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Abstract

A two-level quantum system coupled to a thermal bath will occasionally exhibit
abrupt transitions between ground and excited state. This thesis describes, how these
quantum jumps can be directly observed in a superconducting artificial atom coupled
to a superconducting microwave cavity. The cavity provides protection against en-
vironmental sources of decoherence. In the regime of strong dispersive coupling, the
cavity also serves as a channel for high fidelity readout. Continuous probing of the
cavity, allows to monitor the quantum state of the superconducting artificial atom.
The measurement can be expected to be QND (quantum nondemolition) in the sense
that it projects the state of the superconducting atom into the eigenstate correspond-
ing to the measurement outcome and the system is not disturbed by the measurement.
With the help of a Josephson Parametric Amplifier (JPC), a fast ultralow-noise para-
metric amplifier, measurement rates exceeding the internal transition rates have been
achieved in this project and the quantum jumps are clearly resolved in the measured
traces. This thesis offers a comprehensive introduction to the JPC, including various
performance test measurements and a detailed guide about operating the amplifier.
An increase in the signal-to-noise ratio of the total measurement chain of up to 12 dB
at a JPC gain between 15dB and 20dB has been observed. In this setup, a 1 % ground
state detection fidelity was achieved at a readout power of 6 resonator photons, an
integration time of tavg = 640 ns and a low JPC gain of GJPC = 15 dB. An even higher
readout fidelity can be achieved with higher JPC gains, accepting a certain amount
of amplifier saturation and resulting sqeezing of the measurement signal. Probing the
cavity at a slightly different frequency allows to distinguish three different results,
namely the superconducting atom being in the ground, excited or any higher state.
The temperature of the superconducting atom derived from the population distribu-
tion is roughly 80 mK and appears to be independent of the probe power. At probe
powers above 5 resonator photons, non thermal population distributions have been
observed, indicating a breakdown of the measurement’s ‘QNDness’ for higher probe
powers. This assumption is further supported by the observed abrupt drop in the
excited state lifetime T1 at a probe power of approximately 20 photons. At low probe
powers, a Purcell-limited lifetime of T1 ≈ 16µs has been observed.
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Abbreviations

cavity QED Cavity quantum electrodynamics

circuit QED Circuit quantum electrodynamics

HEMT High electron mobility transistor

JPC Josephson Parametric Converter
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γ1/(2π) Qubit decay rate

γP /(2π) Purcell limit

T1 Qubit decay time

T2 Qubit dephasing time

a Annihilation ladder operator (HO)

a† Creation ladder operator (HO)

σ+ Qubit excitation operator

σ− Qubit deexcitation operator

g/(2π) Coupling strength dipole interaction

HJC Jaynes-Cummings Hamiltonian

H3lvl
Disp Three level transmon-cavity Hamiltonian in the dispersive limit

Quantum circuits

Φ Generalized (branch) flux

Φext External magnetic flux
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φ̃ Superconducting phase difference

ϕ Reduced (branch) flux

Q Generalized charge

I Current

U Voltage
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S21 Scattering parameter transmission

Constants
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c Speed of light
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ωc JPC pump mode frequency

ωi JPC idler input frequency

ωp JPC pump input frequency

ωs JPC signal input frequency

BW −3 dB bandwidth

GJPC JPC gain

X JPC signal mode

Y JPC idler mode

Z JPC pump mode

IQ measurements

ref0(t) Reference at IF frequency

ref90(t) 90◦ phase shifted reference at IF frequency

sig(t) Signal at IF frequency

f2 Two-state probe frequency

f3 Three-state probe frequency

I In-phase quadrature

Q Out-of-phase quadrature

n Readout power in terms of resonator photons

tavg IQ integration time

pmis Miscount probability



1 Introduction

1 Introduction

Superconducting circuits are a promising platform for both quantum computation [1] and
simulation [2]. Unlike natural quantum systems, such as electrons, atoms, ions or photons,
superconducting qubits are man-made and their intrinsic properties can be varied across
a wide range during fabrication. Thus, they are commonly referred to as artificial atoms.
Superconducting qubits can be coupled to resonant circuits as well as measurement and
control circuitry in a straightforward way. Typical transition frequencies are in the regime
of microwaves, with corresponding wavelengths on the order of centimetres. Well developed
control hardware is available from telecommunication industries, in that wavelength range.
The first superconducting qubit was realized in 1999 [3]. Since then, various designs with
improved stability have been developed. Coherence times of 100µs have been demonstrated
in a transmon inside a high Q 3D cavity resonator [4]. More than 3000 single and 200 two-
qubit gates can be performed in that timespan [5]. Strong coupling between resonantors
and superconducting qubits is achieved regularly in both 3D and on-chip architectures
[6][7]. Resonators not only provide protection against outside noise sources, they also
provide a channel to measure the quantum state of the artificial atom. In the dispersive
limit of the interaction, the qubit state can be determined by probing the resonator. Low
power probe signals are used in order to minimize disturbance of the system, allowing
for QND measurements of the qubit. The noise added by commercial cryogenic microwave
amplifiers is considerably larger than the low power signal coming back from the resonator,
resulting in a low single shot readout fidelity. Repeated measurements are necessary to
resolve the state of the qubit. With the recent advance of quantum limited microwave
amplifiers, fast single shot readout has become feasible [8][9][10]. The improve in signal-
to-noise ratio allows direct observation of quantum jumps in continuous measurements
[11].

The goal of this thesis project is the implementation of a continuous qubit readout scheme
with the help of a Josephson Parametric Converter (JPC). This ultra-low noise amplifier
greatly improves the SNR (signal to noise ratio) of the measurement chain. Measurement
rates faster than the qubit’s internal transition rates are feasible, allowing to resolve the
qubit’s quantum jumps in time. This thesis is organised in four main parts. Section 2 covers
the fundamental concepts that are helpful for the understanding of the subjects discussed
in this paper. After introducing the basic building blocks of circuit QED, the treatment of
a superconducting qubit coupled to a 3D microwave cavity is outlined. The coupled system
is described with the methods of cavity QED. Section 3 presents experimental methods and
results of the coupled cavity-qubit system and a summary of the key system parameters.

1



1 Introduction

The operational principle of the JPC is discussed in sec. 4. Besides a comprehensive
analysis of the amplifier performance, the JPC tuning procedure is elaborated in detail.
Finally, sec. 5 presents the results of the continuous dispersive readout scheme. After
a description of the experimental setup and the methods of IQ demodulation, the first
successful measurements resolving two respectively three states of the superconducting
artificial atom are shown. Various measures for the contrast and measurement quality are
derived from the distribution of the data in the IQ plane. The optimal working point
is determined by varying experimental parameters such as integration time, probe power
and JPC gain. Examples of quantum jump traces are presented for different experimental
configurations. The qubit relaxation time is deduced from the temporal distribution of the
quantum jump events and compared to the result of an independent experiment based on
a pulsed measurement scheme.

2
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2 Concepts

This introductory chapter presents the key concepts, that the reader might find insightful
when reading this thesis. Section 2.1 provides a short introduction to the field of cavity
quantum electrodynamics (cavity QED), followed by a recapitulation of the textbook
results of the Jaynes-Cummings-model. The basic building blocks of circuit QED are dis-
cussed in sec. 2.2. The simple example of an electronic LC circuit is used to develop the
methods of circuit quantisation, before introducing the superstar of this field - the Joseph-
son junction. This element provides a highly non-linear response, while causing almost no
dissipation, allowing for the design of remarkable quantum circuits. Most notably, Joseph-
son junctions can be used to construct artificial atoms - quantum systems whose intrinsic
parameters are controllable over a wide range during the fabrication process. Finally, sec.
2.3 relates, how quantum circuits can be used to realize a strongly coupled cavity QED
system. With the beforehand introduced methods, a single mode of a 3D rectangular
microwave resonator can be described as a quantized electronic LC oscillator. A highly
stable and noise insensitive design for a superconducting artificial atom is introduced - the
transmon. The cavity mode and the transmon exhibit a strong dipole coupling. This thesis
is focused on the strong dispersive limit of this interaction, and how it can be exploited
to realise a quantum non-demolition (QND) readout scheme of the transmon’s quantum
state.

2.1 Cavity QED

2.1.1 Short History

The theory of quantum electrodynamics (QED) describes the interaction between matter
and light. Matter is comprised by atoms whereas the basic excitations of the electromag-
netic field are called photons. The quantized nature of both atoms and the field gives rise
to remarkable phenomena, that deviate strongly from the predictions of classical electro-
dynamics. Prominent results of QED are the electronic structure of atoms and molecules,
the radiation spectrum of a body due to its temperature and the spontaneous emission of
a photon by an atom.

The interaction between an atom and an electromagnetic field confined inside a cavity is
the topic of cavity QED. The cavity simplifies the dynamics of the system by reducing the
degrees of freedom and provides protection against the noise of the outside environment.

3



2 Concepts

Probing the cavity with an external electromagnetic field offers a channel for control and
readout.

Early theoretical considerations proposed an increased spontaneous emission rate of an
atom coupled to a resonant mode, as stated by Purcell in 1946 [12]. Conversely, coupling to
a far detuned mode was expected to inhibit the spontaneous decay and increase the lifetime
of the atom (Kleppner 1981 [13]). Cavity QED was first tested experimentally in the early
1980s by Serge Haroche and his team at the Ecole Normale Supérieure in Paris. Purcell’s
and Kleppner’s predictions were quickly confirmed [14] and the group started to conduct
more sophisticated experiments with Rydberg atoms travelling through a microwave cavity.
Observing the atoms after traversing allowed them to infer the state of the cavity light
field, with a precision high enough to determine the number of cavity photons [15]. This
approach meets the criteria of a quantum nondemolition (QND) measurement - the cavity
field is preserved after the measurement. Since that time, cavity QED is a growing field
of research with the preliminary peak of Haroche and Weinstein receiving the Nobel price
for their work in 2012.

2.1.2 Jaynes-Cummings-Model

This model describes the interaction between a two-level-system with a single mode of the
electromagnetic field. Fig. 1 shows a sketch of the coupled system. The atom is enclosed
by the cavity, which defines the shape and the frequency of the field mode.

An isolated atom with only ground |g〉 and excited state |e〉 is described by the Hamiltonian

Ha = ~ωa
2 σz. (1)

The projection operator reads σz = |g〉 〈g| + |e〉 〈e| and ~ωa denotes the energy difference
between the states. Such a two-level-system can be used for storing or processing of
quantum information. It is then referred to as a quantum bit (qubit). A single mode of
the electromagnetic field behaves like a harmonic oscillator

Hfield = ~ωra†a (2)

with the photon energy ~ωr and the creation and annihilation operators a† and a. A linear
dipole interaction between these systems is modelled by

Hint = ~g
(
a† + a

) (
σ− + σ+

)
, (3)

4



2 Concepts

Figure 1: Cavity QED building blocks. An atom with two levels |g〉 and |e〉 is coupled to
a single field mode inside a cavity. The coupling constant g describes the strength of the
dipole interaction. The decay rates γ and κ model the energy loss of the atom and the
cavity respectively. Fig. adapted with permission from Stefan Oleschko.

where σ− = |g〉 〈e| and σ+ = |e〉 〈g| describe transitions of the two-level-system. The
strength of the interaction is specified by the coupling constant g. It depends on the
dipole moment of the atomic transition and the orientation and shape of the field mode.
A thorough discussion of this interaction is given in [16]. The term Hint can be simplified
using an unitery transformation and performing the rotating wave approximation (RWA)
following [17]. This leads to the famous Jaynes-Cummings Hamiltonian

HJC = ~ωra†a+ ~ωa
2 σz + ~g

(
a†σ− + aσ+

)
(4)

for the coupled system. Intuitively, this interaction corresponds to an excitation transfer
between the cavity mode and the atom. The behaviour of the system is governed by the
detuning ∆ = ωr − ωa between atom and cavity mode and the ratio ∆/g. The diag-
onalization of HJC yields an interesting result. For a fixed number of excitations n, the
distribution of the photons between atom and cavity is not definite. Instead, one excitation
is sort of ‘shared’ between the atom and the field, forming the so called ‘dressed states’.
The resonant case ∆ = 0 and the dispersive limit ∆ > g are discussed below. Fig. 2 shows
the level scheme for both cases.

Resonant JC-model ∆ = 0

On resonance ∆ = 0, the dressed states take the form

|n,±〉 = 1√
2

(|g, n〉 ± |e, n− 1〉) (5)

5
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ωa

|g〉 |e〉 |g〉 |e〉
|0〉

|1〉

|2〉

|3〉

|n〉

|0〉

|1〉

|2〉

|n− 1〉

|0〉

|1〉

|2〉

|n〉

|0〉

|1〉

|2〉

|n〉

|n+ 1〉

ωa

...

...

......

ωr

∆ = 0

ωr

2g

2g
√
n

2g
√

2

(ωa + g2/∆)

∆ > g

(ωa + 3g2/∆)

(ωa + (2n+ 1)g2/∆)

(ωr − g2/∆)

(ωr + g2/∆)

Figure 2: Energy levels of the Jaynes-Cummings Hamiltonian. Left: Resonant case ∆ =
ωr − ωa = 0. The degeneracy of the uncoupled states |g, n+ 1〉 (drawn in blue) and |e, n〉
(red) are is lifted by the interaction (purple). The splitting between the dressed states
|n,+〉 and |n,−〉 grows with

√
n. Right: Dispersive limit ∆ > g. The dressed states

closely resemble the qubit states and contain only a small photonic component. A special
feature of the dispersive interaction is the dependence of the cavity resonance frequency
on the state of the qubit (grey boxes). This allows to dispersively measure the quantum
state of the qubit by probing the cavity. The relevant cavity transitions are highlighted
with bold black arrows. Figure adapted from [18].

and the respective eigenenergies are

En,± = ~ωr
(
n+ 1

2

)
± ~g

√
n. (6)

The level scheme of the resonant dressed states is sketched in the left panel of fig. 2. The
splitting between two dressed states with the same number of excitations |n,+〉 and |n,−〉
is

∆En = 2g
√
n. (7)

Calculating the time evolution of an initial state with fixed number of excitations in the
mode and the atom e.g. |e, 0〉 (an eigenstate of the isolated atom and cavity, but not of
the coupled system), reveals that the system undergoes coherent rabi oscillations between
|e, 0〉 and |g, 1〉 [16].

6
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Dispersive limit ∆ > g

In the dispersive limit, the Jaynes-Cummings Hamiltonian can be approximated by [19]

HDisp
JC = ~ωra†a+ ~ωa

2 σz + ~g2

∆ a†aσz. (8)

This is discussed more thoroughly in sec. 2.3.2 at the example of a microwave cavity coupled
to a superconducting artificial atom. In contrast to the resonant case, the dressed states
|±〉 do not consist of an equal superposition of |g, n〉 and |e, n− 1〉 in the dispersive limit
of the interaction. Instead, the dressed states closely resemble the qubit states and contain
only a small photonic component [19]

|n,−〉 = |g, n〉 − g
√
n

∆ |e, n− 1〉

|n,+〉 = g
√
n

∆ |g, n〉+ |e, n− 1〉 ,
(9)

assuming low excitation numbers n < ncrit = ∆2/(4g2). In the same limit, the eigenener-
gies of the dressed states can be approximated by [18]

EDisp
n,± ≈ ~ωr

(
n+ 1

2

)
± ~∆ + ~n

g2

∆ . (10)

The energy level scheme of the dispersive coupling regime is shown in the right panel of
fig. 2. In this thesis, I am focussing on a special feature of the dispersive interaction.
Depending on the state of the qubit, the resonance frequency of the cavity mode is either
ωr − g2/∆ or ωr + g2/∆ (grey highlight boxes in fig. 2). Therefore, the quantum state of
the qubit can be determined simply by measuring the resonance frequency of the cavity.
This method is usually referred to as dispersive readout. In order to resolve the qubit
dependent shift of the cavity frequency, the dispersive shift

χ = 2g2/∆ (11)

has to be larger than the linewidths of both cavity and qubit.

One has to keep in mind, that any real system will never be entirely isolated. Real (open)
systems are subjected to various sources of decoherence and energy exchange. Possible
loss mechanisms for the resonator mode are dissipation in the cavity walls or coupling
to modes outside of the cavity. The atom can decay radiatively into other modes or via
coupling to the substrate that keeps it in place (in case of an superconducting artificial

7
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atom). However, this inevitable loss of energy can be taken into account by introducing
the decay rates κ and γ for cavity and atom. In well isolated systems, this parameters can
be estimated by modelling the coupling to the outside world. For the most part however,
they are phenomenological figures that are determined experimentally. The loss rates have
a strong influence on the coherent behaviour described by the Jaynes-Cummings model.
If one of the loss rates exceeds the coupling strength g the coherent rabi oscillations are
quickly suppressed as the energy decays out of the system. Due to the small photonic
component of the dressed qubit states in the dispersive regime, the the excited qubit state
can also decay via emitting a photon from the cavity [18]. This decay channel inherited
from the coupling limits the qubit lifetime, see Purcell-limit in sec. 2.3.2.

