550 nm which is spun on top of the co-polymer layer and baked again. b) The desired junction
pattern is exposed with a 30 KV electron-beam lithography machine. c) The exposed resist
is developed away with an IPA: Water mixture in a 1:3 ratio. d) The developed substrate is
evaporated with thin film aluminium of thickness 25 nm at a growth rate of 1 nm/s at a vertical
angle of 25◦. Followed by a static oxidation for 1 min with a pressure of 10 mbar. e) Second
angle evaporation of aluminium of thickness 30 nm at an angle of - 25◦. f) Resist lift-off in
acetone for 2 hours at 60◦ C.
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Figure 4.2: Profilometer measurements: a) Thickness of PMMA resist layer, b) bi-layer (copoly-
mer and PMMA) on a silicon substrate. A gentle scratch is made on the substrate to measure
the thickness of the PMMA and bi-resist layer. The tip of the profilometer is scanned across the
substrate through the scratch, thus measuring the thickness of resist layers.

4.1.3 Lithography

Fabricating Josephson junctions requires electron-beam lithography that allows pattern-

ing of features down to roughly a few 10’s nm. The e-beam lithography system focuses

a beam of electrons directly onto the polymer resist on the chip, resulting in breaking of

chemical bonds of the exposed polymer. Introducing a different solubility of the exposed

vs unexposed regions of the resist in certain solvents, therefore allowing the removal of

the desired exposed pattern in the chosen solvent to form a shadow mask. Therefore,

the critical feature of an e-beam system is its acceleration voltage. A low acceleration

voltage of e-beam can result in excessively strong back scattering. During the develop-

ment of Josephson junctions in this chapter, I used a Raith system with an acceleration

voltage of 30 kV. For proper focusing using the large and small write field’s, I introduce

a small scratch on the substrate. Small features in the pattern are exposed using a small

aperture (100 µ) with a beam current of 36 pA. Using the small aperture results in

high resolution, but slower in exposure time. Whereas large contact pads are exposed

with bigger aperture (2 mm) with a beam current of 5 nA. The technique adopted for

Josephson junctions arrays is a bridge-free technique [82], where the junction size is of a

few µm and for qubit, a cross-junction type junction size of 100 X 100 nm. The bridge

is achieved using a bi-layer of resist and harnessing the undercut created by the back-

scattering of the electrons in the lower resist (due to its higher exposure sensitivity).
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Figure 4.3: a) Picture of the Raith 30 kV e-beam lithography system. b) Picture of MEB550S
evaporator used for evaporating the aluminium. c) Optical image of the JJAR.2.0 device after
e-beam lithography (substrate with bi-layer resists). d) Optical dark field image of the Josephson
junction array after e-beam lithography exposure (substrate with bi-layer resists).

Depositing the aluminium film at two different angles with an oxidation step in between

creates the junction.

4.1.4 Development

After the electron beam lithography, the exposed pattern is developed, i.e. by carefully

dipping and slowly moving the chip in a mixture of IPA: Water (1:3) for 105 s followed

by a rinse in distilled water for a few seconds and then a gentle N2 blow dry. It is

important to blow dry at soft pressure in order to avoid breaking of the bridges. The
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temperature of the development solvent should be maintained at 6◦C. Huge change in

the solvent temperature can lead to under or over developed structures.

4.1.5 Double angle evaporation

Double angle evaporation is the common technique to produce Josephson junctions

[83, 82, 67]. The technique involves two layers of aluminium in two different steps

evaporated under two different angles, with intermediate static oxidation step. The

evaporation angle used for fabricating the device is typically 25◦. For evaporation of

the sample an e-beam evaporator MEB550S plassys is used. The main properties of

an evaporator is a very stable evaporation rate between 0.2 and 1 nm/ s, a stage that

can rotate the sample at any angle between 0 and 180◦ in both directions, and an inlet

for oxygen to perform the oxidation step. The load lock is separated from the main

chamber with a gate valve.

The sample holder with a sample is loaded in the load lock chamber. Once the load lock

reaches a pressure of < 10−7 mbar the sample is rotated at an angle 90◦ and cleaned

for 2 min with Ar flow rate of 10 sccm and oxygen flow rate of 5 sccm. The sample

holder is later rotated to an angle of 180◦, and Titanium gettering for 2 min to improve

the vacuum pressure [84] in the chamber. Then a first layer of 5N pure aluminium is

evaporated onto the rotated sample holder under a defined angle of 25◦. The deposited

aluminium layer forms the bottom electrode of the Josephson junction with thickness

of a 25 nm. In the subsequent oxidation step, the sample chamber is filled with oxygen

with pressure of 10 mbar for 1 min. The result is a thin aluminium-oxide layer with

a thickness on the order of a nanometer depending on the partial oxygen pressure and

the oxidation time. The oxidation parameters are controlled by using the calibration

results for different test Josephson junctions. After the oxidation, the sample chamber

is pump down to a pressure of < 10−7 mbar and the sample holder is rotated to a

second position 155◦ relative to the substrate normal. Then the second layer of 30 nm

aluminium is evaporated. In this way, the upper aluminium layer which overlaps with

the lower aluminium layer forms the top electrode of the Josephson junction.



Fabrication 60

4.1.6 Lift-off

The final step after the evaporation is to strip the resist bi-layer (and the thin film of

aluminium now on top of it) from the silicon substrate in a process called “lift-off”.

This is done by placing the chip in hot Acetone at 60◦ for 2-3 hours. At the end of the

lift-off, the sample is gently sonicated for 30 sec to get rid of the extra aluminium thin

film which sticks on the sample. After dipping in IPA and distilled water the sample is

blow-dry with N2, and the chip is later inspected under an optical microscope.



Chapter 5

Publication 1: Numerical

simulations to realize Dipolar

Spin Models with Arrays of

Superconducting Qubits

My contribution

I took the leading role in performing the numerical simulations described in this paper

and helped in writing the manuscript. From the numerical simulations and with theory

group collaborators in Peter Zoller’s group, a novel approach for quantum simulation

using array of superconducting qubit is proposed and discussed in this paper.
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This chapter covers the FEM based numerical simulations to realize spin models with

arrays of superconducting qubits.The basic building blocks are 3D Transmon qubits, uti-

lizing the naturally occurring dipolar interactions to realize interacting spin systems.

This opens the way toward the realization of a broad class of tunable spin models in

both two- and one-dimensional geometries. In collaboration with Peter Zoller’s theory

group we illustrate the potential offered by these systems in the context of dimerized

Majumdar-Ghosh-type phases, archetypical examples of quantum magnetism, showing

how such phases are robust against disorder and decoherence, and could be observed

within state-of-the-art experiments.

5.1 Motivation

In the present work we propose and analyze a novel setup for an analog quantum sim-

ulator of quantum magnetism using superconducting qubits. The scheme builds on the

remarkable recent developments in Circuit QED [85, 26, 86, 87, 88, 89] in the context of

quantum simulation [90, 91, 92, 93, 94], and especially the 3D Transmon qubit [30, 95].

The scheme (illustrated in Fig. 5.1) promises a faithful implementation of many-body

spin-1/2 Hamiltonians involving tens of qubits using state-of-the-art experimental tech-

niques. The central idea behind the present work is to exploit the naturally occurring

dipolar interactions between qubits to engineer the desired spin-spin interactions. In

combination with the flexibility offered by solid-state setups for realizing arbitrary ge-

ometry arrangements, this allows us to design general dipolar spin models in ladder

and 2D geometries. As we will show, our scheme competes favorably with present

and envisaged quantum simulation setups for magnetism with cold atoms and trapped

ions [96, 97, 98], and enables us to address some of the key challenges of quantum simu-

lation including equilibrium and non-equilibrium (quench) dynamics [99]. Moreover, we

note that exploiting dipolar interactions to design dipolar spin models is conceptually

different, and complementary to the remarkable recent experiments with superconduct-

ing circuits toward realizing the superfluid-Mott insulator transition, based on wiring

up increasingly complex circuits of superconducting stripline cavities [90]

In our analysis we address two of the key aspects of the design of our proposed simu-

lator for quantum magnetism. First, we present a feasibility study of state-of-the-art

experimental setups: this includes a discussion of the general mechanism to generate
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dipolar interactions between 3D Transmons, combined with ab initio simulations of the

coupling strength in our spin model for various geometries. Second, we illustrate how

state-of-the-art setups, composed of up to a dozen qubits and characterized by typical

disorder and decoherence rates, are already able to demonstrate paradigmatic signatures

of quantum magnetism. In particular, we show how a dimerized phase [100], a valence-

bond-solid reminiscent of the Majumdar-Ghosh state widely discussed in the context of

quantum spin chains [31], can be realized (via adiabatic state preparation) and probed

with current technologies.

The chapter is organized as follows. In Sec. 5.2, we introduce the XY model Hamiltonian,

and provide a short summary of the parameter regimes we are interested in. In Sec. 5.3,

we describe the circuit QED setup, and present detailed finite-element simulations to

access the relevant couplings in the systems, and describe their tunability. In Sec. 5.4, we

discuss a simplified circuit model, which provides a generic tool to understand the results

in Sec. 5.3. In Sec. ??, we perform a numerical study of the ground state properties of

the XY model on a triangular ladder, and discuss the observability of the dimer phase

using adiabatic state preparation. Finally, in Sec. 5.6, we draw our conclusions and

present a brief outlook.

5.2 Model Hamiltonian

The system dynamics we are interested in, is described by a generalized XY Hamiltonian

of the form

H/~ =
∑
i,j

J ′(θi, θj)

|rij |3
(S+
i S
−
j + h.c.) +

∑
j

hjS
z
j (5.1)

where Sαj are spin operators at the lattice site j, rij is the distance vector between i

and j, and the inter-qubit couplings Jij =
J ′(θi,θj)
|rij |3 are in frequency units. The last term

describes a disordered transverse field, which reflects the disorder in the microscopic

qubit frequencies (i.e. Josephson energy).

The key element of our implementation is the realization of different patterns of quantum

frustration [100] by tuning the form of the interaction couplings (Fig. 5.4). As discussed

below, the latter display a rich dependence as a function of the dipole angles θj (see

Fig. 5.4b): this dependence is essential to tune the coupling between different spins

from positive to negative, or to (approximately) set it to 0. Even more crucially, the
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1/|rij |3 dependence (see Fig. 5.4a) can be exploited to further modify the magnitudes

of the couplings. In the theory of 1D and ladder systems [101, 102], where the dipo-

lar interaction is effectively local, this allows independent tunability of nearest-neighbor

(NN) and next-nearest-neighbor (NNN) exchange, a fundamental ingredient to realize

bond-order solids [31, 103]. We focus specifically on this case below, showing how, within

our proposal, such states of matter are robust against both disorder and qubit decoher-

ence. The setup can be straightforwardly extended to 2D geometries, where qualitatively

new features emerge due to the non-locality of the dipolar couplings: in particular, the

dynamics of Eq. (5.1) can by-pass the Mermin-Wagner-Hohenberg theorem [104, 105],

and thus support phases of matter with true long-range order even at finite tempera-

ture [106]. We emphasize that all of these phenomena are directly accessible within our

proposal thanks to the naturally occurring dipolar interactions, while such interactions

would be challenging to be implemented via wiring.

5.3 Circuit QED implementation of dipolar XY models

We now describe how the many-body dynamics of Eq. (5.1) can be realized in our setup,

using state-of-the-art circuit QED technology, with the design flexibility and long coher-

ence times 1/κ (κ ≤ 2π × 100 kHz) of Transmon qubits [30, 95]. This is schematically

illustrated in Fig. 5.1. Several Transmon qubits (in red) fabricated on a piece of sapphire

(light blue area) which are mounted inside a waveguide cavity (grey box). The Trans-

mon qubits can be fabricated in an essentially arbitrary lattice configuration with locally

controllable orientation. The waveguide cavity around the qubits is used to readout the

state of selected qubits and apply a drive to a subset of qubits, providing means for

both adiabatic state preparation and probing (see next section). This selectivity can be

again achieved by partially rotating the qubits inside the cavity by a few degrees, such

that their dipole moment has a finite overlap with the electric field in the cavity. To

add more flexibility to the setup, subsets of qubits can be fabricated on different pieces

of sapphire. For simplicity these individual pieces are not shown in Fig. 5.1. Using a

SQUID in the qubit circuit and a multi coil setup to change the flux for each qubit (as

realized in [107]), one should be able to reduce the disorder in the transition frequencies

to less than 1% (around 2π× 30 MHz spreading in hj) . This corresponds to a disorder
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strength in the model Hamiltonian of order δh ' 0.3, relative to the exchange matrix

elements Jij ' 2π ∗ 100MHz.

a

1 mm
1 cm

J1

J2
b c

Figure 5.1: Circuit QED implementation of spin models. (a) Drawing of one half of a waveg-
uide cavity with two microwave coupler’s. Inside the cavity is a piece of sapphire with multiple
Transmon qubits arranged on a triangular lattice. The rotation angles of the qubits are chosen
such, that only a few of them couple to the fundamental mode of the cavity with a predetermined
coupling strength. (b) The cavity can be loaded with an arbitrary subset of qubits e.g. consider-
ing the ones in the dot-dashed box in (a) realizes a triangular ladder. Here, the bond thickness
denotes the interaction strength of nearest-neighbor (J1) and next-nearest-neighbor (J2) interac-
tions. Additional longer-range contributions are represented by dashed lines (only the strongest
are shown). (c) Sketch of the dimerized phase of the extended XY model in Eq. (5.1). The phase
can be understood as a solid of local triplet states, denoted by the shaded areas.

The unique feature of our approach is the design flexibility in the interqubit interaction

which results from the dipole-antenna structure of the Transmon. As one can expect, two

dipole antennas in the near field interact like two magnetic spins [108]. By designing

the shape and size of the antenna we can realize large interaction strengths (Jij ≈

2π × 100 MHz) at inter-qubit distances of about 1 mm. The interaction between the

qubits ultimately comes from an effective capacitance between the antennas, similar to

[91, 92], with an angle and distance dependence akin to magnetic dipoles.

5.3.1 HFSS simulations

To confirm and quantitatively assess the inter-qubit dipolar interactions, we have per-

formed a finite element study to determine the coupling strength and dependence on

distance and angle. These simulations are carried out by ab initio numerically solving

the 3D Maxwell equations on finite grids (HFSS software [109]), and as such provide an
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extremely accurate quantitative benchmark for our modeled inter-qubit couplings. The

quantitative insights gathered from the simulations are of basic importance to under-

pin the effects of the specific configuration that would be accessible in realistic setups,

where the influence of the surrounding waveguide cavity and finite size effects of the

Transmon antenna have to be systematically understood. It should be noted that finite-

element calculations of a structure with objects that are orders of magnitude different

in dimensions requires plenty of computational resources.

y

xz

Figure 5.2: Mesh used to calculate the electromagnetic fields around the qubits. The top left
half of the image shows the meshing needed for the cavity that contains a sapphire substrate with
two qubits on it. The top right half shows meshing around one of the qubits. The coordinate
system used in this paper is defined in the lower left.

In this work, extremely fine meshing is needed in areas where accurate understanding

of the physics of small objects (like qubits) is needed. Fig. 5.2 shows how different

mesh sizes are used for different structure size to accurately calculate the eigenmodes

of the electromagnetic fields of two qubits in a cavity. Typical cavity dimensions for

all simulations are: width= 2.5 cm, depth=3 cm, height=1 cm. In the following, the

coupling strength is defined as the minimum difference in the mode frequencies of two

qubits when the inductance of one qubit is swept in order to tune its mode frequency

in and out of resonances with the other(see Fig. 5.9). All simulations regarding the

coupling strength of the Transmon qubits were done with typical Transmon parameters
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i.e. EC ≈ 250 MHz,
√

8EjEc ≈ 6 GHz and Ej/Ec ≥ 50. The antenna height used for

all simulations, unless otherwise specified, was 1 mm.

5.3.1.1 Single qubit inside cavity
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Figure 5.3: a) Extracted capacitance of the qubit as a function of the width of the antenna
paddles. The dashed line is a linear fit to the data. b) Qubit-Cavity coupling strength g as a
function of its position inside the cavity. The qubit was placed in the center of the cavity in
the y and z direction and was moved along the x axis. The dashed line is a cosine fit to the
data. c) Coupling g of the qubit to the cavity as a function of its antenna length. Since a change
in antenna length will also change the resonance frequency, the width of the antenna has been
adjusted to keep the resonance frequency constant. The dashed line is a linear fit to the data.

In order to better understand the effect of the antenna geometry on the qubit properties,

we start our analysis form the single qubit case. First, the width of the antenna pads

w was changed and the corresponding capacitance was extracted as shown in Fig. 5.3

a). It can be concluded that the capacitance increases linearly as a function of the pad

width.

Then, the coupling strength of the qubit to the cavity J was calculated as a function of

position of the qubit with respect to the side wall of the cavity. The coupling strength

has a cosine form as expected from a standing wave in the cavity. The results are shown

in Fig. 5.3 b).

The coupling strength J was also studied as a function of the pad height h as shown

in Fig. 5.3 c) where the qubit was located at the center of the cavity. It can be seen

from the figure that the coupling strength increases linearly as a function of the antenna

height. This is in agreement with dipole antenna physics.
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5.3.1.2 Coupling strengths from HFSS: Two-qubit case

A set of results can be seen in Fig. 5.4. Assuming a dipole-dipole interaction with an

additional component due to the dispersive coupling of both qubits to the cavity with

strength g (determined from independent simulations), we expect the following spatial

dependence:

J1,2 =
g2d2

m

2∆
sinφ1 sinφ2 +

− J0d
2
m

sin θ − 3 sin θ1 sin θ2

(r − rm)3
. (5.2)

The first term takes into account the qubit-qubit interaction mediated via the funda-

mental cavity mode with φ1, φ2 the orientation of the qubits relative to the orientation

of the electric field in the cavity. Higher order cavity modes contribute with a similar

term with a coupling g′ depending on the mode structure; as these are typically very far

detuned, we neglect them in the following. The second term is the direct dipole-dipole

interaction between the qubits with r = |r12| being the distance between their centers.

Both, the qubit-cavity interaction strength (which depends on the location of the qubit

in the cavity) and the dipole-dipole interaction J0 get modified by the length of the

antenna, giving rise to the term dm in Eq. 5.2, with dm the normalized antenna length.

The remaining variables in this equation are the qubit cavity detuning ∆ ≈ 2π×1.5 GHz

and the angles θ1, θ2 with θ− = θ1− θ2. These are the angles formed by the two dipoles

with respect to a line connecting their centers, as can be seen in Fig. 5.4(b). rm corrects

for finite size effects of the dipole antennas.