2.2 Quantum Circuits

This section gives an introduction to the field of superconducting quantum circuits. A
circuit can be described by defining the conjugate variables flux Φ and charge Q for each
network node. In a mechanical system of coupled mass points, the analogous variables
would be the position and the momentum. These ideas are illustrated by the example
of a quantised electronic LC resonator in sec. 2.2.1. Replacing the inductance in an LC
circuit by a Josephson junction (sec. 2.2.2) alters the potential landscape. In the resulting
anharmonic potential, the degeneracy of the transitions between the individual levels is
lifted. Controlling the participation ratio of capacitively and inductively stored energy via
gate and shunt capacitances allows the design of a noise insensitive and stable artificial
atom - the transmon (sec. 2.2.3).

2.2.1 The LC Resonator

The quantization of a superconducting circuit follows a well trodden path. First of all, the
circuit’s degrees of freedom are identified. Definition of the corresponding generalized co-
ordinates and their conjugate momenta allows the denotion of the Hamilton function. The
quantization is done by moving from coordinates to operators and imposing a commutation
relation. A thorough description of the formalism is given in [20].

The idea is outlined here with the simplest possible example - the resonant LC circuit. It
consists of a capacitor C and an inductor L which are connected on both ends, as sketched
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L C

a) b)
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/
h̄

|0〉

|1〉

|2〉

|3〉

ω0

ω0

Figure 3: (a) Circuit diagram of an electrical LC-resonator. Quantisation of the system
results in a quantum harmonic oscillator (b) with frequency ω0. The eigenstates are the
Fock-states |n〉 with definite photon number n and the energy difference between two
neighbouring levels is always ~ω0.

in fig. 3. The relations between current I and voltage U in these elements read

I = CU̇ and U = Lİ (12)

for capacitor and inductor respectively. Energy is either stored in the electric field of the
capacitor EC = CU2/2 or the magnetic field of the inductor EL = LI2/2. Classically, the
system’s energy periodically oscillates between those elements with resonance frequency
ω0 = 1/

√
LC. In analogy to the position of a one-dimensional pendulum, the system has

only one degree of freedom. The conventional choice for a position-like coordinate in a
superconducting circuit is the so-called node flux. In this example, it coincides with the
magnetic flux in the inductor Φ = LI. The charge in the capacitor Q = CU plays the role
of the conjugate momentum. The quantization is brought to completion by moving from
continuous variables to operators

Φ→ Φ̂

Q→ Q̂

and imposing the usual commutation relation
[
Φ̂, Q̂

]
= i~. (13)

Please note, that the hats over operators are omitted from here on. Rewriting the observ-
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ables Φ and Q in terms of the harmonic ladder operators

Φ = i

√
~Lω0

2
(
a− a†

)
and Q = i

√
~Cω0

2
(
a+ a†

)
, (14)

satisfying
[
a, a†

]
= 1, allows the Hamiltonian to be written as

HLC = Φ2

2L + Q2

2C = ~ω0

(
a†a+ 1

2

)
. (15)

This result is simply a quantum harmonic oscillator with frequency ω0. Fig. 3 shows the
energy landscape of the system. With its equidistant level-spacing the harmonic oscillator
is the most ’classical‘ quantum system and the expectation values of the observables Φ
and Q behave just like their classical counterparts. The eigenstates of HLC are the Fock
states |n〉 with definite photon number n = 〈a†a〉. The following sections introduce the
Josephson junction and show, how its nonlinearity allows the design of artificial quantum
systems with individually addressable energy levels.

2.2.2 Josephson Junctions

In a conductive metal, the charge is transported by electrons. Each of them carries the
elementary charge e. During the transition to the superconducting phase, the electrons
pairwise condense into bosonic cooper pairs of charge 2e. They are highly phase-correlated
and can be collectively described by a single wave function

Ψ(r, t) =
√
n(r, t) eiφ(r,t). (16)

Here n(r, t) denotes the number of condensed cooper pairs and φ is the so-called order-
parameter of the system [21].

Two superconductors separated by a layer of insulator are called a Josephson junction. Fig.
4 shows an illustration of a such an SIS-element. Its remarkable properties were predicted
by Josephson in 1962 [22]. He discovered, that the system’s behaviour is solely governed
by the difference between the phases of the superconducting wave functions on each side
of the insulator

φ̃ = φ2 − φ1. (17)

The generalized flux
Φ = Φ0φ̃ (18)
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Èâ†âÍ
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Èâ†âÍ

1

|�Í

|�1Í = Ô
n1e

i„1

|�2Í = Ô
n2e

i„2

|0Í

|1Í

|eÍ

|gÍ

“

Ÿ

Ej Ã cos
A

fi
�
�0

B

�0 = h
2e ¥ 2 · 10≠15 Wb

B(t) Ã I0 sin(Êt)

U Ã I0Ê cos(Êt)

|�p| = 2~Ê

c

ÈF̂ Í = 2~Ê

c

Èâ†âÍ
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Figure 4: Sketch of a Josephson junction. A superconductor (grey) is separated by a thin
insulator (blue). The Cooper-pairs in each of the two parts of the superconductor are
collectively described by the wavefunctions |Ψ1〉 and |Ψ2〉. The macroscopic behaviour is
governed by the phase difference φ̃ = φ2 − φ1.

is defined by renormalizing the phase difference φ̃ with the reduced magnetic flux quantum
Φ0 = ~/(2e). The Josephson-equations describe the voltage across

U(t) = Φ̇(t) (19)

and the current through a junction

I(t) = Ic sin
(Φ(t)

Φ0

)
. (20)

The scaling in these relations is given by Φ0 and the critical current Ic, which depends on
the material and the geometry of the junction.

There are several ways to explore the nonlinear current-voltage-relation of a Josephson
junction. For example, application of a constant voltage U0 results in a linearly increasing
phase (eq. 19). According to eq. 20, an oscillating current will flow across the junction
with a frequency depending on U0. This is the so-called DC-Josephson-Effect. Today’s
most accurate voltage standards are based on this intrinsic connection between voltage
and frequency in a Josephson junction [23].

Combination of eq. 19 and the time derivative of eq. 20 reads

U(t) = Φ0
Ic cos(Φ(t)/Φ0) İ(t). (21)

This resembles the constitutive equation of an inductive element U = Lİ with the nonlinear
Josephson inductance

LJ(Φ) = Φ0
Ic cos(Φ/Φ0)) . (22)

To think of a Josephson junction as a nonlinear inductor gives a good intuition about many
of its applications.

In addition to the Josephson inductance, the capacitance CJ formed by the surfaces of
the superconductor has to be taken into account. Fig. 5 shows the electronic symbol
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LJ , CJ LJ CJ=

Figure 5: Electronic symbol of a Josephson junction. The capacitance CJ and the nonlinear
inductance LJ = LJ(Φ) are combined in a single symbol.

of a Josephson-junction. On first glance, the model circuit resembles the LC-resonator,
discussed in the previous section. As before, the energy stored in the capacitor depends
linearly on the charge difference. However, the nonlinear Josephson inductance causes a
fundamentally different behaviour. The inductive energy varies periodically with the flux
Φ. The relative ratio of these energy contributions is the key to the design of a stable
artificial atom, as is shown in the following section.

2.2.3 Transmon - The Artificial Atom

A dissipationless Josephson junction can be modelled as the nonlinear Josephson induc-
tance LJ in parallel with the capacitance CJ . The inductive and the capacitive energy
are captured in EJ and EC respectively, the exact definitions are given in [24]. These
energy contributions can be controlled by adding a shunt capacitance CS in parallel to
the junction and a gate capacitance CG. The circuit diagram is shown in fig. 6. The
nonlinear inductance modifies the parabolic potential of a linear LC-oscillator, resulting in
a cosine-shaped potential. The degeneracy of the transitions is lifted and the energy levels
become individually addressable. This allows the definition of a quantum bit (qubit), by
restricting the space of states to the lowest two levels {|g〉 , |e〉}. Unwanted transitions out
of the qubit subspace can be modelled by taking into account the third level |f〉. The
Hamiltonian of an isolated three-level transmon reads

Htransmon = ~ω0 |g〉 〈g|+ ~ω1 |e〉 〈e|+ ~ω2 |f〉 〈f | . (23)

The transition frequencies for |g〉 ↔ |e〉 and |e〉 ↔ |f〉 are

ω01 = ω1 − ω0 and ω12 = ω2 − ω1. (24)
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Figure 6: (a) Circuit diagram of the transmon. Shunt and gate capacitor control the
relative contribution of inductive and capacitive energy of the Josephson junction. The
transmon-regime EJ/EC ≈ 50 offers reduced charge noise and improved stability. The
resulting periodic potential (b) can be approximated by an anharmonic oscillator with
anharmonicity α = ω12 − ω01 for low energies. The total potential depth corresponds to
roughly 2EJ .

The transition frequency between ground and excited state is set by the energy contribu-
tions EJ and EC via

~ω01 =
√

8EJEC (25)

In the transmon-regime EJ/EC > 50, the energy fluctuation due to charge noise is sup-
pressed, allowing for a stable operation of the qubit [24]. When the linewidth γ is smaller
than the anharmonicity

α = ω12 − ω01 ≈ −EC , (26)

the states are resolvable as individual peaks in the spectrum.

The transition frequencies of a transmon are typically in the range of 4 GHz to 10 GHz.
Coupling such an artificial atom to a 3D microwave cavity presents a cavity QED system
in the microwave regime, as discussed in the following section.

2.3 Cavity QED with Quantum Circuits

This section combines the above concepts and relates, how a transmon in a three dimen-
sional microwave cavity can be treated as a cavity QED system. Sec. 2.3.1 provides a
detailed description of the cavity. The cavity mode and its representation as a quantized
harmonic LC oscillator are presented in the first part of this section. The second part
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Figure 7: Rectangular 3D cavity. Left: Sketch of the hollow inside of the cavity with
labels of the relevant dimensions. Right: Photograph of the two halves of the aluminium
cavity which was used in this experiment. RF couplers are not attached, two ports for
attachment are visible on top of the left half.

treats the coupling between the cavity and a transmission line, introducing the powerful
concept of internal and external (coupling) quality factors. Finally, the coupling between
cavity and transmon is discussed in sec. 2.3.2. The dispersive regime of the interaction
is introduced by the simplified model of a two-level transmon. Sec. 2.3.3 presents the
expanded model and the three-level transmon Hamiltonian. It covers the essential physics
neccessary to understand the results presented in the experimental part of this thesis.

2.3.1 Rectangular 3D Microwave Cavities

A rectangular microwave cavity is a hollow cuboid inside a solid block of bulk metal. It is
typically fabricated by cutting the block in half and milling out the hollow inner part of the
cavity. The two halves are put back together and screwed tight. Fig. 7 shows a sketch of
the cavity and a photo of two halves of an aluminium cavity. A comprehensive analysis of
various types of 3D microwave cavities and their applications in superconducting circuits
is found in [25].

Cavity Mode

The conductive metal walls impose strong boundary conditions on the electromagnetic
field inside the cavity. The spatial and temporal shape of the cavity modes is defined by
the solutions of Maxwells’s equations. Let the dimensions of the rectangular cavity be a,
b and c in direction of the x-, y- and z-axis respectively. The resonance frequencies of the
sustained modes are

flmn = c

2

√
l

a

2
+ m

b

2
+ n

c

2
(27)
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x
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b)a)

Figure 8: Electric field of the TE110 mode of a rectangular microwave cavity. The magni-
tude of the field is encoded in the color going from blue (weak field) to red (strong field).
The cavity was simulated with HFFS. (a) Vector plot. The only non-zero component of
the E-field goes along the z-axis. It oscillates with the resonance frequency f110. (b)
Magnitude of the field. The magnitude is constant in z and decreases from its maximum
value in the center to 0 at the walls in x- and y-direction. The mode is also termed ‘sushi
roll’, referring to the shape of the equipotential surfaces.

with the speed of light c. The indices l, m and n denote the number of anti-nodes of the
standing electric field inside the cavity along the x-, y- and z-axis respectively. Only one
of these indices may be 0 at a time, in order to not violate the boundary conditions [26].
Typical desired resonance frequencies in circuit QED are about 10 GHz, which corresponds
to length scales a, b, c on the order of centimetres. Let the cavity have the smallest extent in
z-direction c < a, b. In that case, the cavity mode with the lowest frequency is (l,m, n) =
(1, 1, 0). The spatial shape of the TE110 mode (transverse electric) is sketched in fig. 8.

Its electric field is orientated in parallel with the z-axix, the components in x and y direc-
tion are 0. The magnitude is constant along z. Looking at the x-y-plane, the magnitude is
strongest in the cavity center and falls of to 0 at the walls following a sinusoidal function.
The charge in the bulk metal follows the electric field with a 90◦ phase shift. It periodically
flows back and forth between the cavity top and bottom. This behaviour resembles the
oscillating current in a resonant LC-circuit. Hence, the cavity’s TE110 mode is well mod-
elled by an LC-resonator with resonance frequency ωr = 1/

√
LC = 2πf110. This equivalent

circuit model allows an intuitive picture of the coupling between a cavity and a coaxial
transmission line, as is discussed in the next subsection.

In terms of quantum mechanics, a single mode of the cavity is simply described as a
harmonic oscillator

Hcav = ~ωr
(
a†a+ 1

2

)
(28)

with the bosonic ladder operators a† and a that add or remove a photon from the mode.
This Hamiltonian only describes the coherent behaviour of a lossless mode. In any real
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system, the energy will always decay over time due to various loss mechanisms. There are
several channels for internal loss in 3D microwave resonators. Dielectrica inside the cavity
(e.g air instead of vacuum, a sapphire chip carrying a qubit or residual oxide layers on the
walls) lead to dielectric loss of the energy stored in the electric field. Conductor loss relates
to the energy dissipated due to finite conductivity of the metallic cavity walls that carry
the current. The border, where the cavity is cut open during fabrication, is potentially a
region of even higher resistivity. However, this so-called seam loss can be reduced by lining
the seam with indium before the two halves of the cavity are bolted together [27]. This
internal loss channels are combined in the decay rate κint. The exponential energy decay
in the time domain ∼ e−κintt corresponds to a Lorentzian frequency spectrum centred at
ωr with a width of κint. The quality factor Q relates the decay rate to the frequency and
allows the comparison of the energy storing capabilities of resonators operating at different
frequencies. It is defined as

Q = 2π Total energy stored
Energy lost per cycle . (29)

It can be roughly imagined as the number of times a photon is reflected back and forth
before it is lost. When considering only internal losses, the quality factor is simply
Q = Qint = ωr/κint. However, Qint can never be directly observed in the experiment.
Performing spectroscopic measurement of the cavity requires a connection to a measure-
ment device. This coupling inevitably adds an additional decay channel that lowers the
quality factor of the resonator.

Coupling to the outside world

In order to probe the cavity one needs to establish a connection to the outside world.
The first choice to transport microwave signals to the cavity and back is a coaxial cable.
Its center conductor is cylindrically surrounded by the grounded outer conductor with a
dielectricum (typically polyethylene) in between. Signals are transported in form of TEM
waves, both the electric and the magnetic fields are transverse to the propagation direction.
The connection is made by drilling a hole in the cavity wall and attaching the cable via an
SMA flange. Fig. 9 shows the schematics of this setup. The cylindrical hole in the cavity
wall forms a short waveguide section. Signals below the waveguide’s cutoff frequency do
not propagate freely, but instead decay exponentially

~E(x, y, z) = ~E(x, y, z = 0)e−βz (30)
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Figure 9: Coupling the resonator to a coaxial feedline. (a) Cut through the x-z-plane of
the 3D structure. A signal propagates along the coaxial cable in form of a TEM -wave.
In the waveguide section, the intensity of the field decreases exponentially in direction of
the Z-axis. The coupling strength is defined by the overlap of the decaying field with the
TE110 mode in the resonator. It can be controlled by designing the length of the waveguide
section accordingly. (b) Equivalent circuit diagram. The cavity is represented by a parallel
LCR resonator and the coaxial cable by a transmission line with characteristic impedance
Z0. A coupling capacitance Cc models the coupling through the waveguide section. The
quantity of interest is the reflection coefficient S11, that relates voltage signals going in and
out of the resonator Vout = S11Vin. External measurement circuitry (typically a VNA) is
modelled by a source Vext with internal impedance Zext. Image adapted from [25].

with the propagation constant β. The overlap between this evanescent field and the cavity
mode defines the coupling of the coaxial cable and the cavity. Due to the exponential decay,
the coupling strength depends crucially on the length of the waveguide section. This is
used in the experiment to control the coupling by adjusting the pin-length at the end of the
coaxial cable. A comprehensive analysis of the energy transfer in terms of electrodynamics
is done in [25]. The main results agree with what one would intuitively expect - the cavity
is most susceptible to absorb energy close to its resonance frequency. Also, the connection
to a measurement apparatus introduces an additional decay channel, that reduces the total
quality factor of the resonator.

To get a better understanding of the coupled system, it helps to look at the equivalent
electronic circuit depicted in fig. 9. The distributed three-dimensional structure is modelled
with a network of lumped elements. The lossy cavity mode is represented by a parallel LCR
resonator. External measurement circuitry (in most cases a vector network analyser VNA)
is modelled by the AC source Vext with internal impedance Zext. It is connected to the
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cavity via a transmission line with a characteristic impedance of Z0 that is usually matched
to the source. The coupling is modelled by the coupling capacitance Cc. Let us assume
the source emits a signal of the form Vin = V0eiωt. Travelling along the transmission
line, the incoming signal encounters an impedance change at the resonator from Z0 to
Zin = 1/iωCc + ZLCR, where

ZLCR =
( 1
iωL

+ iωC + 1
R

)−1
(31)

is the input impedance of the LCR circuit. The sudden change in impedance causes
reflection of the incoming signal Vout = S11Vin with the complex reflection parameter

S11 = Zin − Z0
Zin + Z0

. (32)

The scattering parameters of a resonator connected to an external load, can be significantly
different compared to an unloaded resonator. A well-written summary is found in [28]. The
key result is, that the additional circuitry results in a larger decay rate κ = ωr/Ql. The
loaded quality factor Ql has two contributions

1
Ql

= 1
Qint

+ 1
Qc
, (33)

with the coupling quality factor Qc accounting for the losses due to the external measure-
ment apparatus. If either the internal or the coupling losses exceed the other, the overall
Ql of resonator is dominated by the strongest decay channel. The different regimes, set
by the relative ratios of Qint and Qc are listed in tab. 1. According to [29], the complex

Qc ≈ Qint critically coupled
Qc � Qint under-coupled
Qc � Qint over-coupled

Table 1: Naming convention for the different coupling regimes of a loaded resonator.

reflection parameter of the cavity reads

S11 = 2Ql/Qc
1− 2iQl ω−ωrωr

− 1. (34)

It depends not only on the total quality of the loaded resonator Ql, but also on the relative
contributions of Qint and Qc. Taking a power spectrum with a vector network analyzer
(VNA) corresponds to measuring |S11|2 = Pout/Pin. The spectrum has the shape of a
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Figure 10: Reflection coefficient S11 of the loaded rectangular microwave resonator in
different coupling regimes. The data is computed numerically following eq. 34 and plotted
as a function of the detuning ∆ω = ω − ωr. Fixed parameters are ωr = 2π × 8.8 GHz and
Ql = 4000, corresponding to a decay rate of κ = 2π× 2.2 MHz. Top row: The magnitude
|S11|2 is only affected slightly by the ratio Qc/Qint. Only the depth of the dip changes,
decay rate κ and the resonance frequency ωr are independent. Bottom row: In the over-
coupled regime, the phase response undergoes a 2π phase shift. It is well approximated
by eq. 36 (orange), especially for a highly over-coupled resonator Qc � Qint. There is no
permanent phase shift in the response of an under-coupled resonator, only a discontinuity
around resonance.

Lorenzian
|S11|2 = 1− κ2Q2

l /(4Q2
c)

(κ/2)2 + (ω − ωr)2 , (35)

centred at ωr with a full-widh-half-maximum (FWHM) of κ. The width depends solely
on the loaded quality factor, the constituents Qint and Qc only influence the depth of the
dip. Off-resonance, the incident power is fully reflected back from the resonator |S11|2 ≈ 1.
The analytic expression for the phase θ(ω) = arg(S11) is quite unsightly, and therefore not
reproduced here. In the over-coupled regime, it can be approximated by

θ(ω) = 2 arctan
(

2Ql
(

1− ω

ωr

))
. (36)

Fig. 10 shows the cavity response in the different coupling regimes. The magnitude |S11|2
is only slightly affected by the ratio Qc/Qint. The depth of the dip changes, whereas ωr
and κ remain unaffected. However, the cavity’s phase response depends strongly on the
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internal and coupling quality factor. In the over-coupled regime, the phase undergoes a full
2π phase shift and approximately follows eq. 36. As soon as Qc ≥ Qint the 2π phase-shift
disappears. Only a discontinuity around fr remains, which is flattening out for higher
relative values of Qc.

2.3.2 Transmon Coupled to a 3D Microwave Cavity

A transmon placed inside a 3D microwave cavity results in a dipole interaction between
the systems [18]. Strongest coupling is achieved, when the transmon’s ‘antenna’ (the
gate capacitor) is in parallel with the electric field of the cavity mode. A sketch of this
configuration is shown in fig. 11. This section is divided into two parts. The first part
describes the dispersive limit of the interaction, followed by a discussion of the transmon
linewidth and its limiting factors.

b

c

a

Figure 11: Transmon inside a 3D rectangular cavity. The transmon (grey) is held in place
by a sapphire substrate (blue). The electric field of the cavity mode is indicated in red.
The coupling between transmon and cavity mode is largest, when the transmon’s antenna
is arranged in parallel with the electric field of the mode.

Hamiltonian and spectrum

The cavity mediated coupling between two neighbouring transmon states i and j is de-
scribed by the coupling strength gij . The detuning between a specific transmon transition
|i〉 ↔ |j〉 and the cavity is denoted as ∆ij = ωij − ωr with the transition frequencies
ωij = ωj −ωi. This section deals with the restricted case of a two-level transmon, treating
it as a qubit with states |g〉 and |e〉. The model can be easily expanded to include three or
more states, as shown below in sec. 2.3.3. Considering only the energy conserving terms
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Figure 12: Cavity and qubit spectra in the dispersive limit of the Jaynes-Cummings model.
Left: When the qubit is in the excited state |e〉, the cavity resonance frequency ωgr is
shifted to ωer = ωgr + χe. The individual peaks are resolved, when the dispersive shift
exceeds the cavity linewidth χe > κ. This enables dispersive readout of the qubit via
probing the cavity. Right: The qubit transition frequency ωge is shifted by nχe, where
n denotes the number of photons in the cavity. The plotted qubit spectrum corresponds
to the poissonian photon distribution of a coherent state with an average photon number
〈n〉 = 1. The photon number peaks are resolved when χe > γ. Peaks broaden with nκ
plus additional effects due to measurement induced dephasing and charge noise [30]. Plot
parameters are −χe = γ = 2κ.

of the dipole interaction brings us back to the Jaynes-Cummings Hamiltonian [18]

HJC = ~ωra†a+ ~ω0 |g〉 〈g|+ ~ω1 |e〉 〈e|+ ~g0,1
(
a† |g〉 〈e|+ a |e〉 〈g|

)
. (37)

Resolving the photon number peaks in the qubit spectrum marks the threshold of strong
dispersive cavity QED. The precondition χe > γ can be met with a transmon-cavity
architecture, as demonstrated by Schuster et al. in 2006 [31]. In the dispersive regime,
where 4

〈
a†a

〉
(g01/∆01)2 � 1 this Hamiltonian can be approximated by

H2lvl
Disp = ~ωgra†a+ ~ωe |e〉 〈e|+ χea

†a |e〉 〈e| (38)

as shown in [32] with the convention ω0 = 0. The approximation holds up to a critical
cavity photon number of

ncrit = 1
4

∆2
01

g2
01
. (39)

Including not only two, but all the transmon’s states in the calculation, results in a renor-
malization of the cavity ωgr = ωr−χ01. Also, the qubit transition frequency is Lamb-shifted
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to ωge = ω01 + χ01. The partial dispersive shifts read

χij =
g2
ij

∆ij
(40)

and the dispersive shift, connected to the excited state of the transmon qubit, is given by

χe = 2χ01 − χ12. (41)

There are two equivalent perspectives to interpret the dispersive interaction. Note that the
dispersive shift can be positive or negative, depending on the sign of ∆. Thinking about
the qubit, it is clear that the photons in the cavity shift the qubit transition frequency by
χe per photon, a typical example of the AC stark effect. Likewise, the resonance frequency
of the cavity is shifted by χe, when the qubit is in the excited state |e〉. The shifted cavity
frequency is denoted by

ωer = ωgr + χe. (42)

Fig. 12 shows the dispersive spectra of the qubit and the cavity.

The qubit dependent dispersive cavity-shift is resolved when χe ≥ κ. In this regime, the
state of the qubit can be measured by determining the cavity resonance frequency. This
can be done by applying an external microwave signal. After interacting with the qubit-
cavity-system, the probe signal conveys the information about the qubit state. Probing at
either ωgr or ωer imprints the information in the signals amplitude. Alternatively, a probe
signal at (ωgr + ωer)/2 experiences a qubit dependent phase shift. The contrast of such a
measurement is highest, when the cavity is narrow and the dispersive shift large χe � κ.
However, a small decay rate κ limits the rate at which the probe field can escape the
cavity and extract information about the qubit state. In terms of fast readout and highest
possible contrast, the condition for optimal readout is

χe = κ, (43)

according to [18] and [33]. The probe power should be sufficiently low to firstly preserve the
dispersive interaction and secondly, keep measurement induced dephasing (line broadening)
at a minimum [30]. The following section 2.3.3 expands this idea of dispersive readout
to a three level transmon instead of a qubit.
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Transmon linewidth

The spectroscopic linewidth of the transmon is determined by its dephasing time T2 = 1/γ2.
As discussed in [34], the dephasing rate γ2 is related to the experimentally observed FWHM
linewidth ∆f = γ/(2π) via

γ2 = 1
2γ. (44)

Both the qubit decay rate γ1 = 1/T1 and the ‘pure dephasing’ γφ contribute to the de-
phasing rate

γ2 = 1
2γ1 + γφ. (45)

Possible sources for dephasing are charge and flux noise as well as the interaction with
the substrate [24]. Quasi particle tunneling is also suspected to cause dephasing [35].
Photon number fluctuations in the cavity cause dephasing by shifting the qubit frequency.
Measurement induced dephasing can cause additional broadening of the line and strong
deviations from the simple Lorentzian line-shape [30].

An upper limit of the quit lifetime T1 is given by the Purcell limit Tmax
1 = 1/γP . The

Purcell-effect [12] describes the effect of the cavity decay rate κ on the lifetime of the
qubit. The reason for this additional decay channel is simply the dressing of the eigenstates
of the coupled system. In the resonant case ∆ = 0, the system’s lowest excitation consists
of an equally weighted superposition of the single photon state and the excited qubit state
(see sec. 2.1.2). In the dispersive limit, the excited qubit state contains only a very small
photonic component (normalization omitted)

|e〉 = |e′〉 ⊗ |0′〉+ λ |g′〉 ⊗ |1′〉 , (46)

with λ � 1 and the isolated basis states {|g′〉 , |e′〉} and {|0′〉 , |1′〉 , ...}. As a result, the
spontaneous emission rate for the excited qubit state will acquire the additional contribu-
tion

γP = g2
01

∆2
01
κ. (47)

The Purcell-limit can be the limiting factor of the qubit lifetime. It can be overcome by
using Purcell-filters [36, 36].

23



2 Concepts

ωgrωerωfr

Frequency

T
ra

n
sm

is
si

o
n

κ

χe

χf

ωgrωerωfr

Frequency

-π

0

π

P
h

a
se

|g〉
|e〉
|f〉

Figure 13: Three-level transmon dispersively coupled to a cavity, amplitude (left) and
phase response (right). The cavity resonance frequency depends on the state of the qubit.
If the transmon is in |g〉, |e〉 or |f〉 the cavity is resonant at ωgr , ωer or ωfr respectively.
Thus, the problem of determining the transmon’s quantum state reduces to the problem of
measuring the cavity resonance frequency. Plot parameters are χe = −κ and χf = −2.2κ.

2.3.3 Dispersive Readout of a Three-level Transmon

In this section, the model is expanded to cover the third state of the transmon |f〉. The
Hamiltonian reads

H3lvl
Disp = ~ωgra†a+ ~ωe |e〉 〈e|+ ~ωf |f〉 〈f |+ χea

†a |e〉 〈e|+ χfa
†a |f〉 〈f | (48)

with χf = 2χ12 − χ23 ≈ 2χe. The frequency of the transmon transition |e〉 ↔ |f〉 is
ωef = ωf − ωe. When the transmon is in the state |f〉, the conditional cavity resonance
frequency is

ωfr = ωgr + χf . (49)

The cavity spectrum is shown in fig. 13 for both amplitude and phase. Probing the cavity
at ωer gives the highest contrast to distinguish all three transmon states. The lamb shift of
the second transmon transition |e〉 ↔ |f〉 in terms of the isolated transition frequency ω12

reads [19]
ωef = ω12 + χ12 − χ01 ≈ ω12. (50)

Consequently, the anharmonicity defined in eq. 26 is well approximated by the difference
of the lamb shifted transition frequencies of the coupled system

α = ω12 − ω01 ≈ ωef − ωge. (51)
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This definition is typically preferred as the ωef and ωge are directly observable in an
experiment with a coupled cavity-qubit system. The qubit dependent cavity spectrum
with the actual experimental parameters measured in this experiment is shown in sec. 5.1.

2.4 Summary

Section 2 outlined the application of superconducting circuits as a platform for cavity
QED. A transmon artificial atom can be strongly coupled to a single field mode inside a
3D microwave cavity. The discussion is focused on the dispersive regime of the interaction,
which is utilized in this project to perform QND readout of the transmon state. The
dispersive three-level transmon Hamiltonian H3lvl

Disp captures the relevant system dynamics.
Key experimental parameters are the transmon dependent cavity frequencies ωgr , ωer , ωfr ,
the dispersive shifts χe and χf and the cavity linewidth κ. The dispersive readout scheme
is used to either distinguish the |g〉 state or both |g〉 and |e〉 from the higher transmon
levels. Optimal ground state readout contrast is achieved for χe = κ, assuming an over-
coupled cavity. As we will see in the following section, this goal was not met in the design
of the system, as the engineered coupling quality factor Qc ended up almost equal to the
cavity’s internal quality factor Qint.
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3 Characterising the System

The main goal of this section is the determination of the qubit transition frequency ωge and
the conditional cavity frequencies ωgr , ωer and ωfr . Decay rates γ and κ for cavity and qubit
are also measured. These quantities are determined by looking at the complex microwave
response of the cavity, measured with a vector network analyser. Additional drive signals
are activated on demand, in order to find the transition frequencies of the transmon.

3.1 Cavity Spectroscopy

Spectra are taken with a vector network analyser (VNA). This high precision instrument
emits a microwave signal with probe frequency ω = 2πf and voltage amplitude Vin(ω) at
port ‘1’. After interacting with the device under test, the returning signal’s phase and
amplitude Vout(ω) are recorded at port ‘2’. The complex scattering parameter S21(ω)
describes the relative amplitude

S21(ω) = Vout(ω)/Vin(ω) (52)

of outgoing and incoming signal. The phase information is incorporated in the argument

phase(ω) = arg(S21(ω)). (53)

In many cases, the scattered power magnitude |S21(ω)|2 is of interest. It is often stated in
units of decibel dB

|S21(ω)|2 [dB] = 10 log10
(
|S21(ω)|2

)
. (54)

When measuring scattering parameters with a VNA, the probe frequency is changed in
discrete steps to cover the desired frequency range, where the number of steps defines the
frequency resolution. Noise reduction is achieved by either averaging a series of measure-
ments or reducing the intermediate frequency (IF) bandwidth. This parameter is related to
the VNA’s internal signal processing and filtering. A narrow IF bandwith means less noise
contribution from frequencies other than the one that is currently measured. However,
it is inversely proportional to the measurement time and should be adjusted carefully to
the experimental requirements. The scattering parameter S11(ω) compares the incoming
wave to the reflected wave at the same port. A comprehensive introduction on microwave
networks and scattering parameters is found in [26].
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Figure 14: Two reflection spectra of the cavity taken with high (orange) and low (blue)
probe power, corresponding to roughly 〈nhigh〉 ≈ 14000 and 〈nlow〉 ≈ 5 cavity photons.
The plots show magnitude (left) and phase (right) of S11. Results of the circle fit are
drawn in red. Probing the cavity with only a few photons reveals the effect of the coupling
between transmon and cavity. The resonance is found at the lamb shifted frequency ωgr .
Conversely, the quantum mechanical interaction are completely ‘washed out’ in the high
power measurement, resulting in the uncoupled resonance frequency ωgr = ωr − χ01.