One can see in Fig. 5.4(a) that the qubit-qubit interaction strength in our numerical

simulations very closely follows the analytical expression Eq. 5.2. The only fitting pa-

rameters in this expression are J0, which is the same for all three datasets, and the

rm, which is adjusted for each length. The dependence on the distance for different

antenna sizes can be seen in Fig. 5.4(a). The interaction strength between the qubits

for a parallel orientation is negative for short distances and falls of as 1/r3. For larger

distances it becomes positive due to the additional coupling mediated off-resonantly via

the cavity. This leads to the effect that qubits at a given distance (in the case of our

cavity about 3.5 mm) do not interact with each other as these terms exactly cancel out.
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Figure 5.4: Microscopic finite-element simulation (see text) of the dependence of the coupling
Ji,j between two qubits. Panel (a): distance dependence at θi = θj = 90◦ for three different
antenna length dm (given in mm). The dashed line indicates Ji,j = 0. The inset displays a typical
result from HFSS simulations [109], with the dipoles surrounded by the computed electric field
(intensity decreasing from red to blue). Panel (b): angular dependence illustrated for the case
θi = θj = θ at distance r = 1.5 mm. The solid line plots Eq. 5.2 with J0, rm extracted from best
fits in (a).

Such a canceling of the direct inter-qubit interaction can be very useful for quantum

information experiments.

By rotating one qubit around the other, as shown in Fig. 5.4(b), we can see that the

interaction strength goes from a negative value for a parallel orientation to a twice as

large positive value for collinear qubits, as expected for a dipole-dipole interaction. The

analytical curves agree well with the numerical simulations and demonstrate that the

spatial dependence of the interaction behaves like a magnetic dipole-dipole interaction.

Furthermore we note that the cavity mediated term can be fully suppressed by rotating

the qubits perpendicular to the electric field of the cavity mode, as shown schematically

in Fig. 5.1. The finite-element simulations are in very good agreement with a simple ana-

lytical circuit model described in the next section, which already captures the important

interaction features.

5.3.2 Additional simulations for two qubit

Further understanding more insight beyond paper.
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5.3.2.1 Moving one qubit along Y-axis

Two qubits are placed on a piece of sapphire separated by a distance of 1.5 mm. One

of the qubit is swept along the Z-axis, at a distance of 1 mm center to center distance

between qubits the interaction strength coupling ’J’ is zero. At a distance of 1 mm, the

angle between the qubits approaches to 35◦. From classical dipolar physics, when the

two dipole antennas are at an angle of 35◦ the coupling strength between the antennas

is zero [56].
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Figure 5.5: The qubits are placed symmetric to the cavity and one of the qubit is swept along
the y-axis. Coupling ’J’ as function of distance between the two qubits along Y-axis ’d’ for a
fixed distance along Z-axis.

5.3.2.2 Coupling strength as function of distance between two qubits back

to back on two sapphire chips

In this simulations, two qubits are placed in a cavity on two separate sapphire chips.

The distance dBB is varied to understand the qubit-qubit interaction with a vacuum

gap in between the sapphire chips. The interaction strength between the qubits goes

from a negative value to a positive value. As the distance of 1 mm between the qubits

the coupling strength is zero, the reason for this zero is that interaction strength goes

from a negative value to positive value and cavity mediated destructive and direct in-

terference. By further increasing the distance (dBB) the coupling strength between the

qubits becomes rapidly weaker. The maximum coupling strength ’J’ is obtained when

the two sapphire chips are touching each other. In this scenario, the coupling strength
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between the qubit’s is mainly influenced by the sapphire chips. Sapphire has a dielectric

constant of εr = 11, hence influencing the capacitive interaction between the qubit’s.
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Figure 5.6: Coupling strength ’J’ as function of distance between two qubits mounted back to
back dBB . In the illustration transmon qubits are placed on two sapphire chips of about 330 µm
thickness. The coupling strength J reduces quickly to 10’s of MHz because of the increased
distance between the sapphire substrates.

5.3.3 Changing the coupling in-situ

To add more flexibility to the setup, each row of qubits can be fabricated on an individual

piece of sapphire. These two pieces can then be moved relative to each other (e.g. along

the z-direction) via a piezo actuated stage (as e.g. used in [110, 111]) which allows for

an in-situ change of the coupling ratio J2/J1. As the distance for all qubits in one row

does not change J2 stays constant. In contrast J1 will vary with the distance of the two

sapphire pieces. How the ratio of J2/J1 changes when the sapphire pieces are moved

apart along the , can be seen in Fig. 5.7.

One can see that changing the distance by about 100 µm changes the coupling ratio by

about a factor of two. Typical piezo actuators allow a positioning to much better than

1 µm over distances of a few millimetres, making this approach technically challenging

but feasible. In order to be able to move the sapphire pieces, the sapphire has to pass

through the cavity wall via thin slit. This thin slit will be a waveguide below cut off and

poses no problem for the desired (rather low) quality factor of the cavity. Once outside

the superconducting wall, the sapphire can be clamped to the piezo stage.

The two sapphire pieces can also be moved along the y-direction, which is perpendicular

to the illustration in Fig. 5.7. This would again change the coupling between the rows
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as illustrated in Fig.2 in the main text. For feasible parameters a change of about a

millimeter, would be necessary to change the coupling ratios from about 0.25 to 1.
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Figure 5.7: Coupling J1 and J2 and the ratio J2/J1 as a function of distance S between qubit
rows. This simulation was run with a 1 mm antenna. Each row of qubits in the ladder model can
be fabricated on an individual piece of sapphire. These two pieces can then be moved relative
to each other via a piezo actuated stage which allows for an in-situ change of the coupling ratio
J2/J1. As the distance for all qubits in one row does not change J2 stays constant. In contrast
J1 will vary with the distance of the two sapphire pieces. The inset shows a side view of the two
sapphire pieces with the two rows of qubits (red blocks) on top. The two rows are offset from
each other on the two sapphires. This offset can be adjusted to match the desired couplings for
S approaching zero.

5.3.4 Qubit state measurement and Flux tuning

An advantage of a circuit QED setup is the ability to measure the state of a predeter-

mined but otherwise arbitrary subset of qubits in the lattice. A measurement of 〈Szi 〉 can

be realised in circuit QED by probing the cavity transmission in the limit of a dispersive

qubit cavity coupling. With the newly developed quantum limited amplifier technology

it is nowadays possible to detect quantum jumps of an individual qubit [33, 112] and

the parity of a two qubit state [87]. Using this measurement techniques one has to take

into account the strong interaction between the qubits, which means that a direct mea-

surement of 〈Szi 〉 in the uncoupled basis is not possible [113]. We would rather project
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onto one of the eigenstates of the coupled system which might be useful for an initial

evaluation of the interaction but would not tell us anything about the actual properties

of the state.

This effect can be avoided by effectively switching off the coupling by detuning a subset

of qubits from each other and all other qubits by more than J in a time faster than 1/J

in order to be non adiabatic. This detuning can be achieved by realizing the qubits one

wants to measure with a SQUID instead of a single Josepshon junction. The challenge in

the 3D architecture is, to realize a fast tune-ability of the flux through the SQUID. Some

of the problems that typically appear are a slow response time of the flux bias circuit

and a possibility of an oscillation of the flux due to ringing of the circuit. These led to

the development of fast flux bias lines and several methods to eliminate the response of

the line by deconvolution methods solved by using a magnetic hose [114, 115].

In our case the requirements on the flux bias lines are reduced. We do not care about a

small uncertainty in the qubit frequency after the flux change as additional dephasing

won’t be relevant for the measurement of 〈Szi 〉. If ringing of the circuit proves to be a

problem, one could use an asymmetric SQUID design for the Transmon qubit [116] and

use both flux sweet spots to reduce flux sensitivity. Furthermore, we do not care about

addressability as only a subset of qubits will be sensitive to the flux. Also we only need

two flux configurations: (1) all qubits in resonance and (2) the qubits that have to be

measured sufficiently detuned from the rest.

Combining these relaxed requirements should allow us to adjust the flux with the help

of small coils (50-100 nH) just outside the cavity made out of copper hose [115]. Sim-

ulations and preliminary room temperature experiments show that a current of ≈ mA

is sufficiently large to generate the desired flux. Changing the current in one of these

coils will effect more than one qubit, though with different magnitude. Adjusting the

currents in different closely spaced coils using e.g. an optimal control algorithm should

in principle allow us to generate the desired flux values for our application at the qubit

location even though there are inter-dependencies. The switching times will be limited

by Eddy currents in the cavity wall. These can be reduced by implementing the flux

bias lines inside the cavity with appropriate filtering to avoid an undesired coupling of

the cavity or qubit to the environment.
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Another method to measure correlations functions of interacting qubits coupled to a

cavity was recently published in a very similar context [117]. In this paper the authors

show that the spectrum of the resonator is directly related to the correlation function of

the coupling operator between the resonator and the interacting qubits. This method can

be adapted in the context of our proposal and be used to readout correlation functions.

Even more information can be extracted by making use of multiple resonator modes

with different coupling to the qubits. The advantage here is, that no fast switching of

the magnetic bias field is necessary.

5.4 Circuit model

In this section, details of a circuit model that represents two-qubits inside a cavity are

explained. The model is used to evaluate the coupling strength between the elements,

and support the HFSS simulations.

5.4.1 Circuit diagram

Dissipation-less LC resonators are used to model the cavity and qubits (see also [118]

or [119] for a refined method including dissipation). The nonlinearity of the qubits is

not taken into account as it does not affect the coupling strength. Capacitors are used

in order to account for the coupling between elements. The coupling between each qubit

and the cavity is represented by a coupling capacitor Cqcav. As qubits are assumed to

couple to each other through their dipole antenna, a total of four capacitors are used to

represent coupling of each antenna pad to the two pads of the other qubit (see Fig. 5.8).

5.4.2 Coupling strength

In order to calculate the coupling between elements, the following method is used: The

impedance of the system (Zin) seen through one of the qubits (here Q1) is calculated.

The poles of the impedance are the resonance modes of the total system, in this example

three. By sweeping the inductance L1 (of Q1) we can see the avoided crossing between

the modes (see Fig. 5.9). Coupling is defined as the minimum distance between the two

modes at the avoided crossing.
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Figure 5.8: a) Circuit model corresponding to two qubits in a cavity. Values of the four
capacitors drawn in red decay as 1/r2 where r is the center to center distance between pads of
the antenna. This models the dipole-dipole coupling of two qubits. The two purple structures on
Q1 and Q2 represent the physical shapes of the qubits. b) Capacitance between two co-planar
paddles (solid line) as a function of the separation s according to equation 5.3. The corresponding
structure is shown at the bottom. The dashed line shows the quadratic decay used in this study
to estimate the coupling capacitance. The structure at top right shows which capacitors in the
circuit model follow the quadratic decay.

A further step was taken by relating the inter-qubit coupling capacitances (as in Fig. 5.8

a)) to the physical distances among the qubit antenna poles. This distance dependence

is assumed to be of the following form [120]:

Cab = (2ε/π) ln
(aL − bL)(aR − bR)

(aR − bL)(aL − bR)

= (2ε/π) ln
(w + s)2

(w + s)2 − w2

(5.3)

where ε is the average over dielectric constants of the substrate and the air (or vacuum),

w = wa = wb is the width of antenna paddles and s is the separation between closest

edges as shown in the inset of Fig. 5.8 b). The parameters aL, aR, bR, bL are defined in

Fig. 5.8 b).

As this study concerns square shaped paddles (see top right inset of Fig. 5.8b)), it is

not possible to apply equation 5.3 to any arbitrary relative position of the two qubits

without complicated corrections. Therefore, just to demonstrate the general behavior,

a simplified relation (Eq. 5.4 follows Eq. 5.3 when the separation s becomes much larger

than the paddle width w - this effect is shown in Fig. 5.8 b)) for the coupling is chosen

which assumes that the capacitance decays quadratically as a function of the distance:

Cab =
a

s2
(5.4)
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where a is a coefficient used to adjust the coupling strength.

This means that the coupling strength Ji,j can be calculated based on the physical

position of the two qubits with respect to each other. In this study, Q1 is assumed to

be fixed in position and Q2 changes its distance and angle with respect to Q1.
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Figure 5.9: Example for three modes of a system with two qubits and a cavity.The minimum
distance of two modes is defined as the coupling 2Ji,j if it is two qubits and as 2g if it is the qubit
cavity coupling. Note that despite the fact that Q2 has 9 nH of inductance, the crossing happens
at lower inductances due to the coupling to Q1. Dashed line shows how resonance frequency of
a typical LC circuit would behave without coupling to the other resonators.

Assuming that the two qubits are placed parallel with respect to each other, we have

calculated the coupling Ji,j as a function of the center-to-center distance. In Fig. 5.10

the results are shown for two qubits without a mediating cavity. As can be seen, the

coupling is heavily suppressed along a straight line. This line can be thought of as when

the dipole electric field from Q1 is horizontal, that is perpendicular to the dipole antenna

of Q2 and hence, there will be no coupling. This is typical behavior of dipoles and is well

expected. However, by adding a cavity to the model (see Fig. 5.10 b)), one can observe

that the straight line shape of suppression will no more hold and instead, a curved line

emerges.

Adding the cavity has certain consequences on how two qubits couple. For example, if

one moves Q2 along the x-axis while it is held at y = 1 mm (or y = −1 mm), the coupling

might be suppressed twice. This is verified by HFSS simulations as seen in Fig. 5.4. Our
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Figure 5.10: a) Contour plot showing the coupling strength between two qubits Ji,j as a
function of the distance between them, in the x and y direction, in absence of the cavity. The
color scale is logarithmic to highlight the rapid change in Ji,j . In such a case, the dipole physics
dominates and the coupling will be suppressed along a straight line. The white area is not
accessible due to the dimensions of the qubits. b) Contour plot showing the coupling strength
between two qubits Ji,j as a function of the distance between them, in the x and y direction, in
presence of the cavity. The color scale is logarithmic to highlight the rapid change in Ji,j . The
cavity distorts the straight line of suppressed coupling opening new possibilities for engineering
of the coupling between two qubits. The white area is not accessible due to the dimensions of
the qubits.

lumped-element model shows behavior that matches the HFSS simulations, as can be

seen in Fig. 5.11.

5.5 Hamiltonian derivation

In this section, I briefly review the derivation of the microscopic spin Hamiltonian be-

tween interacting Transmons.

5.5.1 Interacting Transmons

Let’s consider two interacting transmons as depicted in Fig. 5.12. The Lagrangian

describing this system is given by
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Figure 5.11: Coupling J as a function of distance along x axis. The center to center separation
along the Y axis is kept at 1 mm and one qubits is moved along the x axis with respect to the
other. The results suggest a double suppression of the coupling in agreement with the circuit
model (dashed curve).

Figure 5.12: Lumped element circuit model for two capacitively coupled superconducting
qubits.

L =
∑
i=1,2

1

2
CiΦ̇

2
i +

1

2
CQ(Φ̇1 − Φ̇2)2 + (5.5)

+
∑
i=1,2

E
(i)
J cos

(
Φi

Φ0

)
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with Φ0 ≡ ~/(2e). The Hamiltonian, H =
∑

i=1,2QiΦ̇i − L can then be written as

H =
1

2
~QTC−1 ~Q−

∑
i=1,2

E
(i)
J cos

(
Φi

Φ0

)
, (5.6)

with ~ΦT ≡ (Φ1,Φ2). For small phase fluctuations, I can expand the cosine and get

H = H0 +H1, with

H0 =
1

2
~QTC−1 ~Q+

1

2
~ΦTL−1~Φ (5.7)

H1 ≈ −
∑
i=1,2

E
(i)
J

24Φ4
0

Φ4
i , (5.8)

where

C =

 C1 + CQ −CQ

−CQ C2 + CQ

 ,

C−1 =
1

D

 C2 + CQ CQ

CQ C1 + CQ

 ,

L−1 =

 1/α1 0

0 1/α2

 ,

D ≡ C1C2 + C1CQ + C2CQ and 1/αi ≡ E
(i)
J /Φ2

0. Now by quantizing this Hamiltonian

using the usual ladder operator replacement for Qj and Φj which is

Qj = iQZPF
j (a†j − aj),Φj = ΦZPF

j (a†j + aj), (5.9)

where QZPF
j ≡

√
~ωjCeff

j /2, ΦZPF
j ≡

√
~ωjαj/2, Ceff

1 ≡ D
C2+CQ

, Ceff
2 ≡ D

C1+CQ
. Here,

ω1, ω2 are the two solutions of |L−1 − ω2C| = 0. This quantization gives

H ≈
∑
i=1,2

ωini −
∑
i=1,2

Λin
2
i + λ12(a†1a2 + h.c.), (5.10)

where Λj ≡
E

(j)
J
4

(
ΦZPF

j

Φ0

)4

, λ12 ≡
CQ

D QZPF
1 QZPF2 , and nj ≡ a†jaj . Notice that this

Hamiltonian has been written in a basis of local modes. Diagonalization of the quadratic
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part via a Bogoliubov transformation gives rise to a Hamiltonian of the form [118]

H ≈
∑
i=1,2

ξini −
∑
i=1,2

αin
2
i − χ12n1n2. (5.11)

5.5.2 Interacting transmons inside a cavity

R

Figure 5.13: Lumped element circuit for two interacting superconducting qubits in a cavity
resonator.

Let’s now consider the circuit depicted in Fig. 5.13 which is a simplified version of the

circuit shown in Fig. 5.8 a) with the capacitive coupling network between the qubits

reduced to one capacitor. This transformation can be easily done for a fixed qubit-qubit

distance. The simple lumped element model will provide the right Hamiltonian but does

not capture the angle and distance dependence explicitly. The Lagrangian of the system

is given as

L =
∑
i=1,2

1

2
CiΦ̇

2
i +

∑
i=1,2

E
(i)
J cos

(
Φi

Φ0

)
(5.12)

+
1

2
CΦ̇2

R −
Φ2
R

2L
+

1

2
CQ(Φ̇1 − Φ̇2)2

+
∑
i=1,2

1

2
C0(Φ̇i − Φ̇R)2.
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The associated Hamiltonian H = H0 +H1 can be written as equations (5.7) and (5.8),

with

C =


C1 + CQ + C0 −CQ −C0

−CQ C2 + CQ + C0 −C0

−C0 −C0 C + C0

 ,

L−1 =


1/L1 0 0

0 1/L2 0

0 0 1/L

 .

Here, Li ≡
Φ2

0

E
(i)
J

. Quantizing this Hamiltonian gives

H ≈
∑

i=1,2,R

ωini −
∑
i=1,2

Λin
2
i + (5.13)

+
∑

i 6=j=1,2,R

λij(a
†
iaj + h.c.),

with similar expressions for the coupling constants as in Eq. (5.10) 1. Here, the qubit

and cavity are far detuned. However, the qubit-cavity coupling may be sufficiently

large to mediate virtual transitions between both qubits through the cavity. This effect

will be relevant when
λiRλjR

∆j
∼ λ12, where ∆j ≡ −ωj + ωR. Performing a canonical

transformation

H → eSHe−S , (5.14)

with

S ≡
∑
i=1,2

εiR(a†iaR − a
†
Rai), (5.15)

and taking εiR ≈ −λiR
∆i

, and obtain to second order in the transformation, an effective

Hamiltonian (in a rotating frame with respect to the resonator)

Heff ≈
∑
i=1,2

∆̃ini −
∑
i=1,2

Λ̃in
2
i + (5.16)

+
∑

i 6=j=1,2

Jij(a
†
iaj + h.c.),

1For the qubit-cavity coupling the capacitance CQ is substituted by C0 in such expressions.
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with the renormalized constants are related to the original energies as

∆̃i = −∆i(1− ε2
iR), (5.17)

Λ̃i = Λi(1 + 4ε2
iR), (5.18)

Jij = λij +
λiRλjR

2∆j
, (5.19)

where i = 1, 2. The Hamiltonian (5.16) can be readily generalized for N qubits by letting

i = 1, . . . , N , and conveniently diagonalized into the form written in Eq. (5.11). Also, it

can be written in a spin language, by considering sufficiently large qubit anharmonicities.

Typical anharmonicities for Transmon qubits in the range of 200 − 300 MHz are suffi-

cient to realize a successful state preparation, while still staying in the Transmon limit

(EJ/EC > 40). This allows us to replace the Bosonic operators by spin 1/2 operators, so

the effective Hamiltonian for two capacitively coupled superconducting Transmon qubits

inside a cavity is given by

Heff ≈
∑
i

ωiS
z
i +

∑
i 6=j

Jij(S
+
i S
−
j + h.c.). (5.20)

Note that the angle and distance dependence of the qubit coupling is hidden in the Jij

in this derivation.

5.6 Conclusions

From the finite element numerical simulations, we show how to use the naturally oc-

curring dipolar interactions in 3D superconducting circuits to realize a platform for

analogue quantum simulation of XY spin models. The possibility of realizing arbitrary

lattice geometries with locally-tunable dipole moments [29], in combination with their

large interaction strength, opens the door to the investigation of a series of phenom-

ena in quantum magnetism in both 1D [121, 122] and 2D [106], complementing the

remarkable developments in cold atom and trapped ion systems [96, 97, 98]. The idea

discussed in this chapter [29] are not limited to Transmon qubits, but could be imple-

mented with, e.g., Xmon qubits [89] or Fluxonium qubits coupled to an antenna [123].

It would be interesting to explore these developments in view of realizing Hamiltonian
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dynamics for surface code architectures [8] or as a building block for coupled cavity array

experiments [124, 125].



Chapter 6

Publication 2: Characterization

of low loss microstrip resonators

as a building block for circuit

QED in a 3D waveguide

My contribution

I have contributed in designing the High-Q microstrip resonators and writing the manuscript.

The numerical simulations for designing the MSR’s and characterization of the devices is

initially carried out by me. In collaboration with other authors, the final characterization

results are discussed in this paper.
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Here we present the microwave characterization of microstrip resonators made from

aluminum and niobium inside a 3D microwave waveguide. In the low temperature, low

power limit internal quality factors of up to one million were reached. We found a

good agreement to models predicting conductive losses and losses to two level systems for

increasing temperature. The setup presented here is appealing for testing materials and

structures, as it is free of wire bonds and offers a well controlled microwave environment.

In combination with transmon qubits, these resonators serve as a building block for a

novel circuit QED architecture inside a rectangular waveguide.

6.1 Motivation

Microwave resonators are an important building block for circuit QED systems where

they are e.g. used for qubit readout [126, 127], to mediate coupling [128] and for para-

metric amplifiers [34]. All of these applications require low intrinsic losses at low temper-

atures (kBT � hfr) and at single photon drive strength. In this low energy regime, the

intrinsic quality factor, which quantifies internal losses, is often limited by dissipation

due to two level systems (TLS) [129, 130]. These defects exist mainly in metal-air, metal-

substrate and substrate-air interfaces as well as in bulk dielectrics [130, 131, 132, 133].

Two common approaches exist, to improve the intrinsic quality factor of resonators.

Either one reduces the sensitivity to these loss mechanisms by reducing the participa-

tion ratio [130, 59, 134] or tries to improve the interfaces by a sophisticated fabrication

process [135, 136]. Reducing the participation ratio requires to reduce the electric field

strength. This is typically done by increasing the size of the resonator [132] or even

implementing the resonator using three dimensional structures [59].

6.2 Design of a MSR in a waveguide

Our approach, a microstrip resonator (MSR) in a rectangular waveguide (Fig. 6.1),

combines the advantages of three dimensional structures with a compact, planar de-

sign [127, 30]. The sensitivity to interfaces is reduced, since the majority of the field

is spread out over the waveguide, effectively reducing the participation ratio [134]. An-

other advantage is, that the waveguide represents a clean and well controlled microwave
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environment [56] without lossy-seams [137] close to the MSR. As the MSR is capacitively

coupled to the waveguide, no wirebonds [138] or airbridges [139] are required, which can

lead to dissipation or crosstalk.

The U-shaped MSR (Fig. 6.1 a)) is a capacitively shunted λ/2 resonator. Due to the

open end, a voltage maximum occurs at the ends and a current maximum in the cen-

ter [56]. Considering that the MSR is patterned on silicon, the resonance frequency

of the fundamental mode is expected at 11.3 GHz. The additional shunt capacitance

between the legs shifts the resonance frequency down to about 8 GHz.

x

y

23 in mm

11

0.1

3.65
3.1

1

a)
b)

H

Figure 6.1: MSR layout. a) Sketch of the MSR on a substrate. b) Sketch of the cross section
of the waveguide with MSR inside. The dashed line indicates the electric field strength of the
fundamental mode inside the waveguide.

The coupling of MSR, depends on the position of the MSR in the waveguide along the

x-axis. A critically coupled setup is inevitable to get trustworthy results of Qint and Qc,

in particular in the single photon limit. To accomplish such a setup, simulations were

performed.

6.2.1 Finite element simulations on the coupling

To estimate the coupling between the MSR and the waveguide, numerical simulations

using finite element solver was performed.

Figure 6.2 illustrates the two considered cases. At first, the MSR was swept from the

center towards the wall. Fig. 6.3 a) shows the results of the coupling. A critically

coupled setup in the single photon limit requires a coupling quality factor on the order

of 1× 105 to 1× 106, depending on the measured MSR. In the available waveguides,

there are only discrete slots to place the sample. The first off-centered slot is around
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x
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21 mm 10.5 mm

a) b)

Figure 6.2: Sketch of the simulated setups. a) In simulations the MSR was shifted from the
center towards the wall. b) MSR placed in the center with an additional sapphire substrate next
to it, which displaces the field inside the waveguide. This leads to an asymmetry of the electric
field over the centrally placed MSR, thus a non vanishing coupling. In simulations the substrate
was shifted from the MSR towards the wall.
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Figure 6.3: Simulation results of the coupling quality factor for different positions of the MSR
in the waveguide. a) MSR shifted from the center to the waveguide wall (illustrated in Fig. 6.2
a)). b) MSR placed in the center and the empty substrate being shifted away towards the wall
(Fig. 6.2 b)).

3 mm from the center, which leads to a coupling quality factor between 1× 103 and

1× 104, being around two magnitudes below critically coupled.

To displace the electric field in the waveguide, the MSR is placed in the center and an

empty sapphire substrate in a neighbouring slot, due to the higher εr of sapphire. This

is illustrated in Fig. 6.2 b). From the simulations with the MSR placed in the center

and the empty substrate being shifted towards the wall (Fig. 6.3 b)). The substrate

being one slot off center (neighbouring the MSR) leads to a coupling of around 1× 105.

For two slots off center the desired coupling quality factor reaches around 1× 106. It is

important to note, that for such high coupling quality factors, effects like the MSR having

a slightly asymmetric leg length, or being placed off center on the chip or placed entirely

off center, can have a big impact on the coupling. For instance simulations showed, that

a displacement of 0.2 mm off-center, can lead to a factor of 4 in the coupling quality
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factor.

6.3 MSR and aluminium waveguide in detail

In this section, the photographs of the MSR on the silicon substrate, the MSR in the

waveguide and the completely assembled waveguide are shown.

a) b) c)

Figure 6.4: a) Photograph of a MSR with uneven leg length. b) Photograph of MSR placed
inside the rectangular waveguide. Illustration, including dimensions of the waveguide and the
MSR in Fig. 6.2. c) Mounting process. The MSR is slid in from the top. Two metal rods are
used as guidance.

Figure 6.4 shows a photograph of the MSR a) and the MSR in the waveguide b). In c)

the process of mounting the MSR is shown. The MSR is assembled to a holder and slid

from the top into the waveguide.

Figure 6.5: Photograph of totally assembled waveguide. The waveguide used for the transmis-
sion measurement consist of three parts. In the middle section, three rows of samples can be
mounted. In this picture only the middle row is used for a sample.

Fig. 6.5 shows the fully assembled waveguide. The waveguide consists of three parts.

At each end there is an identical coupler to receive and launch the microwave signals.
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The central part contains the samples. In this design no seams are present near the

samples. It is possible to probe three samples, each in one of the three slots, which can

be easily extended to more samples by using a different central section. One can see

the individual slots for each sample, customized to the dimensions of our sample. In

contrast to this waveguide, the copper waveguide only allows to probe a single sample

at a time.

For microwave transmission measurements, the MSR is placed in a rectangular waveg-

uide (Fig. 6.1 b)). The fundamental TE10 mode, which has electric field components

only along the z-axis, is the sole propagating mode at the resonance frequency of the

MSR. Its field strength varies along the x-axis with a maximum in the center [56] (dashed

line in Fig. 6.1 b)). For the MSR placed off-center, the field strength is different on both

legs, which leads to a capacitive coupling to the waveguide. Placed in the exact center

of the waveguide, the field strength is equal on both legs of the MSR and the coupling

vanishes. The coupling of the MSR in the waveguide, can also be varied with legs of

different length. To accurately predict the interaction of the MSR with the waveguide

numerical simulations is performed using a finite element solver.

MSRs are characterized in waveguides fabricated from oxygen free copper or aluminum.

The waveguides were mounted to the baseplate of a dilution refrigerator and cooled down

to 20 mK. The MSRs were analyzed regarding their resonance frequencies and quality

factors by measuring S21. The measured data is fitted using a circle fit routine [140]

which utilizes the complex nature of the S-parameter.

6.4 Measurement results

To assess the performance of different materials, aluminum and niobium MSRs is inves-

tigated. The samples were fabricated using standard optical lithography techniques and

sputter deposition of the metallic films. Structuring of the metal layer was done using a

wet etching process for the aluminum samples and a reactive ion etching (RIE) process

for niobium. After completely removing the photoresist, both samples were cleaned in

an oxygen plasma.

Two sets of measurements were performed. First, the MSRs are measured under vari-

ation of input powers, ranging from below the single photon limit to several million
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photons circulating in the resonator. Second, to understand the TLS effects, the base

temperature is ramped up to 1 K and performed measurements at single photon powers.

6.4.1 Internal quality factor dependence on circulating photon number

and temperature

Fig. 6.6 a) shows the dependence of the internal quality factor on the circulating photon

number in the MSR. All measurements show a clear trend of an increasing quality factor

with the number of photons. This indicates that the MSRs are limited by TLS losses,

as they get saturated with increasing drive powers [129]. From the measurements the

highest single photon internal quality factor of one million for the two niobium MSRs

placed in the aluminum waveguide. For high powers a Qint of more than 8 million is

measured. Other experiments, using a more sophisticated fabrication process, report

similar internal quality factors for planar NbTiN resonators on deep etched silicon [135]

or for planar aluminum resonators on sapphire [136]. Similar methods and materials

might allow us to increase the single photon quality factor of the MSR.
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Figure 6.6: Dependence of the internal quality factor on a) the circulation photon
number in the MSR and b) the temperature (Al MSR). Nb MSR in Cu waveguide.

Nb MSR in Al waveguide. Al MSR in Al waveguide. Al MSR in Cu waveguide.
a) All but one MSR/waveguide combinations show a clear increase of the internal quality factor
with increasing photon number. The only exception is the MSR in the copper waveguide which
seems to be limited by other losses. Both Nb MSRs in the aluminum waveguide show an internal
quality factor of one million at the single photon limit. The measurements were taken at 20 mK.
b) Internal quality factor of Al MSR in dependence of temperature, measured with single photon
powers. The data are fitted to a model (dashed lines) combining decreasing TLS related losses
(Eq. 6.2) and losses due to an increasing surface resistance with temperature (Eq. 6.1)

.

The trend of increasing Qint is weakest for the aluminum MSR in the copper waveguide,

which indicates that this MSR is not limited by TLS. Due to the normal conducting cop-

per waveguide does not shield external fields. Thus vortices might limit the performance
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of the aluminum MSR in the copper waveguide [141]. This effect is not observed for the

niobium MSR, due to its higher critical field [142]. The difference in quality factor of

the niobium stripline in the copper and in the aluminum waveguide can be attributed to

losses to the copper wall, as suggested by simulations. When increasing the temperature

of the MSRs, two effects on the internal quality factors are expected. Approaching the

critical temperature leads to a decrease of Qint, due to an increasing surface impedance.

Considering a two fluid model [143], the following temperature dependence is found

1

QRs
int

=
A

T
exp

(
− ∆

kBT

)
+

1

Qother
. (6.1)

Here T is the temperature, ∆ the superconducting gap at zero temperature, kB the

Boltzmann constant and A a constant. An additional Qother accounts for other tem-

perature independent losses. This model is expected to show good agreement until

Tc/2. [144]

TLS saturate with increasing temperature, which leads to an increase in quality fac-

tor [129]
1

QTLS
int

= k tanh

(
hfr(T )

2kBT

)
+

1

Q′other

. (6.2)

Where k is the loss parameter and hfr(T ) represents the energy of the TLS at the

resonance frequency of the MSR for a given temperature. The resonance frequency

barely changes with temperature (Fig. 6.7 b)), which allows us to fix the frequency of

the TLS to the resonance frequency of the MSR in the low temperature limit. Q′other is

analogue to Eq. 6.1.

Figure . 6.6 b) shows the dependence of the internal quality factor of the aluminum MSRs

on the base temperature of the dilution cryostat. The data is fitted to a combined model

of TLS related losses (Eq. 6.2) and conductive losses (Eq. 6.1). Until about 200 mK the

MSRs in the copper waveguide show a constant internal quality factor. This gives

further evidence that dissipation due to TLS is not the dominant loss mechanism for the

aluminum MSRs in the copper waveguide. In the aluminum waveguide an increase in

Qint with temperature until 200 mK is observed. Thus in this waveguide, TLS related

losses most likely limit the quality factor of the MSR. Above 400 mK all MSRs show

a similar decrease in Qint. This can be attributed to conductive losses, as the critical

temperature of aluminum is around 1.19 K [144]. Near the critical temperature, an
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internal quality factor slightly above 1000 is measured. This is close to the results of

finite element simulations, which predict an internal quality factor of about 500.
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Figure 6.7: Temperature dependence of the Nb MSRs. Nb MSR in Cu waveguide.
Nb MSR in Al waveguide. a) Internal quality factor of the niobium MSR at single photon

powers. The data is fitted (lines) to the TLS model, Eq. 6.2. For the MSR in the aluminum
waveguide, this model breaks down around 350 mK, when losses of the waveguide walls become
dominating. Therefore data points above 350 mK are disregarded for the fits. b) Resonance
frequency shift of the MSR at ≈ 106 photons. The data is fitted to the model described by
Eq. 6.3. In the copper waveguide good agreement is observed until around 800 mK (data point
at 1 K is omitted for the fit). In the aluminum waveguide, above 350 mK the observed frequency
change is dominated by the waveguide walls (as in a)).

6.4.2 Internal quality factors and frequency of Nb MSR with respect

to temperature

Figure 6.7 a) shows the temperature dependence of the internal quality factor of the

niobium MSRs. Niobium has a critical temperature of about 9.2 K [144], hence a break-

down of superconductivity isn’t observed. Thus, the data is only fitted with the model

describing TLS related losses (Eq. 6.2). The behavior of the MSR in the copper waveg-

uide agrees well with predictions from theory throughout the whole measurement range.

An increase of Qint up to 1 K is observed. For the MSR in the aluminum waveguide a

drop in the internal quality factor at 350 mK is measured. In this region the breakdown

of superconductivity for the aluminum MSRs (Fig. 6.6 b)) is observed. This indicates

that the breakdown of superconductivity in the waveguide walls is the limiting factor

here. For higher temperatures, the internal quality factor remains approximately con-

stant around 1× 106. Performing finite element simulations using the finite conductivity

of the aluminum (Al5083 [145]) waveguide wall a Qint of 1.16× 106 is observed, which

is consistent with our measurements.
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TLS also lead to a shift in the resonance frequency [129]

∆fr(T ) = fr(0)
k

π
×
(

ReΨ

(
1

2
+

1

2πi

hfr(T )

kBT

)
− log

(
1

2π

hfr(T )

kBT

))
. (6.3)

Here Ψ is the complex digamma function. Fig. 6.7 b) shows the frequency shift when

increasing the temperature of the cryostat. In contrast to the effect on Qint, off reso-

nant TLS contribute to the frequency shift [129], which makes the resonance frequency

independent of power. The only fit parameter is the combined loss parameter, k. For

measurements of the Nb MSR in the aluminum waveguide, a drop in the frequency shift

above 350 mK is observed. This again is due to the breakdown of superconductivity in

the waveguide wall. Below 350 mK, the measurements are in good agreement with the

model.

The values obtained for k by fitting the shift of the resonance frequency are about 10%

to 30% lower, than fitting the change of the internal quality factor (Fig. 6.7 a)). This

can be attributed to a non-uniform frequency distribution of TLS [129], which leads to

a difference whether Qint or ∆fr is considered. The intrinsic quality factor depends on

losses to TLS near the resonance frequency, whereas the shift of the resonance frequency

depends on a wider frequency spectrum of TLS.

An approximate low power, low temperature limit on Qint is given by 1/k. Taking the

k value found fitting the change of Qint gives a 20% to 30% higher limit, than found

in the measurements. This suggests that the majority of losses happen to TLS, but

there is also a second loss mechanism. According to simulations, the internal quality

factor of the MSR in the copper waveguide could be limited by the wall conductivity.

In the aluminum waveguide it could be attributed to bulk dielectric loss from the high-

resistivity silicon, as the loss tangent is not very well known [139].

The MSR in the waveguide represents a resonator in notch configuration [140]. For such a

resonator, the S21 parameter, which refers to a transmission measurement, follows [140]:

S21(f) = 1− Ql/|Qc|eiφ0

1 + 2iQl
f−fr
fr

(6.4)

Here Ql is the total quality factor, fr is the resonance frequency and Qc is the coupling

quality factor. In here φ0 accounts for an impedance mismatch in the transmission line
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before and after the resonator, which makes Qc a complex number (Qc = |Qc|e−iφ0).