3.1.1 Entering the Quantum World: From High to Low Power

The nonlinearity of the coupled system is revealed, when taking a spectrum with different
probe powers. Fig. 14 shows the response in magnitude and phase of two reflection mea-
surements with P̃ low

in = −124 dBm (blue) and P̃ high
in = −89 dBm (orange). The low and

high power measurements yield a significantly different result for the position of the cavity
resonance. In the low power measurement, the average photon population of the cavity
mode is close to 1. The resonance frequency is found at the lamb shifted cavity frequency
ωgr (due to the interaction with the transmon). When the cavity is probed with a large
number of photons, the trace of the system’s interaction on the quantum level disappears.
Currents above the junctions critical current Ic, result in a breakdown of the supercon-
ductivity, effectively making the qubit disappear. Therefore, the measurement results the
uncoupled resonance frequency ωr = ωgr + χ01.

Let us have a closer look on the measured data. The magnitude (when plotted linearly)
follows a Lorentzian line shape, whereas the phase response is shaped like an arctangent.
Both amplitude and phase information can be processed together by fitting eq. 34 to
the complex response S11. This is done by performing a circle fit routine, which was
implemented by Zöpfl and Schneider. Detailed information is found in [37]. The resulting
fit is drawn in red in the graph and the important parameters are listen in tab. 2. The
circle fit not only calculates the loaded coupling Ql, but also its constituents Qc and Qint.
Detailed knowledge about the internal and coupling quality factors allows to make an

27
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ωgr /2π 8.809 47(1) GHz
ωr/2π 8.800 017(5) GHz
χ01/2π −9.46(1) MHz
Ql 3847(20)
Qc 6461(25)
Qint 9510(170)

Table 2: Summary of the experimental parameters of the coupled cavity-transmon system.
Cavity resonance frequencies and the dispersive shift are extracted from a circle fit to
the complex cavity response in a high (〈nhigh〉 ≈ 18000) and low (〈nlow〉 ≈ 5) power
measurement. Quality factors are derived from the low power data.

estimate of the average number of photons in the resonator. According to [38], an upper
bound is given by

〈n〉 = 2
~ω2

Q2
l

Qc
P̃in, (55)

when the cavity is driven on resonance ω with power P̃in at the input port of the cavity.
The measurement powers translate to 〈nlow〉 ≈ 5 and 〈nhigh〉 ≈ 18000. Despite being
a rough estimate, these numbers confirm the explanation given above. The low-power
measurement reflects the system’s quantum behaviour whereas the many photons of the
high-power measurement encounter an almost entirely classical microwave resonator.

As discussed in sec. 2.3.2, the optimal setup for dispersive readout is an over-coupled
resonator with κ ≈ χe. However, the fit of the resonator response reveals a very similar
internal and coupling quality factor Qint ≈ Qc. The reason is simply that the coupling
pin of the cavity’s second port was not chosen short enough. It still couples comparatively
well, providing a channel for energy decay and thus lowering the cavity’s internal quality
factor. The cavity is much closer to being critically coupled instead of over-coupled. As
a consequence, the phase response of the cavity is sharper than anticipated (compare fig.
10). Therefore, the expected phase difference between the |g〉 and the |f〉 state is close to
2π. Lower contrast of the dispersive readout has to be expected. Compensation is to some
extent possible via higher readout powers or longer averaging times, accepting a decrease
in the ‘QNDness’ of the measurement or a s lower temporal resolution respectively.
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3.1.2 Driving the Transmon

Qubit transition frequency

From the model of the coupled system we expect the information about the state of the
transmon to be incorporated in the position of the cavity. In last section’s low-power
measurement, the cavity resonance was found at ωgr . There is no hint of a second peak
in the spectrum, that would correspond to the qubit’s the excited state. Consequently,
the transmon seems to be almost completely in the ground state |g〉. A short back-of-the-
envelope calculation is enough to check, if this result makes sense. Assuming a thermal
state for the transmon, the population of the first excited state is expected to be a factor
of

e−~ωge/(kBT ) (56)

smaller, than the ground state population. Here kB and T denote the Boltzmann-constant
and the temperature respectively. A conservative estimate of a transition frequency of
5 GHz and a temperature of T = 100 mK results in a relative excited state population of
10%. Resolving a dip with only that fraction of the depth of the ground state resonance is
hard, especially when expecting a dispersive shift on the order of the cavity width κ.

Figure 15: Two-tone measurement in order to find the qubit transition frequency ωge. VNA
reflection spectra are recorded, while an additional drive signal with varying frequencies is
applied. When the drive hits the qubit resonance at ωge, the additional peak, corresponding
to the transmon’s ground state, appears in the cavity spectrum. Left: Surface plot. The
vertical line indicates ωge, the horizontal lines at ωgr and ωer mark the state dependent
position of the cavity. The separation corresponds to the dispersive shift χe. Right:
Horizontal cut along ωer . A Lorentzian fit (red) allows the determination of ωge and the
effective qubit decay rate γ.

The dip can be made more prominent by shifting some of the transmon’s population
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into the excited state. Driving the qubit at the transition frequency ωge will cause Rabi-
oscillations. In addition to the coherent evolution there will be competing processes, due
to the connection to the surrounding bath. For low temperatures, the main effect will be
energy relaxation. However, for a continuous drive with power pge there will be a stationary
state, where the various rates of excitation and decay balance out. The resulting average
population of the transmon’s states is constant in time (as long as the drive is turned on)
and may look significantly different than the thermal distribution. The transition saturates
at a drive power psatge , that corresponds to an even probability of 50% for finding the qubit
in |g〉 or in |e〉. At this point the contribution of the bath is negligible and the evolution
is dominated by stimulated emission and absorption of drive photons. These processes
occurring with the same rates sets the natural limit of half of the population being in the
excited state.
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Figure 16: Cavity spectra while driving the qubit on resonance ωp = ωge. As the drive
power is increased, the cavity peak at ωer becomes more and more prominent. Blue data
presents a reference, where the drive is turned off. Green and orange correspond to driving
the transition below respectively above the saturation intensity psatge . The dispersive shift
χe is determined by fitting the sum of two Lorentzian profiles with a common width κ to
the saturated spectrum (fit shown in red).

In order to find the transition frequency ωge a two-tone measurement is performed. That
is done by applying an external probe signal and iterating its frequency fp in small discrete
steps. At each step a reflection spectrum of the cavity is taken with the VNA. The data is
shown in fig. 15. When the probe hits the transition frequency fp = ωge/(2π) the cavity dip
corresponding to the transmon state |e〉 appears. A horizontal cut through the contour plot
reveals the spectrum of the qubit’s ge-transition. A Lorentzian fit of the linear data is used
to extract the resonance frequency and the linewidth. The displayed data was measured

30



3 Characterising the System

at a slightly too strong VNA probe and qubit drive power. Thus, the qubit transition
is subjected to both an AC stark shift and power broadening. A more careful analysis
described in sec. 5.4 results in ωge = 2π×6.449 96(3) GHz and γ = 2π×1.001(4) MHz using
the lowest possible drive and VNA probe power that still produces a usable spectrum. The
corresponding dephasing time T2 = 300(100) ns agrees well with typical values from the
literature [6] [39]. As suggested in [34], an uncertainty of 30 % is assumed for this method.
The low power results are listed in the summary in tab. 3.

Figure 17: Two-tone scan while resonantly driving the ge-transition in saturation. The
transmon’s |f〉 state gets populated, when the second drive signal hits ωef . Consequently,
the third peak appears in the averaged cavity spectrum. (Left) Surface plot of the reflected
magnitude with the frequency of the second drive on the x-axix. (Right) Vertical cut along
ωef . The fit was obtained by fitting the sum of three Lorentzian profiles of the same width
to the linear data (red). Cavity dips corresponding to the transmon states are labelled
with |g〉, |e〉 and |f〉 respectively.

Note that the dephasing time presented in this section might still be underestimated. A
measurement at even lower VNA and qubit drive power might have been possible using a
higher number of averages and a lower IF frequency. The conventional method to determine
T2 is to perform a Ramsey type experiment, using a sequence of a π/2 excitation and a
readout pulse after a varying delay time. In fact, a Ramsey measurement of the same
transmon qubit a few months later resulted in a coherence time of several µs.

Dispersive shift

With the knowledge about the qubit transition frequency, the dispersive shift χe can be
determined. Fig. 16 shows, how an external drive at ωge with power pge affects the cavity
spectrum. Data plotted in green corresponds to a weak drive, whereas the orange data
corresponds to driving the transmon well in saturation pge > psatge . The blue data points
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present a reference without the additional drive signal. Let us assume the drive renders
the transmon in a mixed state with 50 % probability of being in |g〉 or |e〉. Measuring
the position of the cavity resonance frequency corresponds to a projective measurement
of the qubit state. Therefore, a single measurement will result with equal probability in
either finding the cavity at ωgr or ωer . However, it is hardly possible to perform a VNA-
measurement, that is accurate enough to resolve the qubit’s state and is still faster than
the rate at which the qubit changes its state (more on that topic follows in sec. 5). The
presented data was acquired following the contrary approach. In order to minimize the
noise of the signal, a number of 100 individual spectra were taken with high accuracy (low
IF bandwith). Both possible measurement results reoccur countless times, causing the
cavity dips at ωgr or ωer to appear side by side in the final averaged spectrum.

Figure 18: Averaged cavity spectrum while the transmon’s three lowest states are populated
(blue dots). Same data as in fig. 17, but showing the reflected magnitude using a linear
scale |S11|2 = |Pout/Pin|. A sum of three Lorentzian profiles with a common decay rate κ
was used for the fit (red line).

One can go a step further and try to populate the transmon’s second excited state |f〉.
It is possible to do this, by driving the |g〉 ↔ |e〉 transition in saturation and adding an
additional drive signal with a frequency ωef , corresponding to the energy difference between
between first |e〉 and second excited state |f〉. A two-tone measurement as described above,
but this time with the resonant ge-drive constantly running and repumping the excited
state, does the trick in finding the transition frequency. A third dip appears in the cavity
spectrum when the additional drive signal hits ωef = 2π×6.177 31(2) GHz, see fig. 17. This
shifted cavity dip corresponds to the transmon’s |f〉 state and is centred at ωfr , shifted by
χe + χf ≈ 2χe from the ground state cavity resonance. The transmon interacting with
the two external drives ends up in a stationary state, where all the system’s transition
rates are in equilibrium and the average population of each state stays constant. The
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mean occupation is reflected in the cavity spectrum, which comprises of 100 individually
recorded VNA-traces itself. To give an idea about the visual difference between linear and
logarithmic depiction of the reflected magnitude |S11|2, the spectrum shown in fig. 17 is
plotted again in fig. 18, using a a linear scale. In the linear representation, the resonance
has the form of a Lorentzian as given in eq. 35. Throughout this thesis, the linear data
was used for analysis and fitting, but the logarithmic data is presented in the graphs. The
key parameters describing the coupled cavity-transmon system are extracted from fitting
a three-peaked Lorentzian (with common width κ/(2π)) to the linear data shown in fig.
18.

3.2 Summary of System Parameters

The key parameters of the coupled transmon cavity system are collected in tab. 3. The
dispersive shift χe and the cavity decay rate κ are close to the optimal dispersive readout
condition eq. 43. However, the cavity being critically coupled instead of over-coupled is
expected to lower the contrast. The qubit linewidth is similar to κ and χ. Therefore, the
number splitting of the qubit transition is most likely not resolved in the experiment.

Description Symbol Value
Cavity when transmon in |g〉 ωg

c/2π 8.809 641(2) GHz
Cavity when transmon in |e〉 ωe

c/2π 8.806 588(3) GHz
Cavity when transmon in |f〉 ωf

c/2π 8.803 983(3) GHz
|e〉 state dispersive shift χe/2π −3.053(4) MHz
|f〉 state dispersive shift χf/2π −5.658(4) MHz
Coupling rate g01/2π 149.09(8) MHz
Cavity decay rate κ/2π 2.096(5) MHz
Transmon |g〉 ↔ |e〉 transition ωge/2π 6.449 96(3) GHz
Transmon |e〉 ↔ |f〉 transition ωef/2π 6.177 31(2) GHz
Anharmonicity α/2π −272.65(4) MHz
Qubit linewidth (FWHM) γ/2π 1.001(4) MHz
Dephasing time T2 300(100) ns

Table 3: Experimentally determined parameters of the transmon-cavity-system. Note that
the qubit frequency ωge and dephasing rate γ2 are determined in a low power measurement
described in sec. 5.4. The dephasing time is derived from the qubit linewidth and not
in the usual way from a Ramsey type experiment. T2 might be underestimated, as the
linewidth is easily subjected to broadening from either the qubit drive or the VNA probe
signal.
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4 Cranking up the Contrast: The Josephson Parametric
Converter

This chapter is organized in five parts. Sec. 4.1 gives an introduction on which qualities are
desired in a ‘good’ amplifier and how the added noise propagates along a measurement chain
containing several staged amplifiers. The operational principle of the shunted microstrip
JPC is explained in sec. 4.2. Two JPCs with serial numbers SN004 and SN010 are available
to our research group. Their nominal tunable ranges and specifications as stated by the
manufacturer are reproduced in sec. 4.3. The JPC SN004 was tested comprehensively, the
results are presented in sec. 4.4. The delicate JPC tuning procedure is described in sec.
4.5. As the assembled JPC is rarely extracted from its surrounding mu metal shield, a
photograph of the chip-housing and the immediate wiring is attached in the appendix in
fig. 66.

4.1 Overview

Amplifiers play an important role in any experiment carrying out high precision measure-
ments. Their purpose is to raise the level of a weak input signal to a macroscopic level in
order to overcome the noise levels of any following processing hardware. Fig. 19 shows the
basic scheme of operation of a linear amplifier. Incoming signal and noise are amplified
with a gain G (assuming they lie within the amplifiers linear bandwidth). In addition to
the gain, the amplifier also adds an additional amount of noise to the output signal. Thus,
the SNR is reduced during the process of amplification.

Signal processing electronics at room temperature is generally quite noisy. Weak signals
from measuring physics experiments at cryogenic temperatures can not be measured di-
rectly. In cryogenic experiments, this challenge can be overcome by using RF amplifiers
called high electron mobility transistors (HEMTs). These devices are operated inside the
cryostat at 4 K and provide a gain of up to 40 dB over a range of ∼ 10 GHz. However,
HEMTs add many tens of noise photons. Measurement signals with powers on the level
of single photons (per resonator bandwidth) can only be resolved with a large number of
averages. This is where the JPC can prove its value. The noise added by a JPC is close to
the quantum limit of half a photon. Used as a preamplifier before the HEMT, the JPC’s
gain of ∼ 20 dB is already enough to raise the signal power above the noise level of the
HEMT, improving the SNR of the total measurement chain. Propagation of noise in a
chain of amplifiers is discussed in more detail in sec. 4.4.4.
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Amplifier

Sin

Nin

Sout

Nout

G×Namp

Figure 19: Basic operational principle of a linear amplifier with voltage gain G. Input
signal Sin and noise Nin are amplified by the same amount Sout = GSin and Nout = GNin.
In addition to the amplification, the amplifier also adds noise G×Namp. As a consequence,
linear amplification always reduces the input SNR. Image adapted from [40].

4.2 Operational Principle

4.2.1 The Josephson Ring Modulator

The Josephson ring modulator (JRM) consists of four nominally identical Josephson-
Junctions that are arranged in a Wheatstone configuration as shown in fig. 20 (left). The
idea of realising a mixing device by arranging non-linear elements in said configuration is
not entirely new. In fact, a ring of four diodes is widely used in commercial RF mixers
of all sorts [26]. To understand how the mixing of signals with powers corresponding to
single photons comes about in a JRM, the circuit has to be analysed in the framework of
circuit QED. The key ideas of the model are presented here, closely following [41] and [42].
For the sake of compactness, the basic variables of circuit QED that have already been
stated in chapter 2.2, are reproduced in the first paragraph of the following section. The
discussion of the JRM is organized in two parts, where the unshunted and the shunted
JRM are discussed separately.