The real part of the coupling quality factor determines the decay rate of the resonator,

in our case the emission to the waveguide. The physical quantity is the decay rate, κ,

which is inversely proportional to the quality factor [146] and therefore the real part is

found as: 1/QRec = Re(1/Qc) = cosφ0/Qc. Knowing QRec and Ql, the internal quality

factor can be obtained, as 1/Ql = 1/QRec + 1/Qint [146]. Plotting the imaginary versus

the real part of S21 forms a circle in the complex plane (in case of a resonance within

the frequency range).

Equation 6.4 represents an isolated resonator, not taking effects from the environment

into account. Including the environment, which arises by including the whole measure-

ment setup before and after the MSR, hence the equation is modified as . 6.4 to [140]:

S21(f) = (aeiαe−2πifτ )

(
1− Ql/|Qc|eiφ0

1 + 2iQl
f−fr
fr

)
(6.5)

Here a and α are an additional attenuation and phase shift, independent of frequency. τ

represents the phase delay of the microwave signal over the measurement setup, which

has a linear dependence on frequency.

6.4.3 Tuning coupling of MSR to the waveguide

Fig. 6.8 illustrates the actually measured configurations. In the copper waveguide a) - e),

one sample was measured each time, in the aluminum waveguide, three samples could be

measured at once, labelled (f1)-(f3) in the following. The three samples in the aluminum

waveguide were put along the propagation direction, all in the same configuration. As

they MSRs had to have different resonance frequencies, one MSR had longer legs (f3),

leading to a nominally lower resonance frequency of around 0.5 GHz. This MSR, as well

as a second one (f2), having a resonance frequency of nominally 8 GHz, is backed with

an empty silicon substrate. This reduces the resonance frequency, due to the higher

effective dielectric constant.

The measurement results are plotted in Fig. 6.9, are in good agreement with the sim-

ulation data. The weak dependence on the number of photons agrees well with the

expected power-independence of the coupling. The closer the MSR is to the wall, the

lower the coupling quality factor a), b), inline with simulations. With the additional
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Figure 6.8: Measured configurations of MSRs in the waveguide. The orange border refers to
a waveguide made from copper, the gray border to one made from aluminum. In the copper
waveguide, one sample was tested at each time, whereas in the aluminum waveguide three
samples were tested at once, refereed to as (f1)-(f3). The dimensions of the different waveguides
are stated. All dimension in mm.

empty substrate, the quality factors follow the predictions from simulations c), d). For

the substrate further away from the MSR, d)- f), highest coupling quality factors are

observed. The difference in the coupling between configurations d), e) and (f1), which

should be similar (the only nominal difference is the waveguide width) to a slight dis-

placement of the MSR as discussed before. The quality factors of (f2) and (f3) are

higher, as they are already backed with an empty substrate. Thus the relative influence

of the neighbouring substrate is reduced, leading to a higher Qc.

6.4.4 Resonance frequency in dependence of photon number in the

MSR

The measured resonance frequencies are shown in Fig. 6.10. The additional silicon sub-

strate backing reduces the resonance frequencies of the 7.5 GHz(f3) and 8 GHz(f2) MSRs,
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Figure 6.9: Coupling quality factor for different configurations (see Fig. 6.8). The lines depict
the simulated data, the points are the measurements.

a
a

b
b

c
c

d
d

e
e

f1
f1

a
b

c
d

e
f1

f2
f3

0.01 10 1e4 1e7
7.2

7.4

7.6

7.8

8.0

7.9

7.92

7.94

7.96

0.01 10 1e4 1e7

f r
 (

G
H

z)

f r
 (

G
H

z)

n n

a) b)

Figure 6.10: Resonance frequencies for the different configurations (see Fig. 6.8) in dependence
of photon number. The lines depict the simulated data, the points are the measurements. a) All
measured configurations. b) Configurations with nominally the same resonance frequency. The
deviation of the simulated resonance frequency for configuration c) can be explained with the
closer sapphire substrate, compared to the other setups. The sapphire leads to a higher effective
εr and thus a lower resonance frequency.

plotted in (i). Except (f1), simulation results accurately predict the resonance frequen-

cies. All the other setups have resonance frequencies in the same range (Fig. 6.10(ii)),

which is predicted by simulations. There are several explanations for the 70 MHz devia-

tion of the resonance frequency, which is not seen in the simulation data. One possibility

is, a variance in the chip dimension. This would lead to a different effective dielectric

constant and thus a lower resonance frequency. Other possibilities include a slight dif-

ference between the MSRs or its placement on the substrate.
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There is no dependence of the resonance frequency on the number of circulating photons.

6.4.5 Shift of the resonance frequency of the Al MSR with increasing

temperature
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Figure 6.11: Shift of the resonance frequencies for increasing base temperature of the aluminum
MSR. Al MSR in copper waveguide. Al MSR in aluminum waveguide.

The shift of the resonance frequency of the three measured aluminum MSRs for increas-

ing base temperature is plotted in Fig. 6.11. A decrease of the resonance frequency is

seen above 500 mK. The shift is similar for all three measured samples. The drop in

resonance frequency can be explained with an increasing surface inductance over temper-

ature, which originates from an increasing effective penetration depth [58]. The increase

of the penetration depth can be estimated with the Mattis Bardeen theory [147].

The results are similar to the one found in [59, 58], where thin aluminum film res-

onators were measured. There, the frequency shift shows good agreement with the

Mattis-Bardeen theory.

6.4.6 Resonance frequency shift of the niobium MSR with increasing

temperature - comparison between low and high input powers

Fig. 6.12 compares the shift of the resonance frequency for input powers at the single

photon limit to input powers six magnitudes greater. The main difference is the higher

noise in the single photon limit leading to increasing uncertainties. Overall, the low and

high power measurements show the same temperature dependence. Thus both can be
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Figure 6.12: Shift of the resonance frequency of the Nb MSR with increasing temperature.
High power measurements were taken for the fit (Fig.6.6). ≈ 106 photons circulating in the
resonator single photon limit for the MSR in a copper waveguide. ≈ 106 photons circulating
in the resonator single photon limit for MSR in a aluminum waveguide.

taken to fit ∆fr with the same results. Given the lower uncertainties, the high power

measurements allows to perform the fit.

In Fig. 6.12 the measurement results are plotted until 1.4 K. For the fit to the MSR in

the copper waveguide, the data points above 0.8 K are omitted as the behavior above is

not well described by the model anymore.

6.4.7 Internal quality factor of the niobium MSR for high excitation

powers

Fig. 6.13 shows the internal quality factor of the niobium MSR over the whole mea-

surement range. The best performing niobium MSR showed an internal quality factor

of above eight million for high input powers. Due to attenuators in the measurement

chain (Fig. 3.6 a)) higher input powers were not possible. Given the tendency, one would

expect an even higher quality factor for higher input powers. The difference between

the two MSRs in the aluminum waveguide is probably related to TLS losses. A slightly

lower value for the combined loss parameter k of the better performing MSR (Tab. 6.2).

The finite conductivity of the copper is probably the reason for the lower quality factor

measured for the MSR in the copper waveguide.
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Figure 6.13: Similar to Fig. 6.6 a) but showing the full measurement range of the niobium
MSR. The internal quality factor reaches nearly ten million. Nb MSR in copper waveguide.

Nb MSR in aluminum waveguide.

6.4.8 Fit results

The internal quality factor of the MSR changes with temperature. In case of the niobium

MSR this is explained with the loss to two level systems (Eq.6.2). By fitting this model

to the measurement data (Fig.6.7 a)). TLS also lead to a shift of the resonance frequency,

predicted by Eq. 6.3. The measurement results including the fits are shown in Fig. 6.7

b).

In case of the aluminum MSR, an increasing surface resistance also leads to an additional

effect on Qint, next to the TLS. Thus a combined model of the surface impedance

(Eq. 6.1) and TLS (Eq. 6.2) for the fit is used:

1

QTLS + Rs
int

= k tanh

(
hfr(T )

2kBT

)
+
A

T
exp

(
− ∆

kBT

)
+Qother (6.6)

To fit this model to the change of Qint, the inverse of Eq. 6.6 was taken. The fit

parameters of all performed fits are listed here. In Tab. 6.1 the fit results of Eq. 6.6 to

the measurements of the aluminum MSR (Fig. 6.6 b)) are given.

In case of the aluminum MSR in the copper waveguide, 1/k can not be taken as a low

energy low temperature limit for Qint, as the MSR is limited by other losses. Only the

MSR in the aluminum waveguide, being limited by TLS related losses, 1/k = 6(1)× 105,

is in agreement with the measurements. In turn, it was not possible to extract a useful
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Table 6.1: Fit results including fit errors for the measurement of the internal quality factor
of the aluminum MSR, for stepwise increasing temperature. The results including the fits are
shown in Fig. 6.6 b). The corresponding model is given in Eq. 6.6. Given that the the MSRs in
the copper waveguide are not limited by TLS related losses, the fit values are not trustworthy.
A similar conclusion can be drawn for the MSR in the aluminum waveguide, for Qother. The
MSR seems to be either limited by TLS or surface impedance losses, so Qother is not seen in the
measurement.

A Qother k

Al - cu ( ) 5.6(7)× 10−4 4(1)× 105 1.2(6)× 10−6

Al - cu ( ) 10.2(9)× 10−4 0.92(2)× 105 4.46× 10−1 ± 2.1

Al - al ( ) 6.5(7)× 10−4 - 1.6(2)× 10−6

value for Qother, as the MSR was either limited by TLS effects or increasing conductive

losses. For the MSRs in the copper waveguide Qother is in agreement with the measure-

ments. The values obtained for A, which refers to the increasing surface impedance, are

in the same range for all measurements.

Tab. 6.2 lists the fit results for the niobium MSR. The change of the internal quality

factor with temperature (Fig. 6.7 a)) and the change of the resonance frequency with

temperature (Fig. 6.7 b)) is fitted. For the niobium MSR the k can be either determined

Table 6.2: Fit results including fit errors for the measurement of the internal quality factor of
the niobium MSR, for stepwise increasing temperature. The measurement results including the
fits are shown in Fig. 4. The corresponding model for the change of Qint is given in Eq.6.2 and
for the change of the resonance frequency in Eq. 3.

fit to Qint(T ) fit to ∆fr(T )
k Qother k

Nb - cu ( ) 10.0(2)× 10−7 2.53(4)× 106 9.1(5)× 10−7

Nb - al ( ) 7.5(4)× 10−7 4.7(5)× 106 5.6(3)× 10−7

Nb - al ( ) 7.9(7)× 10−7 7(2)× 106 6.1(4)× 10−7

by fitting the change of Qint or the change of the resonance frequency. In both cases

the value obtained are in the same range. Nevertheless, the value obtained fitting the

resonance frequency is throughout 10% − 30% higher, than fitting Qint. The reason

lies in the frequency distribution of the TLS [129]. In addition, the Qint limit given

through k. Qother gives an upper limit on the internal quality factor. The fit values are

compatible with the measurements (Fig. 6.13).



Microwave stripline resonators 101

6.5 Conclusion

The characterized MSRs show single photon intrinsic quality factor of up to one million

at 20 mK. A strong dependence of the internal quality factors on the photon number

and the temperature indicates losses to two level systems. The design presented is

appealing for testing material of the MSR, the substrate it is patterned on and for

validating fabrication processes. However, the observed quality factors are expected to

increase when more complex designs are used, such as suspended structures [133] or by

improving the surface quality through deep reactive ion etching [135].
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We present an experimental investigation of stochastic switching of a bistable Josephson

junctions array resonator with a resonance frequency in the GHz range. As the device

is in the regime where the anharmonicity is on the order of the linewidth, the bistability

appears for a pump strength of only a few photons. We measure the dynamics of the

bistability by continuously observing the jumps between the two metastable states, which

occur with a rate ranging from a few Hz down to a few mHz. The switching rate strongly

depends on the pump strength, readout strength and the temperature, following Kramer’s

law. The interplay between nonlinearity and coupling, in this little explored regime, could

provide a new resource for nondemolition measurements, single photon switches or even

elements for autonomous quantum error correction.

7.1 Motivation

The non-linearity provided by atoms and Josephson junctions is a necessary ingredient

to observe quantum mechanical effects in cavity quantum-electro-dynamics (QED) and

circuit QED (cQED) systems. Strong nonlinearites, much larger than the linewidth

of the transition, are required to realize qubits [30], implement quantum information

protocols [148, 149] and realize textbook quantum optics experiments [150, 151]. Non-

linearities much smaller than the linewidth of the transition are typically exploited for

parametric processes [45, 152, 36] like amplification or frequency conversion at the quan-

tum level.

Besides quantum information applications, there has been a growing interest to exploit

cavity QED for ultralow-power classical logic elements [153, 154, 155]. This interest

has been sparked by the ever growing all optical communication networks. Remark-

ably, a single photon transistor [156], reminiscent of an electronic transistor, has been

implemented for the optical domain. In this device a single photon can switch a large

optical field. Realizing such devices has been a challenging endeavour as the required

non-linearity is hard to realize, due to the weak interaction of optical light with atoms.

Much stronger light matter interactions can be achieved in the microwave regime using

the cQED platform. In this context Josephson junction arrays (JJAs) have proven to

be an ideal circuit element to build superconducting qubits with excellent coherence

properties and unique tuning capabilities [157, 158, 159]. Similarly, JJAs have also been
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used to build quantum limited parametric amplifiers [160, 161, 36, 162]. Recently, the

coherence properties of the self resonances of JJAs [163, 43], as well as their self-Kerr and

cross-Kerr coefficients have been measured [51]. The measured Kerr coefficient showed

good agreement with a model based on a second order expansion of the Josephson

potential [164].

A regime of particular interest arises when the self-Kerr Ki and cross-Kerr Kij nonlinear

coefficients are on the order of the linewidth κ of the system. In this regime the system

will show a pronounced bistability [165, 54] at the single to few photon level. Bistability is

a phenomenon which is relevant in many fields, ranging from chemistry [166] and biology

[167, 168] to Josephson junction physics [169, 170] and cQED [171]. Very recently, an

optically levitated nanoparticle has been shown to exhibit a stochastic bistability [172]

and Kramers turnover [173].

This chapter reports on the realization of a JJA resonator with multiple modes and

strong self-Kerr and cross-Kerr coefficients in the regime Ki,Kij ≈ κ. Further by in-

vestigating the bistability of one mode of the JJA and characterize the dependence of

the switching rate on the pump strength, readout strength and temperature. In addi-

tion, the numerical model, based on Kramer’s’ theory (described in the last section of

chapter 2), is in good agreement with the experimental observations.

7.2 Device Description

The JJA consists of 103 cascaded Josephson junctions, with a small capacitance to

ground C0, coupled to a 6 mm long microwave antenna and a shunt capacitance Cs, as

shown in Fig. 7.1. The junctions are fabricated on a sapphire substrate using electron

beam lithography and bridge-free double-angle evaporation [174]. An electron beam

image of the junctions can be found in Fig. 7.1d. The junctions were designed to

have a large ratio EJ/EC ≈ 200, in order to suppress coherent quantum phase slips

(CQPS) [175, 43]. Here EJ is the Josephson junction energy and EC is the charging

energy. The parameters of the JJA were designed such that the fundamental resonance

of the JJA combined with the shunt capacitance is around 1 GHz. The mode spacing

for the first 10 modes is about 1.2 GHz and progressively becomes smaller for higher

resonances [43, 51].
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Figure 7.1: a) Photograph of one half of a rectangular copper waveguide with a 6 GHz cutoff. A
JJA with a microwave antenna is fabricated on a piece of sapphire and placed in the center of the
waveguide b) Schematic representation of an array of Josephson junctions inside a waveguide.
C0 is the capacitance of the islands to ground, CS is the shunt capacitance for the array, CJ is the
junction capacitance and Cg denotes the coupling capacitance of the antenna to the waveguide.
LJ is the Josephson junction inductance. The input and output couplers to the waveguide are
shown on the top left and top right of the schematic. (c) Optical image of the JJA coupled to a
6 mm long antenna and a shunt capacitance. The inset shows a zoom-in on the junction array.
(d) Electron beam image (blue box in the inset) of ten of the 103 Josephson junctions.

The JJA is placed inside a copper waveguide [176] with a 6 GHz cutoff, as shown

in Fig. 7.1a. Due to the capacitive coupling of the JJA to the waveguide, we can

characterize the sample by performing microwave transmission measurements using a

vector network analyzer (VNA). Due to the relative symmetry of the electric field of

the waveguide and the antenna, the even modes of the JJA will couple poorly to the

waveguide and not be visible in transmission measurements. The waveguide with the

sample is mounted on the mixing chamber stage (10 mK) of a cryogen free dilution
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Figure 7.2: Transmission measurements, measured with a power corresponding to about one
photon circulating in the resonator. The solid line in a), (c), (d) is a fit using Eq. 7.1 to extract
Qtot and ωR. a) Resonator response measurement for mode five b) Relaxation time T1 on mode
five with a pump strength of n̄P = 115 photons. The solid line is an exponential fit to the data
with T1 = 3 µs. (c) Resonator response measurement for mode seven. (d) Resonator response
measurement for mode nine.

refrigerator. The sample is enclosed in a double layer cryoperm shield inside a completely

closed copper can. The stainless steel input lines are attenuated with 20 dB at 4 K and

30 dB at base temperature. They are filtered with a combination of a 12 GHz low pass

and an Eccosorb filter. The output stage consists of a 12 GHz low pass filter, two 4-

12 GHz isolators and a 4-8 GHz high electron mobility transistor amplifier. The effective

measurement bandwidth for direct transmission measurements using a VNA is limited

to about 4-9 GHz due to the cutoff of the waveguide and the combined bandwidth of

other microwave components.
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Within the accessible measurement bandwidth three resonances are characterized by

fitting their transmission data to a notch type response function [177] given by eq.7.1.

From these measurements the resonance frequencies (ωi/2π), the internal and the cou-

pling quality factors is extracted shown Fig.7.2 and Table. 7.1.

S21 = 1−
1

Qi,ext
− 2i δf

ωi/(2π)

1
Qi,tot

+ 2iω−ωi
ωi

. (7.1)

The parameter δf takes into account an impedance mismatch. The extracted parameters

are summarized in Table 7.1.

Mode ωi/2π Qtot κi Ki Ki7

(GHz) (kHz) (kHz) (kHz)

5 4.816(1) 26000 181 66 187

7 7.1058(2) 950 7500 133 -

9 9.278(1) 3375 2750 218 343

Table 7.1: Parameters for the three array modes that can be directly measured with the VNA.
fr and Qtot were extracted from data. The Kerr and cross-Kerr coefficients are calculated from
a fit to the dispersion relation Fig. 7.3d.

Fig. 7.2b shows a measurement of the decay time T1 of mode five for a pump strength

of about n̄P = 115 photons. To excite the resonator the pump was detuned by about

-2.54 MHz from the bare frequency ωP /2π = 4.8156 GHz of mode five. Similar to a

two-tone measurement we use mode seven as a readout, with a readout strength of

n̄R = 0.5 photons. To perform the decay time measurement we excite mode five for a

few µs with a pulse before performing a readout on the pump mode again using a pulse

of a few µs. By varying the delay between the two pulses we measure how the excitation

decays over time. From the measurements we find T1 ≈ 3µs.

To observe the resonances of the modes outside the measurement bandwidth, we ex-

ploit the cross-Kerr interaction, which is induced by the junction non-linearity. The

Hamiltonian for the JJA, up to second order, is given by

H/~ =

N∑
i=1

(ωia
†
iai +

Ki

2
a†iaia

†
iai) +

N∑
i,j=1
i 6=j

Ki,ja
†
iaia

†
jaj . (7.2)

The Hamiltonian consists of a self-Kerr term Ki which leads to a photon number ni =

a†iai dependent frequency shift of mode i and a cross-Kerr interaction Kij , which leads

to a frequency shift of mode i depending on the photon number in all other modes j.
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7.3 Two-tone spectroscopy

Since the other resonance frequencies of the JJA’s are out of the HEMT amplification

bandwidth or below the cutoff frequency of the waveguide, we utilize a two-tone mea-

surement technique to indirectly measure them. We use mode seven as read-out and

apply a second pump tone. We sweep the frequency of this pump tone from 960 MHz

to 20 GHz. Such a two-tone spectroscopy measurement can be seen as a pump probe

experiment. The VNA is used to monitor one mode while a signal generator is used to

excite a second one. We then observe the shift in the read-out mode due to populating

other resonances through the pump tone. From this we can observe e.g. the fundamental

mode of the array at 963 MHz and other higher resonant modes up to 20 GHz which

is the limit of our signal generator. Two tone measurements for our array are shown in

Fig 7.3.

Figure 7.3d, shows the dispersion relation of the array. The frequencies outside the

HEMT bandwidth are extracted by two-tone spectroscopy measurements as shown in

Fig.7.3a, b, c. The mode spacing for the first 10 modes is about 1.2 GHz. For higher

resonant modes the spacing between modes becomes smaller. The • in Fig 7.3d are

obtained by diagonalizing the capacitance matrix which includes the shunt capacitance

(Cs), junction capacitance (CJ), the ground capacitance (C0) and the Josephson induc-

tance (LJ) for the entire array structure. From the fit the obtained JJA parameters

are C0 = 0.152 fF, CJ = 34 fF, LJ = 1.25 nH, CS = 18 fF with a confidence range

of about 20 %. These parameters match well to the expected design values and room

temperature resistance measurements of the junctions. With these parameters, the self-

kerr Ki and the cross-kerr Ki,j can be calculated using a procedure similar to Ref. [51].

The results are summarized in Table 7.1 of for modes five, seven and nine. Using these

coefficients the photon number is calibrated by measuring the resonance frequency shift

as a function of the applied power as shown in Fig.7.5. The attenuation extracted

from these Kerr measurements matches within 4% to the attenuation in the cryostat,

determined by independent transmission measurements. Most of the even modes can

not be observed from two tone measurements as the electric field distribution of these

modes has a symmetry that does not couple to the waveguide. For higher mode numbers

this symmetry is somewhat broken due to inhomogeneities of the junctions and we can

again excite these modes. It should also be noted that a discrepancy between the model
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Figure 7.3: Two-tone measurements and dispersion curve. a),b) and (c) show the transmitted
amplitude of the readout mode with frequency ωR/2π = 7.105 GHz as a function of the pump
tone frequency ωD

P and detuning ∆R. The black arrows mark the frequencies when the pump
tone matches a mode of the resonator, ωD

P , leading to frequency shift in the read out tone. (d)
Measured resonant mode frequencies of the JJA from the two-tone spectroscopy. • represents the
calculated dispersion relation without including corrections due to the cross coupling between
segments of the array, and • represents the measured resonant mode frequencies up to 20 GHz.

and the measurements for modes 9 and 10. This is most likely due to the capacitive

cross coupling between the parallel segments of the chain of Josephson junctions 7.1 c.

This effect can be accounted for by introducing additional capacitance’s with a minimal

impact on the values of the self-Kerr and cross-Kerr coefficients for the lower modes.
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7.3.1 Two-tone spectroscopy on bi-stable mode

Figure 7.4 show the results of a two-tone spectroscopy where the frequency of a pump

tone around mode five is swept while weakly probing mode seven with the VNA. When

the pump tone is resonant with mode five, the resonance frequency on mode seven shifts

due to the cross-kerr interaction. The measured frequency of mode five, using two-tone

spectroscopy, matches the direct VNA measurement.
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Figure 7.4: Two-tone measurement. a) Shift ∆R of the resonance frequency of the readout
mode ωR/2π = 7.105 GHz upon application of a pump tone. The pump tone is detuned from
the resonance ωP /2π = 4.8156 GHz of the 5th mode of the JJA by a detuning ∆P and has
a pump strength of n̄P = 115 photons. Due to the nonlinearity of the JJA, the resonance
frequency of the readout mode is shifted when the pump tone matches mode five. b) Zoom in
on the bistable region of mode five. For a detuning of about ∆P = −2.58(4) MHz two different
resonance frequencies of the readout mode can be observed. The shifted and unshifted resonances
correspond to 115 and 1 circulating photons in mode five, respectively.

Upon closer inspection of the two-tone scan in Fig.7.4a one can observe a bistable region

(see Fig.7.4b) for a detuning of ∆P = −2.58 MHz from the bare resonance frequency

of mode five. Around this frequency, two different cross-Kerr shifts of mode seven can

be observed: A shift of ∆R = −7.32 MHz corresponding to a photon number of about

115 photons in mode five and a shift of 133 kHz corresponding to about one photon. In

the two-tone scan the residence times exceeding ten seconds in either the high or low

photon number states has been observed.
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7.4 Kerr coefficients and photon number calibration

7.4.1 Self-Kerr measurements

For the self-Kerr measurements only one mode i of the chain is excited. The frequency

shift ∆P with respect to the input power is measured using direct transmission mea-

surements. Each data-set is fitted with a notch type response function to extract the

frequency ωi and Qi,tot. From the shift relative to the bare resonance frequency the

self-Kerr coefficient Ki is extracted.

� 5
 (

M
H

z)

0.0

-1.0

-2.0

0.0

0

0.0

-2.0

1 2 0 5

0 1 2 0

Power (nW)Power (nW)

Power (nW) Power (nW)

a) b)
c) (d)

c) d)

5 10

0.0

-1.0

-1.0

2.5 7.5

-2.0

-4.0

-6.0

� �
 (

M
H

z)

� �
 (

M
H

z)

� 5
 (

M
H

z)

Figure 7.5: Self-Kerr and cross-Kerr measurements. The error on each data point is about
point size. a) Dependence of the self-Kerr frequency shift on the input power of mode five. The
red line is a third order polynomial fit - see text. b) Dependence of the self-Kerr frequency shift
on the input power of mode seven. The red line is a linear fit - see text. (c) Cross-Kerr frequency
shift of mode seven when applying input power to mode five. The red line is calculated using
the theoretical prediction for the linear self-Kerr term - see text. The read-out mode seven is
driven with about n̄R ≈ 0.5 photons. (d) Cross-Kerr frequency shift of mode five when applying
input power to mode seven. The red line is a polynomial fit to the data. The read-out mode five
is driven with about n̄R ≈ 1 photons.

Fig. 7.5a shows the self-Kerr measurements on mode five. For low input power P the

resonance frequency ∆5 changes linearly with power. For high input power, higher order
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Kerr terms (K ′i,K
′′
i ) start to play a role. To take this into account the data is fit with the

following dependence. With this the Kerr coefficients are extracted in units of Hz/W.

∆i(P ) = KiP +
K ′i
2
P 2 +

K ′′i
3
P 3 (7.3)

Fig. 7.5b shows the self-Kerr measurements on mode seven. Here the resonance frequency

∆7 changes linearly with the power due to the higher linewidth (κ7) of this mode.

7.4.2 Cross-Kerr measurements K75 utilizing two-tone spectroscopy

The cross-Kerr coefficients Kij are determined by utilizing two-tone spectroscopy mea-

surements. One mode i of the array is used as the readout with a power of about one

photon and the other mode j is excited with varying power. From the shift ∆R of the

resonance frequency of the readout mode ωR/2π upon application of a pump tone, the

cross-Kerr shift Kij is extracted. Figure 7.6 a) shows a typical two-tone spectroscopy

measurements to extract the cross-Kerr coefficient K75 by pumping mode five and ob-

serving the frequency shift on mode seven. Mode seven is driven with a constant readout

strength of n̄R = 0.5 photons. To extract the maximal frequency shift ∆R, each pump

frequency of the data is fit to a notch type response function and extract the resonance

frequency(solid black line). The maximal shift of the readout resonator for a given

pump power results in one datapoint in Fig. 7.5 c). Figure 7.6 b)-c) shows the two-tone

spectroscopy for different pump powers. From the measurement in Fig. 7.6 one can also

clearly observe that the mode becomes bistable as the power is increased. Figure 7.5 c)

shows the result of all two tone measurement to determine the cross-Kerr shift K75

when driving mode five and using mode seven as the readout. For low input power the

resonant frequency ∆7 changes linearly with the power but then rapidly higher order

terms come into play. In this case, even a third order polynomial fit does not agree with

the measured K75. Thus the cross-Kerr coefficient has been characterized by fitting the

slope at low powers in Fig. 7.5c. By using the dispersion relation fit in Fig. 7.3d and the

resulting diagonalized capacitance matrix, the ratio between K5 and K75 is extracted.

This ratio, together with K5 determined from the linear part of the fit function Fig. 7.5a

allows us to compute K75. A linear fit with the computed slope K75, shown by the

solid red line in Fig.7.5c, shows good agreement with the measurements at low powers.



Josephson Junction Array resonator 113

2

0

-2
0.0-2.5-5

0-10

0.0

-2.0

-4.0

-6.0

-4

-10 0-5

� P
 (

M
H

z)

�R (MHz) �R (MHz)

�R (MHz) �R (MHz)

� P
 (

M
H

z)

� P
 (

M
H

z)
� P

 (
M

H
z)

0

a) b)

c) d)

0

-2

-1

1

-10 0-5

-2

Figure 7.6: Cross-Kerr measurements K75. a, b, c, d Two-tone spectroscopy measurements
for different pump strength. Shift ∆R of the resonance frequency of the readout mode ωR/2π =
7.105 GHz with nR = 0.5 photons upon application of a pump tone to mode five. The pump
frequency is detuned by ∆P from the resonance of mode five ωp = 4.1856 GHz. a),b), (c) and
(d) Corresponds to a pump power of ≈ 0.01 nW, ≈ 0.7 nW, ≈ 1 nW and ≈ 2 nW respectively;
the solid black line corresponds to fit where the resonance frequency of the readout mode for
each pump frequency is extracted. From the fits the maximal frequency shift of the read-out
mode is extracted, for a given pump power in mode five.

Fig. 7.5d shows the cross-Kerr measurements K57 on mode five using mode seven as

the readout. Here the third order polynomial fit agrees well with the data. From the

ratio of the first order self and cross-Kerr coefficients extracted from fitting the data in

Fig. 7.5b and Fig. 7.5d and compare it to the Kerr coefficients extracted from fitting the

dispersion relation, the Kerr coefficients are in excellent agreement.

Furthermore, by converting the Kerr coefficients extracted from Fig. 7.5a-d from Hz/W

to Hz/photon the required conversion factor matches within 4% to the attenuation in

the cryostat, determined by independent transmission measurements.

For 0.1 nW input power it is estimated to be about 10 photons in mode five. By applying

this same conversion factor to the whole polynomial Eq. 7.3 and then use the observed
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frequency shift for a given input power to calculate the circulating photon number.

7.4.3 Power dependence of the line-width

Fig. 7.7 shows the linewidth of mode five and seven with respect to the input power. The

line-widths are extracted from direct transmission measurements. Each measurement

is fit with a notch type response function to extract the resonance frequency fr and

Qtot for a given drive power. The increase of the line-width κi as a function of the

circulating power is expected from the self-Kerr effect. For a circulating power of less

than one photon in mode five we find κ5(n̄P → 0) = 181 kHz, and for mode seven

κ7(n̄P → 0) = 7.5 MHz.
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Figure 7.7: a) Line-width κ5 vs. input power on mode five. For the lowest drive power we still
have a good enough signal to noise ratio to fit the data. We find κ5(n̄P → 0) = 181 kHz. The
black solid line corresponds to a fit of a

√
Power dependency. b) Line-width κ7 vs. input power

on mode seven. On the lowest drive power we still have a good enough signal to noise ratio to
fit the data with a κ7(n̄P → 0) = 7.5 MHz.

7.5 Continuous time measurements

To precisely characterize the residence time, a readout scheme similar to the dispersive

state detection of a superconducting qubit in a circuit QED architecture [22] is imple-

mented. Here mode seven is monitored continuously on resonance with a readout power

n̄R of about half a photon such that the mode does not shift or broadening. When

mode five is pumped with n̄P photons, a change in the transmitted readout signal is

observed corresponding to jumps between the high and the low amplitude states. Each
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data point is averaged on 500 measurements lasting 19.9 µs to get a good signal to noise

ratio. In addition, the analog to digital converter needs another 5 ms to transfer the

data. Thus, it takes about 15 ms to acquire one data point. The measurement routine

using the SDR14 acquisition board is shown in figure 7.8. Figure 7.9a shows a typical

19.9 us

0.1 us

Measurement time=
19.9 us* averages (500)

Data transfer
time=5-6 msec

19.9 us

0.1 us

Measurement time=
19.9 us* averages (500)

Figure 7.8: Measurement routine using SP device’s SDR 14 800 Msamples/s acquisition board.
Total measurement time of 19.9 µ s times the number of averages (500 averages in our case). In
addition, the ADC converter needs 5-6 ms of data transfer time to transfer the data.
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Figure 7.9: a) Transitions from the low amplitude state to the high amplitude state for n̄P =
9 photons at a detuning of ∆P ≈ ∆Max

P = -0.54(1) MHz from mode five. The readout mode
seven was driven with n̄R = 0.5 photons on resonance. The trace displayed here is a 15 s segment
out of a total recorded time of 20000 s. b) Histogram of the amplitude distribution ρ(A) for the
data displayed in a. (c) Histogram of ρ(A) for a detuning of ∆P = -0.59(1) MHz.(d) Histogram
of the amplitude distribution ρ(A) for a detuning of ∆P = -0.49(1) MHz. (e). Dependence of
the normalized state population in the high and low photon state on ∆P relative to the bistable
point. The solid line is a fit to a sigmoid function.

time trace for a measurement time of 15 s and n̄P=9 photons in mode five. One can

clearly observe two distinct amplitudes in transmission corresponding to two distinct

photon numbers in mode five. The switching rate Γ in this case is defined as the in-

verse of the average time between two transitions from the low to the high power state.

The transient time between these two states is much faster than the data acquisition

rate. Similar bistable behaviour was also observed in co-planar waveguides but in a

different parameter regime, where the non-linearity was much smaller than the mode

linewidth [171]. For larger non-linearities, fewer photons are required for the bifurcation
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offering promising opportunities for the development of microwave components at the

single photon level. In addition, the dynamics of the system is accurately modeled using

Kramers’ theory.

A histogram of the data shows a well separated bi-modal distribution for the two am-

plitude states. Furthermore, the residence times are extracted in the high amplitude

state, the resulting histogram shows an exponential behaviour typical for a Poissonian

statisics (see Fig.7.13). When the pump frequency is swept ∆P across the bistable point

the relative height of the peaks changes in the amplitude distribution ρ(A), Figure 7.9b-

e. There is a ∆Max
P for a given pump strength where the heights of the peaks are equal,

as shown for example in Fig.7.9b, and the switching rate is maximal.

7.5.1 Switching rate (Γ) dependence on the pump strength

In this section, the switching rate measurements for a total of ten different pump powers

ranging from 2.6 to 115 photons in mode five has been discussed. Figure 7.10b shows the

plot for maximally achieved switching rate ΓMax and the corresponding pump detuning

∆Max
P versus photon number. The lowest power where the switching can be observed

for is n̄P = 2.6 photons at a detuning of -169 kHz from the low power resonance.

This detuning matches well to the prediction [73] of ∆P = (
√

3
2 )κ5 = 160 kHz with

κ5 = 181 kHz.

Typically, stochastic switching in a bistable system is described by Kramers theory [178]

(please refer to the theory chapter 2.7 for detail explanation). There, the switching rate

is determined by the potential landscape and the fluctuations. For a symmetric potential

it is given by ΓMax = Γ0 exp(−Eb/kbT ), where Eb is the barrier height between the two

stable solutions and the prefactor Γ0 which depends on the relative strength of the

dissipation and the potential [178]. Here, the activation of the switching between the

two stable solutions likely originates from the dispersive shift of the resonator frequency

due to photon number fluctuations in the readout mode and thermal fluctuations of the

photon number in all modes.

In our case, the potential landscape is created by the interplay between the pump, the

self-Kerr effect and the damping of the mode. An intuitive choice for this potential [165,

54] is provided by integrating the equation for the photon number in the steady state



Josephson Junction Array resonator 117

of a damped Kerr oscillator [179]. From this model the scaling of Eb [180] and Γ0 for

the maximum switching rate is extracted as a function of the pump photon number n̄P .

Further using this scaling in a fit function (see Fig. 7.10b) with two free parameters to

match our data. In addition Γres is taken into account the finite switching rate for high

pump powers. This finite rate could be limited by phase slips on the junctions of the

JJA, which is estimated to be in the range of a few mHz.

Additionally, we observe a change of the switching rate with respect to ∆P following

a lorentzian curve. The point of maximum switching rate ∆Max
P also corresponds to a

symmetric amplitude distribution. In Fig.7.10a one can see the change of the switching

rate with respect to ∆P for three different pump powers. The width of this lorentzian

is about 72 kHz and the center shifts with increasing photon number in the pump.

From our model the shift of ∆Max
P with n̄P agrees well with the experiment as shown

in Fig. 7.10b. The deviation at high photon numbers can be explained by higher order

Kerr effects which are not taken into account in the model.

In order to compare the experimental results with the theoretical approach above, we

first note that the parameter ηP discussed in the theory chapter 2.7 is not directly

known but has to be inferred from the circulating photon number n̄P . Let us consider

the situation in 7.10b, where the maximum switching rate and the associated detun-

ing are plotted as a function of n̄P at the point of the maximum switch. In order to

compare to the above model, by varying ηP in the bistable region [η+, η−] (with KPP

and κi chosen as the values in the experiment) the detuning ∆̃Max
P is first numerically

located, for a given value of n̄P satisfying the symmetric potential condition namely

U(n̄+) = U(n̄−) = U(n̄P ). After adding a constant shift of KPP /2 + KPRn̄R to our

numerically determined ∆̃Max
P , as shown by the solid red line in Fig. 7.10b, the experi-

mental result are in good agreement with theory. From Eq.2.66, the barrier height Eb,

and frequencies ωL and ω0 for this symmetric point as a function of n̄P are extracted.