Unshunted JRM

The circuit diagram of the unshunted JRM is depicted on the left side of fig. 20. In order to
describe the JRM, a set of independent variables describing the circuit has to be identified.
A favourable choice are the node fluxes φi =

∫ t
−∞ ui(t′)dt′, that correspond to the time
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Figure 20: Left: The Josephson ring modulator (JRM) comprises of four identical
Josephson-junctions in Wheatstone-bridge configuration. Node and branch fluxes are de-
noted as φ1,2,3,4, and Φa,b,c,d. The branch fluxes are coupled through the highly non-linear
junctions, allowing the device to be utilized as a non dissipative three-wave-mixer operat-
ing on the level of single photons. Right: Inductively shunted JRM. This design improves
stability and frequency tunability when performing three-wave-mixing. Flux quantization
for each of the four closed loops has to be taken into account.

integrated electric potentials at node i ∈ {1, 2, 3, 4}. The branch fluxes Φk through each
junction k ∈ {a, b, c, d} are defined in the usual way as the difference of the node fluxes
enclosing that element, for example

Φa = φ1 − φ2. (57)

A DC biased coil provides experimental control over the device by introducing an external
flux Φext. In a superconducting loop, the total flux can only assume values that are
multiples of the flux quantum Φ0. Consequently, the JRM’s ring structure imposes the
boundary condition

Φa + Φb + Φc + Φd = Φext + nΦ0 (58)

on the branch fluxes. Assuming Φext to be a known quantity, this effectively decreases the
system’s number of degrees of freedom to three. The four nominally equal junctions in the
JRM are characterized by their Josephson energy EJ . The energy of an individual junction
k depends not only on its coordinate Φk, but there is an additional contribution due to
the external and the trapped flux. Due to the symmetry of the circuit, this contribution
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Figure 21: Normal modes parametrizing the JRM. The coupled modes X, Y and Z are
used for three-wave-mixing. The fourth mode (not shown) is uncoupled and plays no
part in the mixing process. The differential modes X and Y are called ‘signal’ and ‘idler’
whereas the common mode Z is referred to as ‘pump’.

is uniformly split up between the junctions. The energy of a single junction reads

Ek = −EJ cos
(
ϕk + ϕext + 2πn

4

)
, (59)

introducing the reduced variables ϕ = Φ/Φ0 that go in units of radian. The total energy
of the unshunted JRM is simply the sum of the energies of each individual junction

EJRM = −EJ
∑

k

cos
(
ϕk + ϕext + 2πn

4

)
. (60)

At this point of the derivation a redefinition of the basic variables φk is advisable

ΦX = φ1 − φ2

ΦY = φ4 − φ3

ΦZ = φ1 + φ2 − φ3 − φ4

ΦW = φ1 + φ2 + φ3 + φ4.

(61)

The system dynamics relevant for three-wave-mixing is described by the modes X, Y and
Z. This becomes clear when expressing the branch fluxes Φa,b,c,d in terms of the ΦX,Y,Z,W .
The common mode W falls out of the equation and is effectively decoupled. A sketch of
the modes is shown in fig. 21. In terms of the reduced fluxes ϕX,Y,Z = ΦX,Y,Z/Φ0 the
energy of the JRM reads

EJRM = −4EJ
(

cos ϕX2 cos ϕY2 cos ϕZ2 cos
(
ϕext + 2πn

4

)
+

sin ϕX2 sin ϕY2 sin ϕZ2 sin
(
ϕext + 2πn

4

))
.

(62)
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This expression already indicates how the JRM’s strong non-linearity that is introduced by
the junctions brings about mixing processes of the modes X, Y and Z. A Taylor expansion
assuming weak excitations ϕX , ϕY , ϕZ � 1 leads to

EJRM = λϕXϕY ϕZ sin
(
ϕext + 2πn

4

)
+ µ

(
ϕ2
X + ϕ2

Y + ϕ2
Z

)
cos

(
ϕext + 2πn

4

)
(63)

with λ = −2π3EJ and µ = π2EJ . The expression contains the sought-after pure nonlin-
ear coupling term ϕXϕY ϕZ , showing that the JRM is capable of three-wave-mixing. The
additional term that is quadratic in the fluxes only renormalizes the mode frequencies. Un-
wanted terms (such as ϕXϕ2

Y ) which would contaminate the mixing process are eliminated
by the Wheatstone-bridge geometry of the JRM.

The number of flux quanta n threading the ring is still present in the final energy ex-
pression eq. 63, resulting in certain practical limits of the four junction JRM. There are
four possible solutions corresponding to n = 1, 2, 3, 4. Which one of them is energetically
favourable depends on the externally applied flux ϕext. States with neighbouring n are
degenerate only when Φext mod Φ0 = π/2, different configurations render the system en-
ergetically unstable [42]. Consequently, biasing the device such that the sine term (and
thus the mixing) in eq. 63 is maximal, is not possible. Still, three-wave mixing with an
unshunted JRM has been shown experimentally [42]. As expected, the abrupt transitions
and hysteretic behaviour depending on the sweep-direction of the flux have been observed.
The strong condition on the bias flux greatly limits the tunability of the device, reducing
its practical relevance as a cryogenic RF amplifier.

Shunted JRM

The drawbacks of the original design can be overcome with a slight modification of the
JRM. Fig. 20 (right) shows the circuit diagram of the so-called shunted JRM. Four identical
shunt inductors connect the nodes of the ring, creating four loops with only one junction per
loop. This leads to different boundary conditions for the branch fluxes. The trapped flux
in each individual loop has to be taken into account and the branch fluxes ΦLi across the
inductors i ∈ 1, 2, 3, 4 introduce additional degrees of freedom. For example, the boundary
condition of loop a reads

Φa − ΦL1 + ΦL4 = Φext

4 + naΦ0, (64)

with fluxes ΦLi across the inductors i ∈ 1, 2, 3, 4 and na as the number of flux quanta in
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the loop. Similar equations hold for the remaining loops.

Using the same parametrization for the branch fluxes as described above in eq. 61 allows
to derive an expression for the energy of the shunted JRM in terms of the modes X, Y
and Z. In the limit of low excitations ϕX , ϕY , ϕZ � 1 one finds

EshuntedJRM = −EJ sin
(
ϕext

4

)
ϕXϕY ϕZ + . . . (65)

The calculation and the full expression is found in [41] (eqn. 2.66). Again, the result
contains the desired mixing term. Comparing eq. 63 and eq. 65 reveals the key advantage
of the shunted JRM - the quantum numbers ni associated with the trapped flux in the
loops do not appear in the final equation. The degeneracy is lifted and the shunted JRM
can be stably operated in a definite state, allowing the mixing term to be exploited over a
far greater range.

In order to gain control about the relevant modes of the JRM, the ring is embedded
in a resonant circuit, as shown in fig. 22. The sketched stripline resonators define the
resonance frequencies ωa,b,c and the (internal) quality factors of the modes X,Y, Z. They
are typically realised on chip as coplanar stripline resonators. The differential modes X
and Y are called ‘signal’ and ‘idler’ whereas the common mode Z is referred to as ‘pump’.
Amplifiers which are based on this design are called ‘non-degenerate’, as signal and idler
mode are spatially separated. The JRM can convert a pump photon at ωc = ωa + ωb into
two photons with frequencies ωa and ωb. This process is illustrated with the formalism of
an ideal three-wave-mixing Hamiltonian in the subsection below.

Ideal mixing Hamiltonian

The JRM is embedded in a resonant circuit, resulting in a well defined frequency and
decay rate for the modes X,Y, Z. Each mode can be individually described as a harmonic
oscillator

ϕX = XZPF
(
a+ a†

)
(66)

with zero-point-fluctuations XZPF and the photon creation and annihilation operators a†

and a. Modes Y and Z are defined analogously. As shown above, the JRM coupleds the
three modes via the mixing term

H3-wave
int = KϕXϕY ϕZ , (67)
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ωa, κa

ωb, κb

Figure 22: Shunted JRM with microstrip resonators as described in [43]. The length of the
stripline resonators in combination with the effective inductance of the ring determine the
resonance frequencies of the JRM modes. Resonance frequencies of signal (X) idler (Y)
and pump (Z) mode are denoted ωa, ωb and ωc = ωa + ωb.

where the coupling strength is taken into account as K. The ideal Hamiltonian considering
three harmonic oscillators interacting via H3-wave

int reads

H3-wave = ~ωaa†a+ ~ωbb†b+ ~ωcc†c+ ~g3
(
a+ a†︸ ︷︷ ︸
ϕX

)(
b+ b†︸ ︷︷ ︸
ϕY

)(
c+ c†︸ ︷︷ ︸
ϕZ

)
(68)

with ~g3 = KXZPFYZPFZZPF. When aiming for photon conversion, the circuit surrounding
the JRM is designed such, that

ωc = ωa + ωb. (69)

Considering only the energy conserving terms of the rotating wave approximation, the
Hamiltonian can be simplified to

H3-wave
RWA = ~ωaa†a+ ~ωbb†b+ ~ωcc†c+ ~g3

(
a†b†c+ abc†

)
(70)

as is shown in [43]. In this expression, the three-wave-mixing process becomes evident.
The first term in the interaction part of the Hamiltonian corresponds to a pump photon
with frequency ωc being converted to two photons with frequencies ωa and ωb in signal and
idler mode respectively. The second term describes the conjugate process of transforming
one photon per signal and idler into one pump photon. When there are no photons in the
idler mode, the up-conversion is physically impossible. In that way, the first term that
adds photons in the signal mode can be fully utilized.
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The next section relates how the JRM modes can be coupled to external transmission lines.
That way, the circuit can can be used as a parametric amplifier. The scattering matrix
and the noise added by the amplifier are discussed.

4.2.2 Scattering Matrix and Added Noise

The previous section discussed, how the Josephson ring modulator (JRM) can be used to
perform coherent three-wave-mixing between resonant modes defined by electronic stripline
resonators. This section describes, how the amplification of travelling wave signals can be
achieved by coupling the JRM to transmission lines. Using the formalism of input-output-
theory, the scattering matrix of the JPC is derived. It provides an intuitive view of the
JPC operating as a reflection amplifier. What makes the JPC so attractive, is that its
added noise is close to the quantum limit of half a photon. This section is concluded by a
discussion about the noise added by the JPC and its limitations regarding bandwidth and
gain.

Coupling to transmission lines

The resonators that define the properties of the JRM modes are fabricated on chip in
the form of coplanar stripline resonators. Fig. 23 shows a circuit digram of a possible
realization. Signal and idler resonance frequencies ωa and ωb depend on the length of the
stripline resonators and on the effective inductance LJ(Φext) of the JRM [44]. Thus, signal
and idler resonator inherit the flux-tunability from the Josephson-junctions comprising the
ring.

Hybrid couplers are used to address the different modes of the JRM. Hybrids are reciprocal
four-port microwave devices with two input and two output ports [26]. The device acts as
a power splitter, dividing incoming signals equally between the two output ports. However,
the phase between the two output signals depends upon which input port is used. Signals
coming in at the ∆-port acquire a relative phase-shift of 180◦, whereas signals at the Σ-port
are split without a relative phase-shift. The hybrid couplers allow the correct connection
of the JRM’s signal, idler and pump mode to transmission lines. Connecting to the Σ-port
of one of the hybrids addresses the pump mode in accordance with fig. 21. Signal and idler
mode are addressed via the ∆-ports.
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a

a

b b

Cb

Ca

Ca

Cb ΣΣ

∆∆

50Ω

Idler Signal

Pump

Figure 23: JPC wiring scheme. The three modes signal idler and pump are coupled to
transmission lines via hybrid couplers. The couplers ensure, that the modes are addressed
correctly. For example, a signal coming in at the ∆-port of the hybrid on the left, is equally
divided between its output ports with a phase shift of 180◦. Thus, the left and the right
node of the JRM are excited in accordance with the definition of the idler mode in fig. 21.
The superfluous port is terminated in a 50 Ω resistance.

Scattering Matrix

The three JRM modes coupled to transmission lines represent an open quantum system.
The scattering matrix of the JPC can be derived in the framework of input-output-theory.
A comprehensive introduction is found in [45, 46]. Only the basic ideas are reproduced here.
A transmission line is modelled as a continuous bath of harmonic oscillator modes. Each of
them is coupled with equal strength κ to the resonator (Markov approximation). The bath
is assumed to be sufficiently cold. This means, that, except for signals deliberately applied
by the experimenter and with a known frequency, the transmission lines only introduce
fluctuations and do not deposit energy in the resonators.

It is possible to define operators ain(t), a†in(t) and aout(t), a†out(t) that describe the incom-
ing and outgoing fields, travelling along the transmission line towards or away from the
resonator. To get an intuition, one should think of the connected observables, for example
〈a†inain〉, not as a photon occupation number but more as a flux of photons travelling in
direction of the resonator, or against it. A well written overview of travelling quantum
signals is found in [47].

In order to determine the time evolution of the JRM modes a, b and c, one has to consider
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the quantum Langevin equations

ȧ(t) = [H, a(t)]− κaa(t) +
√
κaain(t)

ḃ(t) = [H, b(t)]− κbb(t) +√κbbin(t)

ċ(t) = [H, c(t)]− κcc(t) +
√
κccin(t)

(71)

with H = H3-wave
RWA from eq. 70. They can be derived by looking at the Heisenberg equations

of motion for each mode and the coupling to its bath (transmission line) individually [45].
Energy loss from the resonator modes into the bath is taken into account with a damping
term proportional to −κ. Potential incoming fields are taken into account via the last term
of each equation. Note that the coupling constant appears in the equation with different
powers. This makes sense, as the travelling fields are defined in units of

√
Hz. In that

way, expectation values of the travelling fields e.g. 〈a†inain〉 end up in units of Hz = s−1,
representing a flux of photons. Incoming and outgoing fields in the transmission lines are
related via the so-called input-output-relation [48]

ain(t) + aout(t) =
√
κaa(t). (72)

When looking at the device’s capability of performing parametric amplification, two in-
coming fields with frequency ω1 and ω2 at signal and idler port are considered. They are
assumed to be resonant with the modes ω1 = ωa and ω2 = ωb. The pump is assumed to
be stiff, implying that there are sufficiently many photons in the mode for it not to get
depleted through conversion of pump photons. This is modelled by replacing the operators
c and c† with their expectation values √npeiωpt oscillating with the pump frequency.

Given these assumptions, it is possible to solve the system of coupled differential equations
71 in terms of ingoing and outgoing fields, as shown in [47]. The final result

(
aout

bout

)
=
( √

G
√
G− 1√

G− 1
√
G

)(
ain

bin

)
(73)

is the JPC scattering matrix with zero-detuning maximum gainG (a phase factor is omitted
in the result). It is intuitive to rewrite the travelling fields as in-phase and out-of-phase
quadratures

Iain = ain + a†in
2 (74)

and

Qain = ain − a†in
2i . (75)
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Analogous definitions hold for the outgoing waves and the signals going in and out at the
idler port. The advantage of the observables I and Q is, that they are directly accessible
in the experiment via heterodyne detection. Rewriting the scattering matrix results

Iaout =
√
GIain +

√
G− 1Ibin (76)

and
Qaout =

√
GQain −

√
G− 1Qbin (77)

for the quadrature fields coming out at the signal port (omitting another phase factor). For
large gains

√
G− 1 ≈

√
G predicts that the JPC essentially adds signal and idler amplitudes

with power gain G. The JPC is a non-degenerate parametric amplifier (spatially separated
signal and idler resonator) and performs phase-preserving amplification - both quadratures
are amplified by the same gain.

When there is no input at the idler port Ibin = Qbin = 0, eqns. 76 and 77 reduce to

(
Iaout

Qaout

)
=
√
G

(
Iain
Qain

)
(78)

and the JPC operates as a reflection amplifier - the incoming signal is amplified and
reflected back into the same port. This is probably the most common application of a JPC.
Fig. 24 shows the schematics of a JPC operated as reflection amplifier. The amplitude of

P

S I

Ain

√
G(Ain + noise)

pump

50 Ω

Figure 24: Schematics of a JPC operated as reflection amplifier. Signal, idler and pump
ports are labelled S, I and P . An incoming signal with amplitude Ain is reflected by the
JPC. The amplifier adds noise and amplifies with a (voltage) amplitude gain

√
G. The

minimum amount of noise added by the JPC corresponds to half a photon at the signal
frequency.

the incoming signal in terms of the quadratures reads Ain =
√
I2
in +Q2

in. The idler port is
terminated in a matched 50 Ω resistor in order to dissipate the photons generated in the
idler resonator. As indicated in the drawing, the JPC does not only provide amplification,
but also adds noise to the output signal.
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Added noise

The previous paragraph described the JPC operating as single-mode reflection amplifier.
It is based on the assumption of having zero input fields at the idler port. This condition
can never be completely satisfied. When the device is sufficiently cold kbT � ~ωb the idler
resonators can be assumed to be in the ground state 〈Nb〉 = 〈b†b〉 = 0. However, the idler
mode still exhibits vacuum-fluctuations corresponding to half a photon ∆Nb =

√
〈N2

b 〉 =
1/2. These fluctuations are converted to the signal port adding noise to the output signal.
Thus, the JPC adds at least half a photon of noise to the amplified signal. This agrees
with the minimum amount of noise that is added by any linear amplifier [49]. JPCs have
been proven to operate close to the quantum limit, adding about 1 photon of noise [50].
The following consideration may help to provide an intuitive picture of the noise addition.