In order to fit the switching rate to Kramers equation, a form for the pre-factor Γ0 is

added to our equation. It is found that in general the form Γ0 ∝ ωLω0 valid for the

over-damped regime fits best to the experimental data. Fitting the measured rates Γmax

to the functional form AωLω0 exp(−βfitEb) + Γres on a log-log scale using least squares

procedure, the obtained fit parameters Γres = (0.006± 0.002) Hz, A = (54.0± 15.0) Hz

and the effective temperature βfit = (2.4±0.2). The errors quoted here are the standard

deviation on the estimated best fit parameters. The fitted curve was depicted by the
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Figure 7.10: a) Dependence of switching rate Γ on ∆P for three different pump strengths:
•- n̄P = 2.6 photons, •- n̄P = 4 photons, •- n̄P = 6 photons. The solid lines are lorentzian
fits to the data. b) Extracted ΓMax and corresponding ∆Max

P as a function of n̄P . The black
and red lines are from a fit to our theoretical model (see text). (c) Γ measured for constant
n̄P = 6 photons while varying the readout strength: •- n̄R = 0.5 photons, •- n̄R = 1.5 photons,
•- n̄R = 2.5 photons. (d) Γ measured for different cryostat base temperatures with n̄P = 6. In
a), b) and (d) n̄R = 0.5.

black line in 7.10b. We reiterate that in the fitting procedure the parameters Eb, ωL

and ω0 were calculated numerically from the potential Eq. 2.66.

7.5.2 Switching rate (Γ) dependence on the readout strength

To better identify the origin of the switching we also varied the power in the readout

tone. The measured results are plotted in Fig.7.10c for constant n̄P = 6 photons. We can

observe two effects for an increasing photon number in the readout mode: I) due to the

cross-Kerr effect the bistable point moves to lower frequencies. II) in contrast to lowering

the switching rate with the pump photon number, the readout photon number increases

the switching rate. For n̄R = 2.5 photons we see an increase in the switching rate by

about a factor of three. This can be understood as a form of measurement induced
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dephasing. As the photon number in the readout resonator fluctuates, the position of

the bistable point moves in frequency due to the cross-Kerr effect. This moves the pump

in and out of the bistable region into the regime where either the low or the high power

state are more likely, as the cross-Kerr frequency is on the order of the linewidth. This

photon number fluctuation happens at a rate κ7 = 7.5 MHz and is thus much faster than

our acquisition time. For n̄P > 2.5 photons, the switching becomes much faster and we

cannot observe it any more due to the limited measurement bandwidth and signal to

noise. Remarkably, changing n̄R by only one photon for a constant ∆P we can switch

the state of mode five from the low to the high photon number occupation.

7.5.3 Switching rate (Γ) dependence on the temperature

To study the influence of thermal noise on the switching rate, we increased the cryostat

base plate temperature from 10 mK to 50 mK (n̄P = 6 photons, n̄R = 0.5 photons).

Increasing the temperature increases the average thermal population as well as the

fluctuations of the photon number in all of the modes of the JJA, most notably for the

lower frequency modes. As a consequence, depicted in Fig. 7.10d, we observe a shift

in the magnitude and location of the maximum switching rate, similar to Fig. 7.10c.

This is again due to the cross-Kerr interactions of mode five with all other modes. The

observed shift can be explained, by an increase in the JJA temperature up to about

100-130 mK depending on the initial temperature. We can get an upper bound for the

JJA temperature at the base temperature of the fridge, if we assume that the linewidth

broadening we observe for mode five is due to the thermal population in the other modes

of the JJA. This broadening can be explained by a minimal temperature of the JJA of

≈ 50 mK. This is consistent with other cQED experiments [181, 182], where the devices

are well above the fridge base temperature.

7.5.4 Additional observation

In addition to the bi-stability, at an intermediate power of about n̄P = 4− 9 metastable

behaviour has been observed on the mode 5 of the JJAR. Figure 7.11 shows one such plot

for a pump strength of about n̄P = 4 photons, while the readout mode seven was further

driven with n̄R = 0.5 photons. However, the metastable behaviour is not investigated

in detail.
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Figure 7.11: Continuous time measurement: a) Transitions from low amplitude state to the
intermediate metastable states and to the high amplitude state for n̄P = 4 photons on mode
five. The readout mode seven was driven with n̄R = 0.5 photons.b) Histogram of the amplitude
distribution for the data displayed in a).

7.5.5 Width of bistable region for varying photon number
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Figure 7.12: Width WΓ of the bistable region for different pump strengths n̄p.

Figure 7.12 shows the width of the bistable region obtained from the switching rate

measurements for the ten different pump strengths shown in Fig. 4b in the main text.
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For very low pump strengths up to 10 photons the width of the bistable region is approx-

imately constant ≈ 72 kHz. For photon numbers greater than 10 photons the bistable

region becomes wider.

7.5.6 Residence time and state population inversion

Figure 7.13a, b show the exponential dependence of the residence time for a pump

strength of n̄P = 9 photons and n̄P = 6 photons at a detuning of ∆P = ∆Max
P MHz

from mode five. This indicates that the transitions are random and follow a Poissonian

statistics. From the exponential fit to the data, a mean residence time is extracted in

the high state 〈TUP 〉.
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Figure 7.13: a), b). Probability of being either in the low-photon state or in the high-photon
state in a bistable region. •, • represents the measured data, — , — are from fits using Eq.
2.67, and — · , — · are fits to a sigmoid function. The pump strength is n̄p = 9 for a) and
n̄p = 6 for b). The inset in a), b) shows the Histogram of the residence time TUP with pump
strength of n̄p = 9, n̄p = 6 and for a detuning of ∆P = ∆Max

P MHz from mode five. The red line
is an exponential fit to the data giving 〈TUP〉 = 14.4 s, 〈TUP〉 = 6.5 s.

The inset plots in Fig.7.13a,b show the probability for being either in the low or high

photon state by scanning ∆P across the bistable region for the different pump strengths

n̄P = 9 photons and n̄P = 6 photons. It shows the state population inversion between

the low photon and the high photon state, following a sigmoid behaviour f(x) = 1/(1 +

e−x).
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The statistics of the results for different n̄p, for both the residence time and the proba-

bility distributions, are consistent with bistable systems well described by the Kramers

model [71].

7.6 Conclusion

A stochastic bistability in a 103 Josephson junction array which appears at a pump

strength of only a few photons is measured. This switching at low power is achieved by

engineering the Kerr interaction strength to be comparable to the linewidth. An expo-

nential decrease of the maximal switching rate for increasing pump strength as expected

from Kramers theory is observed. For an increase in readout strength or temperature,

the switching rate increases, likely due to photon induced dephasing through cross-Kerr

interactions.



Chapter 8

Qubit readout using a Josephson

junction array resonator

In this chapter I describe a Josephson junction array resonator (JJAR.2.0) engineered

for a quantum non-demolition measurement (QND) on a qubit. The intention of the

engineered device is to perform a high efficiency qubit readout without any dephasing on

the qubit. In the end of this chapter I show some preliminary results, characterizing the

Josephson junction array resonator and the qubit.

8.1 Motivation

Quantum information using superconducting circuits requires qubits with long coher-

ence times combined with a high-fidelity readout. A common strategy to readout a

qubit consists in coupling it dispersively to a resonator, so that the qubit states |0〉 and

|1〉 shift the resonance frequency differently. The frequency change can be detected by

measuring the phase or amplitude of a microwave pulse being either reflected or trans-

mitted through the resonator. However, this readout scheme faces two difficulties which

prevent from measuring the qubit state in a single readout pulse: the first one is that

the readout has to be completed in a time much shorter than the time T1 in which the

qubit relaxes from |1〉 to |0〉 and the second with a power low enough to avoid spurious

qubit transitions [183].

123
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A possible route of solving faster readout scheme is by using a sample-and-hold detector

consisting of a bi-stable hysteric device [33, 47, 48]. In a sample-and-hold detector

system, the bi-stable resonator is a Josephson bifurcation amplifier. The |g〉 and |e〉

state of the qubit is mapped on to the two stable states respectively [47, 184]. When

the JBA device is driven by a microwave signal at a chosen frequency and power, this

non-linear resonator bifurcate between two stable states with different intra-cavity field

amplitude and reflected phases [48, 47]. The initial design of JBA’s are used to readout

quantroniums and flux-quits, obtaining fidelity up to 90% with QND character. The

major drawbacks of the JBA are: to have the resonator bifurcate at a certain power

will cause unwanted qubit state transitions during readout [48, 47] and the resonator is

filled with (n̄ > 100′s) photons to achieve bi-stability which leads to excess back-action

on the qubit [73].

In another technique, the qubit state is mapped to the oscillator state of a parametric-

phase locked oscillator(PPLO) [46]. A PPLO is a resonant circuit in which one of the

reactances is periodically modulated. It can detect, amplify, and store binary digital

signal in the form of two distinct phases of self-oscillation [185]. The qubit readout

scheme using a PPLO enables a fast and latching-type readout. Once the qubit state is

latched to the oscillator state of the PPLO, as long as the pump of the PPLO is turned-on

the projected state of the qubit is protected irrespective to subsequent qubit transitions.

This scheme requires only a small number of readout photons in the resonator to which

the qubit is coupled, unlike the sample-and-hold detector system. [46].

In this chapter, our approach is to engineer an array of Josephson junctions and utilize

the lowest two resonant modes of the JJAR.2.0 for qubit readout. The fundamental

mode of JJAR.2.0 is coupled to the qubit and used as a standard dispersive read-out.

Due to symmetry coupling between the qubit and the JJAR.2.0, the qubit couples only

to the odd modes of the JJAR.2.0 and decoupled from the even modes of the JJAR.2.0.

Due to the cross-Kerr interaction, the second mode of the device is coupled to the

fundamental mode. The second mode of the JJAR.2.0 is pumped with a few hundred

photons to exhibit bi-stability. The qubit state can be determined using a readout tone

on mode two of the JJAR.2.0 via the pump tone on mode one. The main goal of this

device is to engineer the qubit-JJAR coupling, and to maximize measurement speed and

achieve single-shot QND readout of the qubit.
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8.1.1 Design constraints and working principle

The working principle of the device is described in this section. In order to achieve an

efficient qubit readout resonator, listed below are the few constraints that are taken into

account for engineering our device.

• Odd and even modes of the Josephson junction array must couple to a rectangular

waveguide with linewidth in the order of a few κ ≈ MHz. The qubit is coupled disper-

sively to mode one of the JJAR.2.0 while mode two of the JJAR.2.0 is decoupled from

the qubit. For dispersive readout of qubit the anharmonicity of the fundamental mode

has to be smaller than few MHz.

• The second mode of the array should exhibit bi-stability at a few photons. For this

reason the second mode of the device is engineered to have an anharmonicity (α) to be

around a few MHz′s.

• The rectangular waveguide acts as a high pass filter. Above the cutoff frequency most

of the energy will pass through the waveguide. Below the cut-off frequency, the electric

field decay’s exponentially and the energy is attenuated by the waveguide [56]. In our

design, I utilize this extra attenuation of the waveguide by having the qubit transition

frequency below the cut-off frequency of the waveguide [186], protecting the qubit from

the spontaneous emission known as Purcell effect [187, 74]. The qubit is perpendicular to

the electric field of the waveguide, which decouples the qubit from the waveguide. This

is useful to protect the qubit from dephasing induced by residual thermal photons and

hence improves the coherence time of qubit. Residual thermal photons are suspected to

arise from noise impinging on the readout resonator [186].

After carefully engineering the device by full-filling all the above mentioned constraints.

The working principle of the device is described in two steps which are given as follows

(see illustration 8.1):

1) Since the first mode of the array is dispersively coupled to the transmon qubit, the

resonance frequency of mode one can change based on the state of the qubit |g〉 (red

dot) and |e〉 (blue dot) [22]. The second mode of the array is decoupled from the qubit

and probed with a few hundred photons to show bi-stability (n̄2). Due to the cross-Kerr

interaction the frequency of mode two changes when the first mode is excited with a few
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Figure 8.1: Sketch illustrating the working principle of the qubit readout using JJAR.2.0 in a
rectangular waveguide. The qubit is dispersively coupled to mode 1 of the array and is decoupled
from the second mode of the array. The second mode of the array is pumped with (n̄2 > 100′s)
to be bi-stable. For QND-readout, mode two of the array is used to readout the state of the
qubit via the pump tone resonant with mode one. The pump on mode one shifts the resonant
frequency of mode two by the amount of photons (χ12) pumped into mode one (n̄1). Due to high
photon number in mode two, it latches onto one of the two bistable states depending on the state
of the qubit. When the qubit is in the ground state |g〉, low signal amplitude is measured on
mode two, and if the qubit is in excited state |e〉 high signal amplitude on mode two is measured.

photons. The amount of frequency shift is equivalent to the cross-Kerr coefficient times

the number of photons pumped on mode one (n̄1).

2) The pump (n̄1 > 0) is used to enable qubit readout via mode two of the array. The

pump is tuned in resonance with the mode one (ωP ) when the qubit is in the ground

state (green arrow in the illustration). The power on mode one is calibrated to drive

mode one with a few photons to minimize unwanted back-action on the qubit, but

sufficient to shift mode two by a few MHz. The readout tone is chosen at a particular

resonant frequency on mode two ωR(orange arrow in the illustration). When the qubit

is in the ground state, mode one is affected by the pump and mode two is shift lower in

frequency by a few MHz (dotted line position) and the readout signal is transmitted with

low amplitude as shown in the illustration 8.1. Due to the hysteresis of the bi-stability,

mode two will stay locked at this frequency due to the high circulating photon number.

If the qubit is instead in the e-state, the pump will not excite mode one and mode two

will remain at a high frequency (solid lines in the illustration). The readout signal will

now be transmitted with higher signal amplitude with no circulating power (n̄2 = 0) in
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mode two.

8.2 Theory of a transmon qubit coupled to a JJAR.2.0

In this section I discuss the theory of a transmon qubit and the Hamiltonian of a JJA

coupled to a transmon qubit. The Hamiltonian of the system is given as follows

Ĥ = Ĥq + Ĥarray + Ĥint (8.1)

The first and second term in the Hamiltonian 8.1 is the effective Hamiltonian of a

transmon qubit and a JJAR. The last term in the Hamiltonian is the interaction between

them.

8.2.1 Theory of a transmon qubit

The transmon consists of two superconducting islands separated by a Josephson junc-

tion [50]. The superconducting islands are designed such that the capacitive energy of

the circuit is lowered. In a circuit representation, depicted in figure 8.2, a large shunt

capacitance Csq is added in parallel to the Josephson junction. As a result the total ca-

pacitance is given by C∑ = CJq +Csq. Where CJq and Csq are the junction capacitance

and the shunt capacitance of a transmon qubit. The enhanced capacitance stabilises

charge fluctuations [50].

CSq CJq, LJq

a) b)
Energy

|0

|1

�

Figure 8.2: a) Circuit representation of a transmon qubit. The cross in the box symbolises
the non-linear inductance including the capacitance. The capacitance Csq is parallel to the
Josephson junction in order to lower the capacitive energy EC of the transmon qubit. b) The
potential energy of a transmon is periodic and has a cosine shape. Hence the quantized levels
are not equidistant in energy.
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A transmon qubit has a capacitive energy EC and a non-linear inductive EJ part. The

circuit for the transmon is shown in figure 8.2 [50]. The Hamiltonian of the circuit is

given as follows [50]

Hq =
Q2

2C∑ − EJ cosφ. (8.2)

Where EJ is the Josephson energy, C∑ = CJq + CSq is the sum of capacitance’s. The

transmon qubit is an anharmonic oscillator and acts as a qubit for a weak drive strength,

with the transition frequency (~ωq) between ground and excited state. The properties of

the transmon are discussed in detail in [50]. For large EJ/EC the effective phase across

the junction is small. Thus we can approximate the cosine by a taylor expansion up to

fourth order. The taylor expanded eq. 8.2 is given as

Hq ≈
Q2

2C∑ − EJ +
EJ
2
φ2 − EJ

24
φ4. (8.3)

The non-linear behaviour is still included in the fourth order term. The first three terms

approximate the cosine as a parabola describing a harmonic oscillator with a constant

energy shift Ej . The constant energy shift is neglected, because energy differences are

measured. The phase difference φ is connected to the flux variable Φ via φ = 2πΦ
Φ0

, hence

the charge and flux variable in equation 8.3 is replaced by the canonical conjugated

operators which are given as follows.

Φ̂ ≈ i(b− b†),

Q̂ ≈ (b+ b†)
(8.4)

Where b† and b are the creation and annihilation operator, respectively. They satisfy

[b, b†] = 1. These operators are chosen such that they obey the canonical commutation

relation [Φ̂n, Q̂n] = i. By substituting the canonical conjugate operators 8.4 in eq. 8.3.

The Hamiltonian eq. 8.3 is rewritten as follows

Ĥq = ~ω0b̂
†b̂− e2

24C∑ (b̂− b̂†)4. (8.5)

ω0 is the transition frequency of the qubit between the ground and excited state. Expand-

ing (b̂ − b̂†)4 and apply the first order perturbation theory and using the commutation
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relation [b̂, b̂†] = 1. The resulting Hamiltonian is

Ĥq = ~ω0b̂
†b̂− EC

2
(b̂†b̂)2 − EC b̂†b̂. (8.6)

The transmon is driven weakly such that only between lowest two energy levels are taken

into account with transition frequency ω0. The number operator b̂†b̂ is replace by the

Pauli operator σz. The final Hamiltonian of the qubit is given by

Ĥq =
~ωq
2
σz (8.7)

where ~ωq = ~ω0 − Ec. Since the transmon qubit is an anharmonic oscillator, the

anharmonicity α = E12 − E01 (where Eij is the energy difference between energy state

j and i) as shown in sketch 8.3, is measured by exciting the qubit at high power [188].

|g

|e

|f

�g, e �����g, f

���

Figure 8.3: Energy transitions of the transmon qubit. On the left a dipole transition between
the ground |g〉 and the first excited state of the qubit |e〉 is shown. On the right a two photon
transition between the ground |g〉 and the second excited state of the qubit |f〉 is shown. The
energy difference between this energy state is α/2

This additional transition is a two photon transition. Two photons at a slightly lower

frequency (α/2) excite the second level of the qubit with low probability. Thus very

high power is used increasing the probability of two photon transition to happen. The

frequency difference between the single and two photon transition is used to obtain

information on the anharmonicity.

In the transmon regime [50] the anharmonicity α equals the charging energy α = −EC .

Since the qubit transition frequency ωq and the charging energy is known, the Josephson

energy EJ is calculated by

~ωq =
√

8ECEJ − EC (8.8)
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8.2.2 Hamiltonian of JJAR.2.0

The electrical circuit of JJAR.2.0 is shown in figure 8.4a. The Lagrangian for the circuit

shown in 8.7a is given by
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Figure 8.4: JJAR.2.0. a) Electrical circuit representation of the JJAR.2.0, C ′0 is integrated
at the center of the array without breaking the symmetry. b) show the eigen-phase for the
fundamental mode (black dots) and second mode of the array (red dots) obtained from the
numerical simulations. The discrepancy due to influence of additional center ground capacitance
C ′0 is clearly visible on the 9th JJ. c) Dispersion relation for the circuit. The lowest mode of
the array is influenced by the shunt capacitance(CS), C ′0 influence the even modes of the array,
having the largest influence on the second mode of the array.

L =
CS
2

Φ̇2
0 +

C ′0
2

Φ̇2
N/2 +

N−1∑
x=1

(
C0

2
Φ̇2
x

)
+
N−1∑
x=0

Cj
2

(Φ̇x+1 − Φ̇x)2

−
N−1∑
x=0

EJ

(
1− cos

(
2π

Φ0
(Φx+1 − Φx)

))
(8.9)

In order to transform to the Hamiltonian the conjugate momenta (charges) are derived

with respect to the node fluxes defined on the islands Φx

QN/2 =
∂L

∂Φ̇N/2

= Φ̇N/2C0 + (Φ̇N/2 − Φ̇N/2−1)Cj + Φ̇N/2C
′
0 (8.10)
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Qx =
∂L
∂Φ̇x

= Φ̇xC0 + (Φ̇x − Φ̇x−1)Cj − (Φ̇x+1 − Φ̇x)Cj (8.11)

Rewriting the charges in a matrix representation

~Q = Ĉ ~̇Φ (8.12)

With the derivative of the flux vector with respect to time (~̇ΦT = (Φ̇0, Φ̇1, ...., Φ̇N )) and

the capacitance matrix

Ĉ =



C0 + Cj + Cs −Cj 0 · · ·
... 0

. . .
. . .

. . .
. . .

0 −Cj C0 + Cj + C ′0 −Cj 0 · · ·
... 0

. . .
. . .

. . .
. . .

0 0
... −Cj −Cj + C0


(8.13)

combined with the inverse of the inductance matrix

L̂−1 =



2
LJ

−1
LJ

0 · · ·
... 0

. . .
. . .

. . .
. . .

0 −1
LJ

2
LJ

−1
LJ

0 · · ·
... 0

. . .
. . .

. . .
. . .

 (8.14)

One can rewrite the Lagrangian of equation 8.9 as

L =
1

2
~̇ΦT Ĉ ~̇Φ− 1

2
~ΦT L̂−1~Φ (8.15)

By performing the Legendre transformation using the momentum vector

~QT = (Q0, Q1, Q2, ..., QN ) (8.16)

to obtain the Hamiltonian of the Josephson junction chain in the linear limit

H = ~QT ~̇Φ− L = ~QT Ĉ−1 ~Q− 1

2
~QT Ĉ−1 ~Q+

1

2
~ΦT L̂−1~Φ

=
1

2
~QT Ĉ−1 ~Q+

1

2
~ΦT L̂−1~Φ (8.17)
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Since the Hamiltonian is quadratic, it can be diagonalized and represented in the

form [51, 52]

H =
1

2

N−1∑
K=0

~ωKa†KaK (8.18)

By introducing the non-linearity of the Josephson junction as a perturbation the total

Hamiltonian of the JJA is given as follows (please refer to the theory chapter 2.5.2 for

detailed derivation).

Ĥarray =
∑
j

~ω′j â
†
j âj −

∑
j

~
2
Kjj(â

†
j âj)

2 −
∑
j,k

(j 6=k)

~
2
Kjkâ

†
j âj â

†
kâk (8.19)

Where Kjj and Kjk are the self and cross-Kerr coefficients.

8.2.3 Hamiltonian of total system

CJq, LJq

CSq

CJ LJ

C'0 C0

������ �x

C0 C0C0C0C0

CJ  LJ CJ  LJ CJ  LJ CJ  LJ CJ   LJ

Cs1 Cs2

Cg
Cg

Figure 8.5: Circuit of a transmon qubit capacitively coupled to a Josephson junction array
resonator which is loaded with an extra ground capacitance C ′0 and shunt capacitance CS1 and
CS2. Cg is the coupling capacitance between the qubit and the array. As the transmon couples
only symmetrically to the array and to the asymmetric odd modes (the coupling capacitance Cg

on left and right are the same).

The electrical circuit of our system is shown in figure 8.5. The interaction between a

transmon qubit and a single resonant cavity mode gives rise to the well known Jaynes-

Cummings Hamiltonian. The effective Hamiltonian of a JJAR coupled to a qubit is

given by equation 8.20 [50].

Ĥ =
~ωq
2
σ̂z+

∑
j

~ω′j â
†
j âj−

∑
j

~
2
Kjj(â

†
j âj)

2−
∑
j,k

(j 6=k)

~
2
Kjkâ

†
j âj â

†
kâk+~g(σ++σ−)(a1+a†1)

(8.20)
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The first term describes the qubit as a two level system or qubit. This approximation

is valid, only when the qubit is driven on a single transition between two of its states

only. The two states are usually referred to as |g〉 and |e〉 for the ground and excited

state, respectively.

The non-trivial dynamics of the system arise due to a last term term in the Hamiltonian,

accounting for the coupling of the atomic dipole moment of the qubit and the cavity

electric field (first mode of JJAR.2.0). The coupling strength g determines the strength

of the interaction. By ignoring fast oscillating terms the interaction Hamiltonian is given

as follows [50].

Ĥ =
~ωq
2
σ̂z +

∑
j

~ω′j â
†
j âj −

∑
j

~
2
Kjj(â

†
j âj)

2 −
∑
j,k

(j 6=k)

~
2
Kjkâ

†
j âj â

†
kâk + ~g(â1σ̂

† + â1
†σ̂−)

(8.21)

In the dispersive regime (∆� g) [22], since the transmon couples symmetrically to the

array and to the asymmetric odd modes. I consider the coupling between the qubit and

the fundamental mode of the array and the cross-kerr interaction between the second

mode and first mode of the array, the effective Hamiltonian 8.21 is modified as follows:

Ĥ = ~
(
ω1 +

K11

2
(â†1â1) +

K12

2
(â†2â2) + χσz

)
(â†1â1) + ~ω2â

†
2â2 +

~
2
K22(â†2â2)2 +

~
2
ωqσz

(8.22)

Where χ is the dispersive shift on mode one depending on the state of the qubit.

8.3 Device description

The engineered device is fabricated on a TOPSIL silicon substrate with a thickness of

530 nm, using electron beam lithography and bridge-free double-angle evaporation for

Josephson junction array resonator. The fabricated JJAR is shown in figure 8.6 e [82]

and the cross-junction for the transmon qubit in figure 8.6 d. The device consists in

total of 18 Josephson junctions in series, integrated with asymmetric shunt capacitance

pads as shown in figure 8.6 c. The JJAR.2.0 is divided into two half’s by introducing

an extra ground capacitance C ′0 at the center [35]. The additional ground capacitance

influence’s the even modes of the array resonator, reducing the resonant frequencies of
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Figure 8.6: Device description. a) Photograph of one half of a rectangular waveguide with
a 6 GHz cutoff. A JJA and a transmon qubit is fabricated on a piece of silicon substrate and
placed in the corner of the waveguide. b) Circuit representation of a transmon qubit coupled
to a rectangular waveguide via a Josephson junction array. CS1, CS2 is the coupling capacitance
between the JJA and the rectangular waveguide, Cg is the coupling capacitance between the
qubit and JJA. c) Optical image of the JJAR.2.0 and a transmon qubit. d) Zoom-in SEM
image of a cross-junction design for transmon qubit. e) Zoom-in SEM image of a 9 Josephson
junctions array.

the even modes. The parameters of the JJAR were designed such that the fundamental

frequency of the JJAR.2.0 combined with the shunt capacitance is around 6 GHz. The
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lowest two modes of the JJAR.2.0 are below 10 GHz and the spacing between the modes

is about 2 GHz. The plasma frequency of the JJAR.2.0 is around ωplasma ≈ 30 GHz.

The junctions in the array resonator were designed to have a large ratio of EJ/EC ≈ 313.

The sample is mounted in a rectangular waveguide with a cutoff frequency of 6 GHz.

The reason to have the sample off-center of the waveguide axes is to have the linewidth

of the resonant modes (κk) approximately equal to the anharmonicity (Kk). In this

regime the system show bi-stability at very few photons. Figure 8.6 b show the circuit

representation of the qubit coupled to the waveguide via a JJAR.2.0. A transmon qubit

is coupled capacitively (Cg) to the JJA resonator, and the JJA resonator is coupled

capacitively via the shunt capacitance pads (CS1, CS2) to the waveguide. Please refer to

Appendix B for the detail fabrication procedure of the sample.

8.3.1 Finite element simulations

1 mm
2 mm 2 mm

a) b) c)

Figure 8.7: Finite element simulations: a) User-defined mesh on the device. The two red
lines show where the two arrays of 9 Josephson junctions each are located. b) Electric field
of the fundamental mode of JJAR.2.0 coupled to a transmon qubit. The electric field has its
maximum intensity on the left and right pads of JJAR.2.0 with a minimum node at the center of
structure, hence coupling strongly to the dipole of the qubit. c) Electric field of the second mode
of JJAR.2.0 decoupled from transmon qubit. Electric field oscillate symmetric with respect to
the center of the JJAR.2.0, the gradient of field is perpendicular to the qubit, resulting in the
qubit being decoupled from the second resonant mode of the array.

Fine tuning the parameters of a JJAR.2.0 geometry requires finite element simulations

with HFSS to find the correct parameter range for the resonance frequency of the modes

ωr(k), total capacitance of the structure (C∑) and the inductance (La) of the circuit.

Since the array consists in total of 18 junctions I assign the characteristic impedance
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for each junction to a lumped circuit element in HFSS (red color lines in figure 8.7 a)).

A fine mesh on the lumped elements is required to have accurate results. Figure 8.7 a)

show the user-defined mesh on a JJ array resonator. The centre capacitance pad is the

extra ground capacitance which reduce the resonant frequencies of the even modes. Due

to asymmetric shunt capacitance (CS1, CS2) pads both the odd and even modes of the

device couples efficiently to the waveguide.

Figure 8.7 b) show the magnitude and vector electric field (from finite element simu-

lations) for the fundamental mode of the device. The electric field has its maximum

intensity (red color) on the right and left pad and a node in the center of the device

representing a λ/2 resonator. The resulting gradient along the qubit pads enables the

coupling between the qubit and the fundamental mode. The voltage difference on the

qubit clearly show that the fundamental mode of the array can be used to excite the

qubit.

Figure 8.7 c) show the magnitude and vector electric field for the second mode of the

device. The maximum intensity of the electric field is at the left, the right, and the

middle pad of the resonator and the field is oscillating symmetrically with respect to

the center of the device. Since the resulting gradient of the field is perpendicular to the

qubit, the second mode of array is decoupled from the qubit.

8.4 Experimental results

The waveguide with the sample is mounted on the mixing chamber stage (10 mK) of

a cryogen free dilution refrigerator. The sample is enclosed in a double layer cryoperm

shield inside a completely closed copper can. The stainless steel input lines are atten-

uated with 20 dB at 4 K and 30 dB at base temperature. They are filtered with a

combination of a 12 GHz low pass and an Eccosorb filter. The output stage consists of

a 12 GHz low pass filter, two 4-12 GHz isolators and a 4-8 GHz HEMT amplifier. The

effective measurement bandwidth for direct transmission measurements using a VNA is

limited to about 4-9 GHz due to the cutoff of the waveguide and the combined bandwidth

of other microwave components.
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Figure 8.8: Transmission measurements, measured with a power corresponding to about one
photon circulating in the resonator. The solid line in the plot is a fit using Eq. 8.23 to extract Qtot

and ωR. a) Resonator response measurement for mode one. b) Resonator response measurement
for mode two.

8.4.1 Transmission measurements

Since the sample is capacitively coupled (CS1, CS2) to a rectangular waveguide as shown

in figure 8.6 a), it can be characterized by performing transmission measurements on the

waveguide using a VNA. The modified design of JJAR.2.0 couples both the odd and even

modes of the JJA to the waveguide. From the transmission S21 of the waveguide, the

resonant modes which are in the bandwidth of the experiment can be measured easily.

Two resonant modes out of 18 resonances of the array are shown in figure 8.8. The

measured raw data is further fitted with the following equation to extract the quality

factors of the resonances [43]

S21 = 1−
1

Qext
− 2i δffR

1
Qtot

+ 2if−fRfR

. (8.23)

Where Qtot, Qext is the total and the coupling quality factor and δf takes into account

the impedance mismatch between the waveguide and the resonator. The fundamental

frequency of the JJAR is around 5.8 GHz with quality factors (Qint = 30000, Qext =

14000) and the second mode of the array is around 7.5 GHz with quality factors (Qint =

50000, Qext = 12000).
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8.4.2 Two-tone spectroscopy
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Figure 8.9: Two-tone measurements. a) show the transmitted amplitude of the probe tone
with frequency ωR/2π = 5.799 GHz as a function of the pump tone frequency ωD

P and detuning
∆R. When the pump tone frequency comes in resonance with the probe, the probe tone shifts
in frequency. The shift in probe frequency at ωD

P /2π = 5.799 GHz corresponds to self-kerr
of the mode one. The frequency shift on the probe tone at ωD

P /2π = 7.599 GHz corresponds
to the cross-kerr between mode one and on the mode two. b) As the device is intentionally
engineered to have the third resonant mode at around 30 GHz, there are no other shifts visible
up to bandwidth of the experimental setup which is 20 GHz. This is to cross check and calibrate
the device.

From the direct transmission measurements on the waveguide, both the first mode and

the second mode of the JJA are measured using a drive power of a single photon in

the resonant modes. To characterize the device, I utilize a two-tone spectroscopy mea-

surement to find other resonant modes of the array, to cross check there are no other

resonances up to bandwidth of the experimental setup which is 20 GHz. Figure 8.9 a),

b) show the results of a two-tone spectroscopy measurement, where the frequency is

swept from 0 to 20 GHz with a constant pump tone while weakly probing the funda-

mental mode ωR/2π = 5.799 GHz of the array with a VNA. By comparing the measured

frequencies of the entire JJA with the re-normalized mode frequencies calculated by di-

agonalizing the capacitance matrix (Appendix A), the JJA parameters can be extracted

C0 = 0.152 fF, CJ = 30 fF, LJ = 0.755 nH, CS = 85 fF and C ′0 = 255 fF.

8.4.3 Kerr measurements

The Kerr effect manifests itself as a frequency shift that depends linearly on the number

of photons in a resonant mode [52, 51, 44]. By varying the input power on a low signal
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level and measuring the frequency shift, we can measure the Kerr shift per photon.

Figure 8.10 show the self-Kerr measurement on mode one and mode two of the JJA.

The input power is converted into a mean photon number using equation 8.24 [51].

n =
2Q2

tot

~ω2
kQext

Pin (8.24)

Here ωk is the resonance frequency of a particular mode, Qtot is the total quality factor,

Qext is the coupling quality factor and Pin is the input signal power. Further by fitting

the measured data with a third order polynomial, the anharmonicity of each mode can

be extracted.

8.4.3.1 Self- Kerr measurement

For the self-Kerr measurements only one mode i of the chain is excited. Further mea-

suring the frequency shift ∆P with respect to the input power using direct transmission

measurements. Each data-set is fitted with a notch type response function to extract

the frequency ωi and Qi,tot. From the shift relative to the bare resonance frequency the

self-Kerr coefficient Ki is extracted.
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Figure 8.10: Self-Kerr measurements. a) Dependence of the self-Kerr frequency shift on the
photon number of mode one. The red line is a third order polynomial fit. b) Dependence of
the self-Kerr frequency shift on the photon number of mode two. The red line is a third order
polynomial fit.
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Figure a, b show the self-Kerr measurements on mode one and mode two of the JJAR.2.0.

For low input power P , the ∆i changes linearly with power. For high input power, higher

order non-linearity terms (K ′1,K
′′
1 ) start to play a role. To take this into account the

data is fitted with the following dependence.

∆i(n̄) = K1n̄+
K ′1
2
n̄2 +

K ′′1
3
n̄3 (8.25)

Here K ′1,K
′′
1 corresponds to the higher order non-linear terms. Thus extracting the Kerr

coefficients in units of Hz/Photon.

8.4.3.2 Cross-kerr measurements

For determining the cross-Kerr coefficients Kij , I utilize two-tone spectroscopy measure-

ments [52, 43]. Mode 1 of the array is used as the readout with a power of about one

photon and mode 2 is excited with varying power and vice-versa. From the shift ∆R of

the resonance frequency of the readout mode ωR/2π upon application of a pump tone,

the cross-Kerr shift Kij can be extracted.

Figure 8.11 a show a typical two-tone spectroscopy measurements to extract the cross-

Kerr coefficient K12 by pumping mode two and observing the frequency shift on mode

one. Mode one is driven at a constant readout strength of n̄1 < 1 photons. To extract

the maximal frequency shift ∆1, each pump frequency is fitted to a notch type response

function 8.23 and the resonance frequency(solid black line) is extracted. The maximal

shift of the readout resonator for a given pump power results in one data point in

Figure 8.11 b), c), d). From the measurement in figure 8.11 c one can also clearly

observe that the mode becomes bistable at a few hundred’s of photons.

Figure 8.12 a), b) show the result of all two tone measurement to determine the cross-

Kerr shift K12 when driving mode two and using mode one as the readout and K21

when driving mode one and using mode two as the readout [51]. For low input power,

∆21 changes linearly with the power but then rapidly higher order terms come into

play. Hence the data is fitted to a third order polynomial. From the fit, the cross-Kerr

coefficient can be extracted as K12, K21 = 49 KHz/Photon. By inserting the measured

values of self-Kerr coefficients of the mode one and the mode two of the JJAR.2.0 in the

theoretical formula (1/
√

2
√
K11K22), I find an agreement within 20 %.
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Figure 8.11: Cross-Kerr measurements K12. a), b), c), d) Two-tone spectroscopy measure-
ments for different pump strength. Shift ∆R of the resonance frequency of the readout mode
ωR/2π = 5.799 GHz with nR = 1 photons upon application of a pump tone to mode two
of JJAR.2.0. The pump frequency is detuned by ∆P from the resonance of the second mode
ωP /2π = 7.599 GHz. a), b), c), d) Corresponds to different number of photons ≈ 8, ≈ 35,
≈ 230 and ≈ 400 photons in the pump mode.

The measured Kerr coefficients of the device for mode one and mode two of device is

summarized in the table below and compared to the analytical calculations obtained by

diagonalizing the capacitance matrix (refer to appendix A).

The measured anharmonicities(α2) of the JJAR.2.0 resonant modes is not equal to the

linewidth(κ2) of the resonant mode, thus bi-stability on second mode appears at a few

hundred’s of photons . This is mainly due to influence of the linear geometric inductance

coming from the Josephson junctions and the connecting wires of array shown with green

color in figure 8.13 b).
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Figure 8.12: Summary of Cross-Kerr measurement. a) Cross kerr measurement, where mode
one of the arrays is pumped and mode two of the array is used to readout the frequency shift. b)
Mode two of the arrays is pumped and mode one of the array is used to readout the frequency
shift. The red line is a third order polynomial fit.