Let us assume an input signal corresponding to N sig
in photons in the signal resonator. Nnoise

in
denotes the number of incoming noise photons. Input signal and fluctuations are converted
by the JPC via

N sig
out = GN sig

in (79)

and
Nnoise

out = G
(
Nnoise

in +Nnoise
add

)
. (80)

As stated above, the smallest possible amount of added noise is Nnoise
in = 1/2. Evaluating

the signal-to-noise ratio

SNR = N sig

Nnoise . (81)

at the input and the output of the JPC shows, that it actually decreases. This has to
be true in general for any amplifier. However, using the JPC as first link in a chain of
amplifiers can significantly increase the SNR of the total measurement chain. In a typical
cryogenic experimental setup, the main task of the JPC is to overcome the noise of the
subsequent HEMT amplifier.

Bandwidth and gain limitations

The JPC gain is maximal when the input signal is resonant with the signal resonator.
Slightly detuned signals are amplified less. As derived in [42], the gain as a function of the
detuning ω1 − ωa has the shape of a Lorentzian

G(ω1) =
√
G√

1 +G
(

1
κa

+ 1
κb

)2
(ω1 − ωa))2

. (82)
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The −3 dB bandwidth is
BW = B0√

G
(83)

where
B0 = 2κaκb

κa + κb
. (84)

Typical dynamical bandwidths are on the order of 2 to 10 MHz for a gain of 20 dB [41].
However as signal and idler resonators are tunable, the JPC can be used over a far greater
range. The gain center frequency can be shifted across a tunable bandwidth of a few
100 MHz.

As discussed in [41], the zero-detuning maximum gain depends on the pump power pp via

√
G0 = 1 + p2

0
1− p2

0
(85)

with the dimensionless pump power p0 = 2g3
√
np/
√
κaκb. The gain is expected to diverge

at p0 = 1, but in practise the gain remains finite and maxes out around 30 dB. However,
when the JPC is operated with such high gains, higher order terms in the interaction
Hamiltonian start to contribute. In the experiment, asymmetric gain curves and loss off
the phase preserving amplification are typical signs of too strong pump powers.

Another practical limitation of the JPC is the dynamic range. It is stated in terms of the
−1 dB compression point, which is defined at that input power, at which the amplification
is reduced by 1 dB. A limiting factor of the JPC is depletion of the pump. Relaxing the
condition of a stiff pump, the dynamic range can be estimated as is done in [43]. The
result is not reproduced here. For the set of parameters chosen by the authors, the −1 dB
compression point for a 20 dB gain lies around an input power of p−1dBm ≈ −120 dB. This
calculated value agrees reasonably well with the dynamic ranges that were determined
experimentally by the manufacturers of the JPCs. The main specifications of the JPCs
SN004 and SN0010 are reproduced in the following section.

4.3 Specifications

The full specifications of the two JPCs SN004 and SN0010 are listed in [51] and [52]. The
tunable range of the amplifiers is listed in table 4 and depicted schematically in fig. 25. For
the JPC SN004 the dynamic bandwidth at a gain of 20 dB is stated as 7 MHz throughout
the tunable range. The JPC SN010’s dynamic bandwidth varies between 4 and 10 MHz
depending on the frequency. For both amplifiers, the −1 dB compression point ranges
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Signal Idler
fmin fmax fmin fmax

SN004 8.610 9.026 4.822 5.035
SN010 6.978 7.508 4.851 5.079

Table 4: Tunable range of the JPC’s. Frequencies are denoted in units of GHz. At the
moment of writing this thesis, there is evidence of a shift of the tunable ranges towards
lower frequencies due to aging of junctions.

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5

f (GHz)

SN004 idler SN004 signal

SN010 idler SN010 signal

Figure 25: Tunable range of signal and idler resonator for the JPC’s SN004 and SN0010
as specified in [51] and [52].

from −140 dBm to −120 dBm with a tendency of increasing towards higher gain center
frequencies.

4.4 Testing the JPC SN004

In the scope of this project, both JPCs were tested on their basic functionality. Several
parameters are relevant in the characterization of an amplifier. Gain, instantaneous band-
width and tunable bandwidth are just as important as added noise and the dynamic range
covered by the amplifier. In case of the JPC, many of these quantities influence each other
in various ways. They also depend significantly on the actual setting of the bias current
and the pump. An impressive example was demonstrated in 2017 by the Hatridge group
[53]. Operating the JPC in a certain way can enhance the dynamic range by almost 5 dB
or result in strong non-linear gains for signal powers close to the −1 dB compression point.

The JPC SN010 was tested once, with the conclusion of being tunable over its whole range
and producing a stable gain. As the JPC SN004 was used to realize the dispersive readout
scheme, it was tested thoroughly over a wide range of parameters. The key results are
presented in the following section. Analysis of the gain profiles was done by fitting a
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Lorentzian profile to the linear response as measured with a VNA. The gain, its center
frequency and the −3 dB bandwidth are obtained from the fit parameters. An exemplary
gain profile with fit function is shown in fig 26. Gain and −3 dB bandwidth are determined

8.6 8.7 8.8 8.9 9.0

0

5

10

15

20

|S
1
1
|2

(d
B

)

G

8.760 8.772 8.784 8.796 8.808 8.820

G− 3dBBW

f (GHz)

Figure 26: Typical gain curve of the JPC, measured with a VNA. The background (same
measurement while the JPC is off) is subtracted. The amplification curve is characterized
by the gain G, the gain center frequency fG and the −3 dB-bandwidth BW . The parame-
ters are determined with a Lorentzian fit of the linearized data. Left: JPC response over
a range of 400 MHz (blue) and Lorentzian fit (red). In this example, the maximum gain
amounts to G = 20.49(1) dB. Right: Enlarged section of the same data, illustrating the
−3 dB-bandwidth BW = 9.80(1) MHz.

by fitting a Lorentzian profile to the linearized data. 3 dB correspond to a factor of 50%
of the maximum gain.

4.4.1 Tunable Range

Examining the full tunable range of the JPC SN004 provided some interesting insights.
In order to verify the specified range, the JPC was set up at a stable gain of 10 dB with
different central frequencies roughly 100 MHz apart (8.7 GHz was left out undeliberately).
The data is shown in fig. 27. The 20 dB gain at 9.0 GHz falls out of line apparently. In fact,
in May 2018 when this measurement was performed, the typical linear dependence of the
gain on the pump power could not be reproduced at that frequency. Altering the pump
power would only shift the 9 GHz peak sideways and further increase its asymmetry. The
possibility to produce a gain at 8.4 GHz presents another deviation from the specifications,
as nominally the JPC is roughly tunable from 8.5 GHz to 9 GHz. A possible explanation
for both of these observations is aging of the Josephson-Junctions comprising the main
circuit of the JPC. More than two years have passed since the device was fabricated and
since then it has endured more than ten cycles of warming up and cooling down again.
Junction aging typically results in higher Josephson-inductances, lowering the frequency of
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Figure 27: Snapshots of gain profiles while exploring the specified range of the JPC SN004.
Setting up a gain at 9.0 GHz turned out difficult and the typical linear response to changes
in the pump power could not be observed. On the other hand, a stable gain at 8.4 GHz
was readily achievable. The JPC’s linear operating range appears to have shifted towards
lower frequencies by about 100 MHz. The suspected reason is the aging of the circuit’s
Josephson junctions.

the resonators. It seems likely, that the operating range of the signal resonator has shifted
down to lower frequencies by about 100 MHz. Presumably the idler was similarly effected
by the aging. In case of future problems with the choice of the right pump frequency, it
might be reasonable to invest the time and take a full fluxmap of both resonators.

4.4.2 Gain vs. Pump Power

The JPC gain is highly sensitive to changes in the pump power. Fig. 28 shows a collection
of JPC response functions with different pump powers. The sensitivity on pump power
increases towards higher gains. A stronger pump not only increases the gain, but also
shifts it to lower frequencies. According to eq. 85, the gain is expected to diverge at when
the pump reaches a certain critical power value. In reality, the assumption of a perfectly
stiff (undepletable) pump breaks down and the gain saturates at a certain value. Also, the
Josphson-Junction based resonators can only sustain a limit amount of excitation, as their
superconductivity breaks down when exposed to currents larger than their critical currents
Ic. Gains as high as 35 dB were observed while testing the amplifier. In terms of SNR
improvement, it is recommended to operate the JPC at a gain of approximately 20 dB (see
sec. 4.4.5). Clearly, the dynamical bandwidth of the JPC decreases with increasing gain.
As stated in eq. 83, a constant product of bandwidth and amplitude gain

BW ×
√
G = const. (86)
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Figure 28: JPC pump power sweep. 1 dB of pump power can change the gain by as much
as 25 dB and shift the center frequency by more than 20 MHz. Measured with the VNA
at low probe powers of approximately −135 dBm. Inset: For high gains (low G1/2), a
constant gain bandwidth product is expected. This is the case for gains above 10 dB. The
linear fit (red) is based on the section of the data plotted with blue dots.

is expected at high gains. The inset of fig. 28 shows, that the prediction fits quite well for
gains larger than 10 dB (corresponding to 1/

√
G ≈ 0.4). Lower gains are indicated with

blue squares (instead of dots).

4.4.3 Gain vs. Pump Frequency

For a fixed setting of the bias current, the JPC central gain frequency can be tuned by
varying the frequency of the pump. This is done by altering the pump frequency by about
5 to 10 MHz and resweeping the power from low to high. The maximum achievable gain
differs with pump frequency. Fig. 29 shows a series of JPC response curves with different
pump settings and fixed bias current. A range of 50 MHz with a gain of 20 dB can be
easily covered with this method. It is stated as a rule of thumb in [51], that the gain center
frequency is expected to shift by half of the change in pump frequency. However, I did not
find this immediately apparent in my experiments.
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Figure 29: JPC gain curves for fixed bias current and variable pump frequencies. The
pump power is optimized for each frequency. This method allows to fine tune the position
of the gain curve without altering the bias current. Data was taken with a JPC set up
behind a cavity-qubit system. The cavity is visible in the data as a dip around 8.86 GHz.

4.4.4 Gain vs. Signal Power

In the linear regime, the gain of an amplifier is independent of input signal strength. As
with any other amplifier, the JPC’s ability to perform linear amplification is limited to a
certain maximum input power. Higher input levels cause the device to saturate, resulting
in a reduced gain and a deviation of the symmetric Lorentzian profile. The distortion of
the response is illustrated in fig. 30. Saturation effects appear as soon as the input power
exceeds −130 dB and the maximum gain starts to decrease. The 1 dB compression point
lies at an approximate input power of −125 dB for a small signal gain of 23 dB. This
result is slightly below the nominal value of −135 dB for a 20 dB gain at 8.8 GHz [51].
The deviation is probably due to the higher gain that was used when measuring the signal
power sweep. Also, the accuracy of the estimate on the 1 dB compression point is limited
by the uncertainty of the power calibration (see eq. 55).
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Figure 30: JPC gain curve sweep for different input signal powers. Saturation effects
appear at input powers above −130 dB. The amplification is reduced and the Lorentzian
profile of the gain curve is distorted.

4.4.5 SNR Improvement

When looking for a low-noise RF amplifier that can be used in cryogenic environments,
the first choice are high electron mobility transistors (HEMTs). When operated at 4 K,
these devices achieve gains of more than 40 dB over a broad range of up to 10 GHz while
only adding noise corresponding to a temperature of less than 4 K. This equivalent noise
temperature is defined as

S = kBTe (87)

with the Boltzmann constant kB and the noise power spectral density S in units of W/Hz.
It allows to describe a noisy amplifier with the equivalent circuit of a perfect amplifier in
series with a thermal noise source of temperature Te. Note that the noise temperature of
a device does not coincide with its actual temperature. Comparing the energies

kBTe = ~ωN (88)

the noise temperature can be expressed as number of noise photons N at frequency ω.
Therefore, the effective noise temperature of half a photon at 8.8 GHz is roughly 80 mK.
A real JPC, adding several photons of noise, still greatly outperforms a HEMT in terms
of noisiness.
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Figure 31: Left: SNR improvement vs. JPC gain. Highest improvement is achieved at
a gain of 20 dB. Right: Noise spectra with JPC on (blue) and off (orange). The noise
visibility ratio NVR is defined as the difference between the noise floor and the maximum
of the noise added by the JPC.

In a chain of two amplifiers ‘1’ and ‘2’ the effective noise temperatures propagates as [26]

Te = T1 + T2
G1

. (89)

The noise added by the second amplifier is reduced by the gain of the first one. Thus, the
total signal-to-noise ratio of the measurement chain can be enhanced by using a JPC as
pre-amplifier in front of a HEMT. The improvement can be quantified as the ratio

SNR improvement = G

NVR , (90)

between JPC gain and the noise-visibility-ratio NVR. The latter is defined as

NVR = GTJPC + Tsys
Tsys

, (91)

comparing the noise at the end of the measurement chain with the JPC turned on and
off. Tsys describes the total noise temperature of the system including the HEMT. The
exact values of system and JPC noise Tsys and TJPC are difficult to measure. A thermal
noise source with definite temperature would be needed as a reference [50]. However, the
NVR is comparatively simple to determine. It is reflected in the difference (in dB) of the
noise spectra at the output port when the JPC is turned on and off. No input signal is
applied. The noise spectra are taken with a spectrum analyser. Two traces are shown in
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fig. 31 (right) for a JPC gain of 12 dB. Clearly the spectral noise power goes up when the
JPC is turned on. But as long as the total gain exceeds the added noise the total SNR
increases. The SNR improvement for different gains is shown in fig. 31 (left). According
to the data, the ‘optimal’ operation point with maximum benefit in SNR improvement is
around 20 dB. Working with higher gains seems not advisable, as the improvement actually
decreases again. The findings match well with the results given in [41].
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4.5 Tuning Procedure

This section describes how to set up and tune the JPC. The tuning procedure is organised
in step ‘1’ (setting the DC bias current) and step ‘2’ (frequency and power of pump signal
generator). The tuning process typically requires a few iterations, going back from step
‘2’ to ‘1’, if the gain profile is distorted or not centred at the desired frequency. To get
a quick overview, or as a reminder for experienced users, the tuning procedure is briefly
summarized in the following section 4.5.1. Step ‘1’ and ‘2’ are elaborated in more detail in
sec. 4.5.2 and 4.5.3. As a reflection amplifier, the JPC is usually used in connection with
a circulator. A typical experimental configuration is shown in fig. 37.

4.5.1 In Short

0. Choose a target frequency ωs

1. Tune the JPC’s signal resonator
by adjusting the coil current. The position of the resonance is best visible in the phase
response, measured with a VNA. The resonator should be a few tens of MHz above
the target frequency, as the pump will shift it downwards eventually. Amplification
only works on large lobes of the signal resonator (compare fig. 33).

2. Turn on the pump
The pump frequency for a given target frequency can be found in the tables provided
by the manufacturer. Turn on the pump and slowly increase the power in steps
of 1 dBm starting from the lowest possible output power. Monitor both phase and
amplitude response of the signal resonator on the VNA (2 traces). As the power
increases, the resonance begins to shift towards the target frequency. At some point,
the gain should appear in the amplitude. Try to optimise it by adjusting the power
in steps of 0.1 dBm or smaller. If the position of the gain does not meet the desired
target frequency, try pushing the position of the signal resonance (look at the phase)
by adjusting the pump frequency in steps of ∼ 5 MHz. If the gain is lost, try to
recover it by turning off the pump and slowly bringing it back, starting from low
power. The JPC is well set, when the gain is approximately symmetric and the gain
varies linearly with (small) changes in the pump power, without drastic changes in
shape and position. Keep in mind, that the JPC is easily saturated and only provides
linear amplification of signals with powers not exceeding −110 dBm, corresponding
to a few tens of photons per resonator bandwidth. The VNA output power has to be
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chosen accordingly. If no stable gain can be achieved at the desired frequency, one
has to go back to step ‘1’ and start over with an adjusted bias current (turn off the
pump at this point).