Mode ωi/2π Qint Qext Qtot κi Ki Ki2 Ki(Theory) Ki2(Theory)
(GHz) (kHz) (kHz) (kHz) (MHZ) (MHz)

1 5.799(3) 30000 14000 10680 543 59.2 49 6.247 6.755

2 7.599(3) 50000 12000 9364 811.5 120.7 - 7.35 -

Table 8.1: Parameters for the two modes of JJAR.2.0 that can be directly measured with the
VNA. fr and Qtot were extracted from data. The Kerr and cross-Kerr coefficients are calculated
from a fit to the polynomial fit as shown in the Fig. 8.12, 8.10.

8.4.4 Influence of the geometric inductance

The measured Kerr non-linearities of the JJAR.2.0 are low compared to the numerical

calculations given in table 8.1. This is due to not taking into account the influence

of linear inductance present in the circuit 8.13 a). The geometric inductance influences

the participation ratio of JJAR.2.0, resulting in lower non-linearities. The geometric

inductance of a thin film wire is calculated with the following equation [189].

LP = 2 ∗ 10−3 ∗ l ∗
[
ln

(
2.0 ∗ l
w + t

)
+ 0.5 + 0.2235

(
w + t

l

)]
µH (8.26)

Where l, w, t is the length, width and thickness in cm. In addition to Josephson

inductance LJ = 0.755 nH, the JJAR is mostly influenced by the geometric inductance

of thin films arising from thin wires of the Josephson junctions (green lines shown in

figure 8.13 b)) which is around LP = 0.18 nH (calculated from equation 8.26). The

additional geometric linear inductance is in series to the Josephson inductance. Hence
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Figure 8.13: a) Electric circuit representing the influence of geometric linear inductance (LP )
arising from Josephson junction array resonator coupled to a transmon qubit. b) Zoom-in SEM
image, total of 18 Josephson junctions array divided into two half’s with additional ground
capacitance (C ′0) at the center. The green lines on the Josephson junctions contribute the extra
linear distributed geometric inductance (LP ).

the circuit diagram 8.5 is modified with an additional linear inductance in series to each

Josephson junction as shown in figure 8.13 a). By adding the linear inductance (LP ) to

the numerical calculations, I find an agreement of the measured anharmonicity within

28%.

In order to reduce the geometric inductance, it is important to reduce the Josephson

junction length and increase the width of the Josephson junctions. By doing this the

Josephson inductance will be kept constant and reduce the geometric inductance of the

thin films. The plan for the future device is to reduce the effect of linear inductance

arising from thin film of the Josephson junction.

8.4.5 Qubit measurements

The transmon qubit in our design is perpendicular to electric field of the waveguide.

Hence the qubit is decoupled from the waveguide. Since the transmon is designed sym-

metrically to the JJAR.2.0, thus it only coupled to the asymmetric odd modes of the

array and decoupled from the even modes. The fundamental mode of the JJAR.2.0 is

dispersively coupled to the qubit and is used to drive the qubit. The optical image of

the transmon qubit coupled to the JJAR.2.0 is shown in figure 8.6 c).
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The transmon qubit in this case is 1.2 mm long with an inductance of Lq = 19 nH

and a total capacitance of a few tens of fF ’s. The asymmetric pads of the JJAR.2.0

shown in figure 8.6 c) allow the qubit to couple strongly to the fundamental mode of the

array. Hence the information about the state of a qubit can only be readout using the

fundamental mode of the JJAR.2.0. By utilizing two-tone spectroscopy measurement it

is possible to determine the transition frequency of the qubit.
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Figure 8.14: a) Two-tone spectroscopy measurement: The transmitted amplitude of the read-
out mode one of the JJAR.2.0 with frequency ωR/2π =5.799 GHz as a function of the signal gen-
erator frequency and detuning ∆R. b) High power excitation measurement. Exciting the qubit
at high power reveals a transition to the second excited state at a frequency of 3.647(4) GHz.

Figure 8.14 a) show the two tone measurement on the qubit. Since the qubit is coupled

only to mode one of the JJAR.2.0. I utilize a two-tone spectroscopy measurement to

measure the transition frequency of the qubit. The frequency of the pump tone is swept

around the qubit frequency, while weakly probing mode one with the VNA. When the

pump tone is resonant with the qubit transition frequency, the resonance frequency of

mode one shift as shown in figure 8.14 a).

From the measurement the transition frequency of the qubit is ωq/2π = 3.768(4) GHz.

The initial qubit design is intended to have a transition frequency around 5 GHz. The

frequency of the transmon qubit is off by about 1 GHz compared to the finite element

simulations. This is due to a wrong estimate of the superconducting energy gap ∆

(estimated ∆ = 210 eV) of our Aluminium(Al) material. It turned out that the energy

gap of our superconducting Al material used for fabricating the device is about 165 eV,

hence effecting the Josephson inductance of transmon qubit.
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The anharmonicity of the qubit is measured by exciting the qubit at high power. Due

to the high power an additional transition appears as shown in figure 8.14 b), exciting

the qubit’s next higher state. The additional transition is a two photon transition. The

difference between the single and the two photon transition is used to gain information

on the anharmonicity of the qubit. The characterized parameters of the qubit are given

in the table below.

Parameter Value Error HFSS HFSS
(with superconducting (with superconducting

gap(∆) =210 eV) gap(∆) =165 eV)

Qubit frequency (GHz) 3.7681 2e-5 5.08 4.1351

Anharmonicity (MHz) 241.4 0.2 261.5 248.43

Chi (MHz) 0.8 0.08 1.8 1.17

LJ (nH) 19.77 0.02 13 19

g(MHz) 78.17 0.05 94.5 125.7

EJ (GHz) 8.268 0.007 12.5 8.603

EJ/EC 34.25 0.06 48.95 34.62

Table 8.2: Parameters of the transmon qubit characterized using the fundamental mode of
JJAR. 2. 0. The theory parameters mentioned in the last two column are obtained from black-
box quantization simulations considering different superconducting gap for Aluminium (∆) [118].

8.5 Conclusion

In conclusion, I have successfully engineered, fabricated and characterized a novel de-

vice for qubit readout. Due to the time constraints the pulse measurements and phase

measurements on the qubit are currently on-going work in collaboration with my col-

league. The device is engineered to have an anharmonicity of the JJA resonant modes

approximately equal to the linewidth of a particular resonant modes of a JJA. Such that

the bi-stability appears at very few photons. However, due to the influence of geometric

inductance of Josephson junction thin films and anharmonicities of the device are re-

duced by a factor of 10 compared to the linewidth of a particular resonant modes. The

future plans is to improve the coupling of a JJAR.2.0 to the waveguide by placing it at

the center of the waveguide, and to reduce the geometric inductance of JJAR.2.0, hence

should be able to utilize the engineered two mode system for good qubit readout.



Chapter 9

Conclusion

This experimental work in this thesis consists of three main accomplishments.

The first part was designing and building a 3D circuit QED setup from scratch in a

new lab which involved the following main steps: producing high quality factor cavities;

designing, building and installing the cryogenic microwave setup as well as the room

temperature amplification chains.

The second part was the finite element numerical simulations, utilizing the naturally

occuring dipolar interactions in 3D superconducting circuits to realize a platform for

analogue quantum simulation of XY spin models. The possibility of realizing arbitrary

lattice geometries with locally-tunable dipole moments [29], in combination with their

large interaction strength, opens the door to the investigation of a series of phenomena in

quantum magnetism in both 1D [121, 122] and 2D [106], complementing the remarkable

developments in cold atom and trapped ion systems [96, 97, 98]. The idea discussed in

chapter 5 are not limited to Transmon qubits, but could be implemented with, e.g., Xmon

qubits [89] or Fluxonium qubits coupled to an antenna [123]. It would be interesting to

explore these developments in view of realizing Hamiltonian dynamics for surface code

architectures [8] or as a building block for coupled cavity array experiments [124, 125].

High Q resonators are important for a qubit readout. A design for MSRs with a low

interface participation ratio embedded in a rectangular waveguide is engineered and

characterized. The presented setup, is an ideal platform for implementing interacting

spin systems [91, 29] where the MSR can be used for readout. In Fig. 9.1 shows a

conceptual schematic for simulating spin chain physics. The orientation of the qubits

146
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Figure 9.1: MSRs used for analog quantum simulation. Conceptual schematic of a
rectangular waveguide setup using three MSRs as a readout for a chain of transmon qubits.
The transmon qubits couple capacitively to each other to realize a system for analog quantum
simulation of spin chain physics.

relative to the waveguide allows us to control the coupling of the qubits to the waveguide

mode. Fig. 9.1 they are oriented along the axis of the waveguide which will lead to a

large qubit-qubit interaction but negligible coupling to the waveguide. Three MSRs

with different frequencies, all above the waveguide’s cutoff, are used to read out selected

qubits. Another interesting aspect of the setup mentioned in chapter 6 is the built-in

protection from spontaneous emission due to the Purcell effect, similar to [74, 190] but

broadband. Even though the qubit is strongly coupled to the resonator it can not decay

through the resonator, as the waveguide acts as a filter if the qubit frequency is below

the cutoff. This platform can also be used to investigate the interplay between short

range direct interactions, long range photon mediated interaction via the waveguide [191]

and dissipative coupling to an open system. It offers a new route to investigate non-

equilibrium condensed matter problems and makes use of dissipative state engineering

protocols to prepare many-body states and non-equilibrium phases [192, 193].

The third part consists of exploring physics in the mesoscopic regime using a JJAR. The

device exhibits bi-stability at very few photons, this is achieved by engineering the Kerr

interaction strength to be comparable to the linewidth. This proof of principle device

demonstrates that it is possible for a few microwave photons in the readout mode to

switch the photon occupation number by two orders of magnitude in the pump mode.

As such it is a promising system to implement novel types of nondemolition measure-

ments [194], single photon microwave transistors [195, 196], single photon microwave

switches [197], Flip-Flop memories [198] or even elements for autonomous quantum er-

ror correction [154].

In the last chapter of this thesis, a modified JJAR.2.0 is designed and characterized
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for dispersive readout on the qubit. The principle idea of JJAR.2.0 is to exhibit bi-

stability at a few photons. This can be achieved by engineering a device which will have

anharmonicites equal to the linewidth of the resonant modes. The fundamental mode of

the JJAR.2.0 is used to dispersively readout the state of a qubit with very few photons.

However, the measured device has a geometric inductance LP ≈ 0.1 nH arising from

the Josephson junctions and the connecting wires between the junctions is on the same

order of the Josephson inductance LJ ≈ 0.755 nH. Hence decreasing the anharmonicites

by factors of 10 compared to the line-width of a particular resonant modes.
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In[498]:= ClearAll["Global`*"];

c = 3 * 10^8;

mu0 = 4 * Pi * 10^(-7);

eps0 = 8.8 * 10^-12;

ele = 1.6 * 10^-19;

h = 6.626068 * 10^-34;

hBar = h  2 * Pi;

delta = 165 * ele * 10^-6;

kB = 1.3806503 * 10^-23;

T = 20 * 10^-3; (* temperature in K*)

NN = 19; (*num juncs +1 *)

{L, σL} = {0.755, 0.00}; (* 10-9, σL is in fractional ie 0.03= 3% ;

also, see below for "one messed up junction"*)

Cs = N@85.0;(*10-15*) (*Sets ground mode freq*)

Cj = N@30.0;(*10-15;*) (*Sets plasma freq with Lj*)

C0 = 0.150; (* 10-15 Brings dispersion down *)

Junc_σ = If[σL ⩵ 0, 1, RandomVariate[NormalDistribution[1, σL], NN - 1]];

Ljs = N[Junc_σ] * ConstantArray[L, NN - 1];

Ljs[[1 ;; 18]] = Ljs[[1 ;; 18]] * 1;

LMi = DiagonalMatrixPrependLjs^-1, 0;

CjM = DiagonalMatrixPrependConstantArray[Cj, NN - 1]  Junc_σ, 0;

MatrixForm[CjM];

CsM = N[Normal[SparseArray[{i_, j_} /; i ⩵ j && i ⩵ 1 → 1, {NN, NN}]] +

ConstantArray[1, {NN, NN}]];

CsM1 = N[Normal[SparseArray[{2, 2} → 1, {NN, NN}]]];

MatrixForm[CsM1];

CsMid = N[Normal[SparseArray[{10, 10} → 1, {NN, NN}]]];

MatrixForm[CsMid]

CsM = CsM + 8.4 * CsMid;

C0M = N[Normal[SparseArray[{{i_, j_} /; i ⩵ j && i ⩵ 1 → NN - 2,

{i_, j_} /; i ≠ NN && j ≠ NN → NN - Max[i, j]}, {NN, NN}]]];

MatrixForm[C0M];

C0M = NNormalSparseArray{i_, j_} → NN + 1 - Max[i, j], {NN, NN};

CM = CjM + Cs * CsM + C0 * C0M  10^6;

CMi = Inverse[CM];

{evals, evecs} = N[Eigensystem[CMi.LMi]];

IfAbs[evals[[-1]] + 0] > 10^-6,

MessageDialog["Warning! The smallest eigenvalue was not 0!"];

evecs = Normalize /@ evecs;

evals = Reverse[evals]; evecs = Reverse[evecs];

EF = evals; EV = evecs;

evals = evals[[2 ;; -1]]; evecs = evecs[[2 ;; -1, 2 ;; -1]];

evecs = If[#1[[1]] > 0, #1, -#1] & /@ evecs;

freqs = Sqrt[evals]  2 * Pi;



{freqs, evecs};

EjGHz[Lq_] := hBar  2 ele^2  h  (Lq);

Norms = 2 * Diagonal[EV.LMi.EV];

(*RMS norm*)Norms[[1]] = 1;

(*just to avoid avoid division by zero;

this value will still correspond to zero for the DC mode*)

PJs = Prepend[Ljs^-1, 0] * #^2 & /@ EV  (Norms);

(*Matrix of PJs for each mode and for each junction*)

(*The "prepend 0" is there to deal with the DC mode,

which we will remove in the next line*)

 = PJs[[2 ;; -1, 2 ;; -1]] (*get rid of DC mode and DC node with no JJ.*);

 = DiagonalMatrixFR = Sqrt[EF[[2 ;; -1]]]  2 π

(*undressed freqs,the same as abouve*);

ji = DiagonalMatrix[(EjGHz /@ Ljs)^-1];

X = ..ji..  2(*in GHz*);

χ1 = {#, 10^3 X[[1, #]]} & /@ Range[8];

(*in MHz*)χ3 = {#, 10^3 X[[3, #]]} & /@ Range[8];

(*in MHz*)alpha = {#, 10^3 X[[#, #]]} & /@ Range[8];

Print["Plasma frequency: Subscript[f, 0] = ", FR[[-1]], " GHz"];

Print["The first mode: Subscript[f, 1] = ", FR[[1]], " GHz"];

Print[

"The anharmonicity of a junction alone (plasma mode): Subscript[α, 0] = ",

X[[8, 8]] * 10^3, " MHz"];

Print["The anharmonicity of mode 1 (", FR[[1]],

" GHz): Subscript[α, 1] = ", X[[1, 1]] * 10^3, " MHz/photon ;"];

Print["The anharmonicity of mode 2 (", FR[[2]],

" GHz): Subscript[α, 2] = ", X[[2, 2]] * 10^3, " MHz/photon ;"];

Print["The anharmonicity of mode 2 (", FR[[3]],

" GHz): Subscript[α, 2] = ", X[[3, 3]] * 10^3, " MHz/photon ;"];

Print["The cross-Kerr of mode 1 and 1:Subscript[χ, 1,2] = ",

X[[1, 2]] * 10^3, " MHz"];

ListPlot{(*MeasFr,*)FR[[1 ;; 10]]},

PlotStyle → {Directive[PointSize[0.015], Darker[Red, 0.2]],

Directive[PointSize[0.012], Blue]}, AspectRatio → 1  1,

ImageSize → 300, Axes → False, Frame → True, FrameStyle → Thick,

LabelStyle → Directive[FontSize → 12, FontFamily → "Arial", FontSlant → "Plain"],

FrameLabel → {"mode #", "Frequency (GHz)"}

ListPlot{alpha[[1 ;; 8]]},

PlotStyle → {Directive[PointSize[0.015], Darker[Red, 0.2]],

Directive[PointSize[0.012], Blue]}, AspectRatio -> 1  1,

ImageSize → 300, Axes → False, Frame → True, FrameStyle → Thick,

LabelStyle → Directive[FontSize → 25,

FontFamily → "Arial", FontSlant → "Plain"],

FrameLabel → {"mode #", "anharmonicity (α) (MHz)"}



2     JJAR.2.0.nb



Plasma frequency: Subscript[f, 0] = 33.42 GHz

The first mode: Subscript[f, 1] = 5.94475 GHz

The anharmonicity of a junction alone (plasma mode): Subscript[α, 0] = 70.4634 MHz

The anharmonicity of mode 1 (5.94475 GHz): Subscript[α, 1] = 6.24752 MHz/photon ;

The anharmonicity of mode 2 (7.51134 GHz): Subscript[α, 2] = 7.35093 MHz/photon ;

The anharmonicity of mode 2 (31.0183 GHz): Subscript[α, 2] = 46.1776 MHz/photon ;

The cross-Kerr of mode 1 and 1:Subscript[χ, 1,2] = 6.75565 MHz
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Step Description Equipment used Precision

1 Cleaving 4 inch Diamond cutting tool 4-inch wafer is
substrate cleaved into 4 quarter’s

2 Cleaning Acetone Ultrasonic bath for 15 mins
Isopropanal Ultrasonic bath for 10 mins

Distilled water Rinse in DI water
followed by blow dry using N2

3 Resist coating MMA(8.5) MAA EL 13 Spin 40 s at 500 rpm,
(copolymer) Spin 60 s at 1500 rpm

Baking on hot plate at
200◦ for 5 min

4 Resist coating PMMA 950k Spin 100 s at 2000 rpm
Baking at 200◦ for 5 min

5 E-beam lithography Reith 30 keV Acceleration voltage 30 KV
Big aperture:

Beam current 5.5 nA
Large area doses 360 µC/cm2

Small aperture:
Beam current 36.5 pA

Junction dose 600 µC/cm2

Undercut dose 160 µC/cm2

6 Development IPA:water 1:3 105 s at 6◦

5 s in DI water
N2 blow dry, low pressure

7 Al deposition Plassys 25 nm at 1 nm/s and 25◦

-MEB550S
Oxidation 10 mBar

for 1 min
30 nm at 1 nm/s amd −25◦

8 Lift-off Acetone 4 hours at 60◦ C
Rinse in IPA, DI

Blow dry N2

Table B.1: Fabrication recipe for Josephson junctions.
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