4.5.2 Step 1: Setting the Bias Current

Both the JPC’s signal and idler resonator are flux-tunable. The magnetic flux is provided
by a coil that is positioned right below the circuit board and addresses both resonators at
the same time. An external current source provides the bias current. The connection from
the base stage, where the JPC is located, to the top of the cryostat is formed by supercon-
ducting DC-looms. The loom is connected to each stage of the cryostat via pass-throughs,
ensuring thermalization. An adapter at the top of the cryostat connects to a shielded
BNC cable, that is connected to the current source with an additional 50 Hz lowpass filter.
This setup has proven successfull in minimizing noise in the bias line, allowing for a stable
operation of the JPC. In the early stage of the experiment, an unexpected oscillatory be-
haviour was observed in the output of the current source (measured with an oscilloscope
connected in parallel to the source and the JPC). The oscillations could be eliminated by
adding a resistive element in series to the current line (connecting a 50 Ω resistor to the
BNC cable actually). In retrospect, the oscillations were most likely caused by an improper
grounding of the cryostat and the connected instruments. The overall noise performance
was considerably improved by taking a number of steps. In order to avoid potential ground
loops, the cryostat was grounded with a definite ground line with a diameter of 6 mm to
the main ground of the building. Externally connected current and voltage sources are set
to floating mode and any RF connection to the cryostat has to have an inner and outer
DC block. Replacing the power supplies of the HEMT by voltage sources was a further
improvement.

The easiest way to determine the position of the resonators is to measure the phase response
with a VNA. A wide range of ∼ 2 GHz that covers the whole range of the resonator is
recommended. The 2π phase-shift of the resonator should become visible on the VNA-
display after setting the right value for the electrical delay (on the order of 60 ns to 100 ns
for 6 metres of blue minicircuits cables) and changing the mode to ‘expanded phase’.
Additional features might appear in the spectrum if the JPC is placed in the same line as
an experiment. However, the JPC resonator is easily identified by making small changes
of typically a few 10µA in the bias current. The position of the resonance should begin to
move. Fig. 32 shows the phase response of the JPC SN004’s signal resonator for different
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Figure 32: Tuning the signal resonator of the JPC SN004. Phase response for different
bias currents, measured with a VNA. The JPC was placed in line with a cavity, which has
been calibrated out. It is still visible slightly below 8.9 GHz.

bias currents. At the lower end of the JPC’s frequency range, the resonator is a great deal
more sensitive on changes in the bias current. Note how a change of 2µA causes a shift
of more than 100 MHz. Consequently, the JPC is more susceptible to flux noise (and bias
current noise) when operated at the lower end of its range.

The position of the resonators is a periodic function of the flux. With our current setup, a
full period corresponds to a change in bias current of a little less than 2 mA. Fig. 33 shows
a fluxmap of the resonator, where each column corresponds to a VNA phase measurement
as described above, but with a the bias current changed by 2µA per step. When the device
is cooled down and becomes superconducting, the magnetic flux through the circuit’s loops
is trapped due to flux quantization. It remains constant until the device gets sufficiently
warmed up to reach the normal conducting phase. As a consequence, the distribution is
hardly ever centred around 0 current.

During one period, the resonator frequency increases and decreases twice in the form of
a small and a large lobe. The lobes are separated by unstable regions. Amplification is
possible only at the sides of the large lobes. It is not enough to only tune the resonator
to the desired frequency. One always has to make sure to be in a bias region where the
JPC can actually produce a significant gain. The simplest method to relate the applied
bias current to the actual flux through the device is to measure a fluxmap as shown in fig.
33. A rough map of around 50 current steps per period is usually sufficient. The more
experienced user can try to manually alter the bias current in steps of 10µA over a whole
period. Monitoring the position of the resonator on the VNA and following the resonance
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Figure 33: Measured fluxmap of the signal resonator of the JPC SN004. Amplification is
only possible on the side of the large lobes marked in blue. The offset in the bias current
is different each time the JPC is cooled down. It reflects the trapped flux in the Josephson
ring modulator (JRM).

allows to distinguish between small and large lobes.

Let us assume one wants to amplify a signal with target frequency ωs = 2π×8.8 GHz. The
resonator has to be tuned roughly 100 MHz above ωs, as powering up the pump will push
the resonance down to lower frequencies.

4.5.3 Step 2: The Pump

The signal generator providing the pump signal is connected without additional attenuation
to the top of the cryostat. A total of −50 dB of attenuators are placed inside the cryostat.
Typical pump powers at the generator output range from −15 dBm to 5 dBm. The correct
pump frequency is determined as the sum of signal and idler resonance frequency at a given
bias current. In most practical cases, only one of the resonators is connected to an output
line and there is no way to actually measure the position of both resonators at the same
time. However, the required information is provided in the data sheets. Figure 34 shows
the fluxmap measured by the manufacturer for the JPCs SN004. The reference data for
the JPC SN010 is found in fig. 64 in the appendix. The actual values of the current offset
and the length of a period in units of electric current are not important - they depend
on the trapped flux and the specific measurement setup. What is important, is the fact

58



4 Cranking up the Contrast: The Josephson Parametric Converter

Figure 34: Excerpt of the JPC SN004 reference fluxmaps as provided by the manu-
facturer. The full data is found in the users guide [51]. The pump frequency for a given
target frequency is the sum of signal and idler frequency at that bias current. With the JPC
SN004 a pump at 13.8 GHz can be used to either produce a gain centred at ∼ 8.8 GHz with
the signal resonator or at ∼ 5 GHz using the idler resonator. The connection is indicated
by the black dashed line. Resonance frequencies are determined by fitting an arctangent
to the phase response (blue dots).

that both signal and idler resonator are coupled to the bias flux in the exact same way.
They have the same periodicity and offset. This allows to extract a good starting value for
the pump frequency ωp from the reference data shown in the figures. For a given target
frequency ωs, the corresponding bias current of the signal resonator can be simply read
off from the graph. The fluxmap of the idler resonator shows the frequency of the idler at
that specific bias. The way the choice of a bias current determines both signal and idler
frequency is indicated with black dashed lines in the graph in fig. 34.

Let us get back to the example of amplifying a ωs = 8.8 GHz signal. In order to produce a
gain centred at ωs the pump is set to ωs + ωi = 13.8 GHz. It has proven to be extremely
helpful, to monitor both the phase and the amplitude of the JPC response with a VNA,
while setting up the amplifier. This is done by activating two traces in the menu of the
VNA and setting them to ‘log mag’ and ‘expanded phase’. Remember to add the right
electrical delay in the ‘measure’ tab in order to display the phase in a meaningful way. To
avoid saturation effects in the amplifier, the power at the input port of the JPC should
not exceed −110 dBm. For a first try, the JPC’s signal resonator is tuned to ∼ 8.9 GHz,
which is 100 MHz higher than the target frequency ωs. The process of gradually turning
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on the pump is shown in fig. 35. Phase and amplitude are displayed separately in blue
and red. The generator of the pump signal should be set to its minimal power output
before turning it on. If activating the pump drastically changes the spectrum on the
VNA, the pump power is already too high and additional attenuation is needed in the line.
Slowly increasing the power in steps of 1 dB, the resonator begins to shift towards lower
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Figure 35: Turning on the pump. Phase (blue) and magnitude (red) of a VNA reflection
measurement of the JPC. The resonator is initially tuned to about 8.9 GHz as seen in
the leftmost graph. The pump is set to 13.8 GHz in order to amplify a signal at ωs =
8.8 GHz. Activating the pump and slowly increasing its power shifts the resonator to lower
frequencies (left to right picture). When the gain appears in the magnitude, it can be
optimized by adjusting the pump power in small steps of less than 0.1 dB. In this example
the gain center frequency appears slightly below ωs. The position can be changed by
varying the pump frequency or changing the bias current. Both methods require the pump
to be reset and re-swept from low to high power.

frequencies. When reaching a certain power, the gain appears in the amplitude. From
here on the pump power should be adjusted in steps of 0.1 dB or even 0.01 dB trying to
optimize the profile of the gain. A stable gain is characterized by a (relatively) symmetric
gain curve that does not fluctuate. In that particular example, the gain lies slightly below
the desired frequency ωs. Small changes of the gain center frequency can be achieved by
altering the pump frequency in steps of 5 MHz and re-sweeping the pump power from low
to high. If the desired frequency cannot be reached that way, the pump has to be turned
off and the tuning procedure repeated at a different current bias.

It is not beneficial to operate the JPC with an amplification of more than 20 dB, as there
is typically no improvement in signal-to-noise-ratio beyond that point. Also, a strongly
driven JPC can squeeze an incoming signal and amplify its quadratures differently. A
closer analysis of these topics and the JPC’s performance for various pump powers, pump
frequencies and signal powers is presented in the next section.
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5 Observing Quantum Jumps

5.1 Overview

As discussed in chapter 2.3.2, the quantum state of a transmon in a cavity can be de-
termined via dispersively probing the cavity. In this experiment, the transmon state was
monitored by means of continuously probing the cavity. After interacting with the system,
this continuous probe beam is split into small parts. Each part is digitally processed re-
sulting in one data point, representing the state of the transmon at that time. Using the
JPC, this measurement can be done on the same timescale or even faster than the thermal
transition rate of the system. The transitions or ‘quantum jumps’ are resolved in time and
can be directly observed. Below follows a short recapitulation of the dispersive readout
scheme with focus on the experimental realisation.
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Figure 36: Calculated cavity phase (left) and amplitude (right) response for the transmon
states |g〉, |e〉 and |f〉. Only the ground state cavity response can be measured accurately,
see fig. 14. This result is numerically reproduced at the shifted cavity frequencies f ec and f fc
that correspond to the excited transmon levels. Frequencies of the probe beams f2 and f3
are indicated with dashed black lines. Probing at f2 allows to clearly identify the ground
state as all the higher levels add a very different phase shift. A probe at f3 can distinguish
all three of the transmon’s states as they are well separated in phase.

In the regime of dispersive coupling, the transmon state is encoded in the position of the
cavity resonance frequency. The problem of determining the transmon state reduces to
the problem of finding the cavity resonance. This can be done by irradiating the cavity
with a probe beam and recording the outgoing signal. Information about the state of the
transmon gets imprinted in phase and amplitude of the reflected probe beam. Depending
on the probe frequency, the dispersive readout is sensitive to different transmon states. The
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following consideration helps to gain intuition about what to expect from the dispersive
measurements of this specific system. Quality factors Qint and Qc are known from the
low power cavity measurement (see fig. 14). Tab. 3 lists the measured cavity positions
fgc , f ec and f fc for the three lowest transmon states. Fig. 36 shows a numeric reproduction
(using eq. 34) of the low power cavity response at this frequencies, assuming no change in
the quality factors. Expected amplitudes and phases for various probe frequencies can be
estimated from this graph. Two main readout schemes have been used in this project. The
different probe frequencies f2 and f3 are indicated in the graph.

|g〉 |e〉 |f〉
Phase 0 264◦ 285◦

Amplitude 75 % 90 % 100 %

Table 5: Expected phases and relative voltage amplitudes when probing at f2, extracted
from the graph in fig. 36.

When probing at f2 = 8.8085 GHz, two distinct measurement results are possible. They
correspond to ‘transmon is in ground state’ and ‘transmon is not in ground state’. Choosing
f2 slightly above (fgc +f ec )/2 ensures, that e and f result in almost the same phase shift. As
a consequence, the ground state is clearly distinguished from the higher levels. Two disks
are visible in the IQ-plane, as shown in sec. 5.5. Expected phase shifts and amplitudes as
derived from fig. 36 are listed in tab. 5.

A probe frequency close to the excited state resonance f ec allows to distinguish three trans-
mon states. Probing exactly on resonance leads to a very low amplitude of the e state
results. The contrast is increased by using a slightly higher value of f3 = 8.8085 GHz. At
this frequency, the power magnitude |S11|2 is still about −8 dB lower compared to the g
and f state results. This corresponds to a voltage magnitude |S11| of −4 dB or 40 %. As
seen in fig. 36, the three states g, e and f imprint a clearly distinct phase shift on the
probe signal. Tab. 6 summarizes the expected phases and amplitudes for the three-state
probe frequency f3. With a value of about 300◦, the phase separation between g and f

state is alarmingly close to a full circle. We succeeded in engineering the system close to

|g〉 |e〉 |f〉
Phase 0 217◦ 305◦

Amplitude 99 % 40 % 100 %

Table 6: Expected phases and relative voltage amplitudes when probing at f3, extracted
from the graph in fig. 36.
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the optimal readout configuration of κ = χ [18]. However, due to the ill-chosen second pin,
the cavity ended up being almost critically coupled instead of over-coupled. Therefore the
cavity’s phase response looks different than a simple arctangent with FWMH fr/Ql (see
sec. 2.3.1) and a loss of contrast has to be anticipated.

5.2 Experimental Setup

A schematic diagram of experimental setup is shown in fig. 37. The 4 K and 20 mK stage
of the cryostat are indicated with dashed lines. The experiment required three RF input
lines: one for the probe signal, one for driving the qubit and one pump as energy supply
for the JPC. All RF input lines are connected to the cryostat via DC blocks in order to
break ground loops. The input signals are attenuated at each temperature stage. This
helps to have clear input signals in two ways. Firstly, the attenuators damp out the
outside noise originating from room temperature cables and generators. Attenuation of
the input signal is compensated by using accordingly high powers at the generator output.
Secondly, the attenuators ensure a thermal connection between the lines and the cryostat.
Well thermalized cables minimize the thermal noise and the heat power delivered to the
experiment at the base stage. One signal generator provides the pump for the JPC. Two
generators ‘Transmon drives’ are used to drive the transmon. The signals are added in
a power combiner and sent to the ‘in’ port of the cavity, which is coupled very weakly
compared to the ‘out’ port. Still, the coupling is sufficient for the drives to interact with
the transmon. The third input line is used as main input of the probe signal. It is labelled
with ‘signal in’. After passing input filters and attenuators, the signal is routed to the
cavity out port via a circulator. The cavity’s output port is coupled a lot stronger than
the input port. Therefore, it is safe to assume that after interacting with the cavity, the
field is reflected back to the circulator. From there, the signal is directed to the JPC,
where it is amplified and reflected once more. On the way out of the cryostat, the signal is
filtered with a 12 GHz low-pass and amplified with a HEMT. Two isolators protect the JPC
and the sample from interfering signals from outside. An isolator consists of a circulator
with one of its ports terminated in a 50 Ω load. It serves as a optical diode, transmitting
losslessly in one direction and providing an attenuation of −20 dB in the other. A DC
block protects the HEMT from static discharges. This component should never be left out
as the HEMT input stage is very sensitive and blows easily. Replacement is expensive and
tedious.

When performing IQ-measurements the output signal is mixed down to an intermediate
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Figure 37: Experimental setup. RF signal paths are drawn in grey, electronic components
in black. The IQ acquisition setup is indicated in blue. When performing spectroscopic
measurements, this part of the setup is replaced by a VNA. Full description in the main
text.
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frequency. Signal and reference are separately recorded with a 2 channel analogue to
digital converter (ADC) board. The down mixed signal is amplified further with a voltage
gain of a factor of 25 in order to utilize the full dynamic range of the acquisition board.
For the same reason, a −50 dB attenuator is placed as first element in the signal’s input
path. It allows to set the RF signal generator to macroscopic powers (0 dB to 20 dB),
ensuring a strong reference signal at the ADC input port while at the same time sending
the desired weak signal into the cryostat. The part of the setup that is responsible for
the IQ-demodulation is marked with a blue dashed box. It is described in more detail
in the following section. The setup shown here was slightly modified for some of the
experiments. For example, the cavity characterisation measurements presented in section
3.1 did not require the IQ-demodulation circuit. Instead, ‘signal in’ and ‘signal out’ were
simply connected to a VNA.

For the sake of clarity, a few components are not shown in the wiring diagram. These
include the current source and connection to the JPC bias coil via a superconducting DC
loom. All the signal generators are connected to a common frequency standard to ensure
phase and frequency stability. Power supplies are also excluded.

5.3 Heterodyne Detection

The cavity is probed continuously with a probe beam at frequency ωp = 2πfp. Changes in
amplitude and phase of the reflected signal can be efficiently determined via heterodyne
detection. In this method the probe is split up into two parts - signal and reference. The
signal passes through the experiment, whereas the reference runs in a separate undisturbed
path. Subsequent comparison of the two allows to decompose the signal into its quadrature
components I and Q. This method of detection is very sensitive to changes that appear
during the signal path.

Performing a heterodyne measurement in the GHz regime using only analogue electronics is
technically very demanding. The challenge is simplified by using a combination of analogue
and digital signal processing techniques. In this experiment, signal and reference are both
mixed down to an intermediate frequency that can be readily recorded with an analogue
to digital converter (ADC). The actual IQ demodulation is done digitally after acquisition.
Analogue and digital part of the signal processing are described below.
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Figure 38: Heterodyne detection setup. Changes in amplitude and phase of the signal are
detected via comparison to a reference. Both signal and reference are down-converted to
an intermediate frequency ωIF. This is done by mixing the probe signal (RF) oscillating at
ωp with a local oscillator (LO) running at ωp + ωIF. A low pass filter damps out the fast
oscillating component, leaving behind the desired intermediate frequency. Down-converted
signal and reference are recorded with a 2-channel ADC (not shown).

5.3.1 Analogue Down Conversion

Both signal and reference are down-converted to an intermediate frequency ωIF = 2π ×
12.5 MHz that can be resolved easily with an ADC. The conversion requires two signal
generators. The first one (RF) is set to the probe frequency ωp. The ‘local oscillator’
(LO) is operated at ωp + ωIF. Both signals are split up right after generation with power
dividers (PD). One path of the RF signal passes through the ‘device under test’ (DUT).
After traversing the experiment, it is mixed with the LO signal. The mixer multiplies its
inputs, producing an output signal with components oscillating at the sum ωp + ωIF + ωp

and difference ωp+ωIF−ωp frequencies. A subsequent 20 MHz low-pass filter suppresses the
fast oscillating part, leaving behind the main signal with the intermediate frequency ωIF.
The reference is obtained in the same way by mixing LO and RF right after generation.

The down-converted reference and signal can be written as

ref0(t) = Aref cos (ωIFt+ θref) (92)

and
sig(t) = Asig(t) cos (ωIFt+ θsig(t)) (93)

both oscillating at the intermediate frequency. The reference amplitude Aref is constant.
The same goes for the phase, which can be set to θref = 0 without loss of generality. Signal
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Figure 39: Signal depicted in the IQ plane. A signal with known frequency can be equiv-
alently described either via amplitude and phase or via quadratures I and Q.

amplitude Asig(t) and phase θsig(t) however, contain the information about the state of the
transmon. Both signal and reference are individually recorded with an ADC acquisition
board, the IQ-demodulation is done in digital post-processing.

5.3.2 Digital IQ Demodulation

The acquisition is done with a Teledyne SP devices SDR14 [54] 2-channel ADC using
a sampling rate of fs = 200 MHz. Signal and reference are recorded individually. Both
signals oscillate at the down-mixed carrier frequency fIF = 12.5 MHz. The recorded signals
are thus resolved in time with

N = 200 MHz
12.5 MHz = 16 (94)

points per period. The signal defined in eq. 92 can be rewritten as

sig(t) = I(t) cos (ωIFt) +Q(t) sin (ωIFt) (95)

using the in-phase and out-of-phase quadratures I and Q ∈ R. A signal is fully described
by the single complex number I(t) + iQ(t). Definition via quadratures is equivalent to the
amplitude-phase notation. The amplitude corresponds to the absolute value

Asig(t)2 = |I(t) + iQ(t)| = I(t)2 +Q(t)2 (96)

and the phase to argument θsig(t) = arg(I(t) + iQ(t)). Quadratures allow for a clear
depiction of signals in the IQ plane. An example is shown in fig. 39. IQ demodulation is
based on the assumption that I and Q vary slowly and stay constant during one oscillation
period of the carrier

I(t) −→ I,

Q(t) −→ Q.
(97)
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Figure 40: Measured signal (left) and reference voltages (right) illustrating the digital IQ-
demodulation scheme. One period of T = 80 ns contains 16 samples separated by 5 ns. The
lines connecting the noisy signal data are drawn to guide the eye. Point-wise multiplication
and summation of signal and (shifted) reference allows to extract the (Q) I quadrature.

At first, signal and reference are multiplied

sig(t)× ref0(t) =
(
I cos (ωt) +Q sin (ωt)︸ ︷︷ ︸

sig

)
×Aref cos (ωt)︸ ︷︷ ︸

ref0

=
(
I cos2 (ωt) +Q

cos (2ωt)
2

)
×Aref.

(98)

Integrating this expression over one oscillation period T leads to

1
Aref

∫ T

0
sig(t)× ref0(t) dt = I

∫ T

0
cos2 (ωt) dt+Q

∫ T

0

cos (2ωt)
2 dt. (99)

The term proportional to Q averages out to 0. The integral in the first term simply
evaluates to π. Rearranging leads to an expression for the I quadrature

I = 1
πAref

∫ T

0
sig(t)× ref0(t) dt. (100)

An analogous derivation starting with the 90◦ shifted reference results in

Q = 1
πAref

∫ T

0
sig(t)× ref90(t) dt. (101)
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In digital signal processing, the continuous time signals are replaced by discrete samples
denoted with square brackets

sig(t) −→ sig[i],

ref(t) −→ ref[i]
(102)

with the sample index i ∈ N. The time between two consecutive records sig[i] and sig[i+1]
is the inverse sampling rate 1/fs = 5 ns. The integrals are replaced by a discrete sum

∫ T

0
dt −→

N−1∑

0
∆t (103)

where ∆t = T/(N − 1). Considering the chosen intermediate frequency the period is T =
1/fIF = 80 ns. Fig. 40 shows three periods (240 ns) of actual recorded signal and reference
voltages. The reference is recorded directly after generation, resulting in a negligible SNR.
The signal however, is passing through the cryostat. It is strongly attenuated in order to
reach single photon powers at the base stage, only to be amplified by a number of noisy
amplifiers before arriving at the room temperature acquisition board. Due to the JPC,
the recorded signal is still recognizable with the naked eye. One period of each signal,
reference and shifted reference are indicated in the graph in fig. 40. Each period allows
the extraction of (I,Q) data point, corresponding to an averaging time of tavg = 80 ns per
point. Equations 100 and 101 are simply replaced by their discrete versions

I = 1
πAref(N − 1)

N−1∑

0
sig[i]× ref0[i] (104)

and

Q = 1
πAref(N − 1)

N−1∑

0
sig[i]× ref90[i]. (105)

The fluctuations in the computed quadratures can be easily reduced by averaging over
more than one period and replacing N by 2N , 3N . . . A maximum of 16 periods are used
in this experiment, which is equivalent to Tavg = 1280 ns.

5.4 Probe Power Calibration

The continuous IQ-probe beam generates a steady state field in the cavity with a constant
mean photon number n. The average cavity population is different for probe frequencies
f2 and f3. Calibration of the input power is possible by looking at the qubit’s AC stark
shift caused by the cavity field. In the dispersive regime, one cavity photon is expected to
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Figure 41: Qubit stark shift for the two IQ probe frequencies f2 and f3. Each photon in
the cavity shifts the qubit transition frequency by χ. The labels on the right indicate the
expected frequency for 0, 1 and 2 cavity photons. A drive at f2 occupies the cavity with
one photon on average at a power of 1.8 dBm. At f3 a power of almost 7 dBm is needed
to produce the same mean field in the cavity. The one-photon input powers for both drive
frequencies are indicated with black dashed lines. A linear fit of the data (red) allows to
extract a calibration factor to convert from generator output powers to mean cavity photon
numbers.

shift the qubit transition frequency by χe from its original value ωge. The linear relation

ωge(n) = ωge − λpin︸︷︷︸
n

χe (106)

holds for low photon numbers n. The calibration factor λ connects the cavity photon
number to the input IQ probe power pin at the generator output. The dispersive shift
χe ≈ 3 MHz and the unshifted transition frequency ωge = 6.450 08(3) GHz are known from
previous measurements, see tab. 3.

In order to determine the calibration factor, the qubit transition frequency is measured for
various IQ probe powers. The results for both frequencies f2 and f3 are shown in fig. 41.
Determination of the qubit frequency is described in sec. 3.1.2. Clearly, an input signal
at f2 causes a higher cavity field. At that frequency, an input power of ∼ 2 dBm already
populates the cavity with a mean photon number of 1. At f3, as much as 7 dBm are needed
to put a photon in the cavity. The one-photon input powers are indicated in the graph as
black dashed lines. This imbalance is explained well by the observed low temperature of
the qubit-cavity-system. Without drives, the transmon is for the most part found in the
ground state (compare fig. 16). As a consequence, the cavity absorbs less power at f3 as
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Figure 42: Left: VNA traces of the cavity with JPC on (blue) and off (red). The gain
is set up to 12 dB centred at the IQ probe frequency f3. Right: 5000 IQ-data points,
measured with the JPC turned off. The signal-to-noise ratio is too low to resolve the
transmon states.

the detuning to the ground state cavity resonance is larger.

Fitting the linear model from eq. 106 to the data allows to extract the calibration factors
λ2 = 0.76(1) and λ3 = 0.211(1) (uncertainties are the standard deviations from the fits).
As a reminder, the actual power at the input port of the cavity is about −119 dBm lower
than the generator output power shown on the x-axis of the graph in fig. 41.

5.5 First Measurements

This section presents the first measurement where the transmon’s states are resolved in the
IQ-plane. Considering amplitude and phase allows to map the IQ-data to the states |g〉, |e〉
and |f〉. This assignment is further verified in sec. 5.6.3 via relating the distribution of the
data to a temperature. The right panel of fig. 42 shows the results of an IQ measurement
without using the JPC. Clearly, the signal amplitude (displacement from the IQ plane’s
origin) is too low compared to the noise (spread of the results). The transmon states can
not be distinguished. In order to perform a successful IQ-measurement, the JPC has to be
set up accordingly. The tuning process is monitored with the VNA - measured traces with
pump on and off are shown in the left panel of fig. 42. The graph shows the set-up for the
three-state-measurement, using a gain of approximately 12 dB centred at f3.

When the experiment is repeated with the JPC turned on, the transmon states are clearly
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Figure 43: IQ measurements with probe frequencies f3 (left) and f2 (right). Showing
5000 data points measured with a probe power of n ≈ 4 resonator photons and an averaging
time of Tavg = 1280 ns per point. Gain was set to 12 dB centred at f3, resulting in a slightly
lower signal amplitude in the right plot. The results are clustered around three centres of
attraction (‘disks’), corresponding to |g〉, |e〉 and |f〉. Expected phase shifts and relative
amplitudes (compare tab. 5 and 6) are indicated in black. They allow to assign the disks
in IQ plane to the associated transmon state.

resolved in the IQ plane. The displacement from the origin is significantly increased,
whereas the variance remains almost unchanged. Fig. 43 presents two sets of IQ data
measured with probe frequencies f2 and f3. The plot shows 5000 data points acquired
with an averaging time of 1280 ns per point. Probe power was set corresponding to an
average cavity photon number of 4. JPC gain was about 12 dB at the three-state probe
frequency and about 5 dB lower at the two-state experiment, resulting in a proportionally
lower amplitude.

The IQ data points accumulate in two respectively three ‘disks’ in the IQ-plane. Following
the considerations presented in sec. 5.1, the clusters can be assigned to the transmon
states. The expected relative angles and amplitudes are drawn in the graphs. Due to the
almost critically coupled cavity, the phase shift between ground- and final-state is almost
a full circle. As a consequence, the disks are located relatively close to each other. This
slight design flaw leaves some room for improvement in terms of contrast or equivalently
measurement speed. Most of the results appear to end up in the |g〉 cluster, as one would
expect for a cold system close to its ground state. This observation is confirmed in sec.
5.6.3.
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The next section deals with the analysis of IQ-data. Various figures of merit are defined,
which allow to quantify the distribution of the IQ-data in terms of separation, width and
number of results in the disks. Logarithmic 2D-histograms are introduced as an alternative
visualization method. They provide a simple way of getting a quick overview of a large set
of IQ-data.

5.6 Analysing IQ-data

This section relates how the probability distribution underlying a set of IQ-data is found
by binning the data into two-dimensional histograms and subsequently fitting the sum of
two or three Gaussians to the data.

5.6.1 2D Histograms

In the previous section each individual IQ-record was represented as one point in a scatter
plot. This method of display quickly becomes incomprehensible when dealing with large
sets of data. An alternative approach is, to divide the IQ-plane in tiles of equal width
and height ∆I = ∆Q = ∆x. Counting the results that end up in each bin creates a two-
dimensional histogram. The left panel of fig. 44 shows the histogram of an IQ-measurement
containing 330000 IQ data points using 50 × 50 bins. The drawback of this depiction
method is revealed immediately. As the transmon is for the largest part in the ground
state, the bins in the area of the |e〉 and |f〉 disk contain only a very small number of
events. However, using a logarithmic scale and plotting log(N) instead of the bare number
of events N , creates a meaningful plot allowing for a quick overview of the data quality and
distribution, see fig. 44 (right panel). The following section describes, how the underlying
probability distribution of the IQ measurements is extracted by fitting the 2D histograms
with a sum of Gaussian profiles.

5.6.2 Gaussian Fits

The transmon states |g〉, |e〉 and |f〉 correspond to unique points in the IQ-plane with
coordinates (Ii, Qi) for i ∈ {g, e, f}. Various noise sources lead to a Gaussian spread of the
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Figure 44: Linear and logarithmic histogram of 162000 IQ records using 50 × 50 bins.
Measured at fp = f3 with a probe power of ∼ 4 photons, an averaging time of tavg = 1280 ns
and GJPC = 12 dB. The circles represent 4σ of the fitted Gaussian profiles.

measurement results around these central points. The quantum fluctuations as well as the
noise added by the amplifiers get amplified along the measurement chain. Fitting the data
with a sum of Gaussian profiles allows to extract the underlying probability distribution. A
single two-dimensional Gaussian centred at (Ii, Qi) with amplitude Ai and width (standard
deviation) σ is described by

fi(I,Q) = Ai
1√

2πσ2
e−

(I−Ii)
2+(Q−Qi)

2

2σ2 . (107)

Note that a common width σ is assumed for the profiles. Depending on the type of
measurement (probing on f2 or f3) the appropriate fitting function is either the sum of
two

F (I,Q) =
∑

i∈{g,e}
fi(I,Q) (108)

or three
F (I,Q) =

∑

i∈{g,e,f}
fi(I,Q) (109)

Gaussian profiles. F (I,Q) contains either 8 or 12 free parameters. The fit is performed
in python using the curve_fit method of the scipy library. The uncertainty of the counts
in each bin is assumed to be ∆N =

√
N + 1. A minimal error of 1 is important for the

stability of the numeric fitting routine. Otherwise empty bins would have an uncertainty
of ∆N = 0, causing the algorithm to fail. Adding a pseudocount of one is in accordance
with Laplace’s stochastic rule of succession [55]. It justifies a minimum miscount of 1 with
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the argument that, if one more additional data point was measured it might end up in the
previously empty bin.

Figure 45: IQ-measurement with np = 4 probe photons, tavg = 1280 ns, 162000 points
and GJPC = 12 dB. The scatter plot shows the first 10000 data points, plotted with a
transparency of 0.1. The circles represent 4σ of the gaussian profiles obtained by the fit.
The projected histograms are computed by binning the I- respectively the Q-components
of the full data set into 50 intervals of equal width. The coloured lines show the Gaussian
profiles integrated along the projection axis.

An example of the fit is shown in fig. 45. The data is the same as shown above in fig.
44. Bin width was ∆I = ∆Q = 4 mV. The circles are centred at the positions (Ii, Qi)
as determined with the fit. Their diameter equals to 4σ. Top and side panel show a
projection of the histogram on the I-and Q-axis respectively. A projection of the fitted 2D-
Gaussians is indicated with the color convention g (red), e (blue), f (green). The resulting
fit parameters are listed in tab. 7. The graph is reproduced in fig. 58 in the appendix with
the histograms plotted on a logarithmic scale, allowing for an easier comparison of data
and fit.

Visually, the fit appears to agree quite well. The coefficient of determination R2 allows to
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A× 2πσ2/(∆x)2 I (mV) Q (mV) σ (mV)
|g〉 158 100(250) −29.92(1) 20.07(1) 5.830(4)
|e〉 3034(26) 16.71(5) 5.60(50) 5.830(4)
|f〉 693(13) −4.4(1) 36.2(1) 5.830(4)

Table 7: Fit parameters for the data shown in fig. 45 (and fig. 44). The occupation A ×
2πσ2/(∆x)2 corresponds to the volume of the respective Gaussian profile and is equivalent
to the number of events registered in that disk. Roughly 97.7 % of the events are attributed
to the ground state.

evaluate how well the data is described by the model. It is defined as

R2 = 1−
∑
j (yj − Fj)∑
j (yj − ȳ) (110)

with data points yj , data average ȳ and the model Fj evaluated at position j. In a 50× 50
bin histogram j takes on the integer values from 0 to 2500. Intuitively, R2 compares
the prediction quality of the model to the arithmetic mean, which is one of the simplest
measures to describe a set of data. Values close to unity indicate a good match of model
and data. Fitting the sum of three Gaussian profiles to the data shown in fig. 45 results
in a coefficient of determination of R2 = 0.998.

It is possible that the system undergoes an abrupt transition from one state to another
(quantum jump) during the averaging time of a single IQ point. Consequently, that data
point ends up somewhere in the middle of the disks that correspond to the two states. These
intermediate points are clearly not described by a simple sum of 2D Gaussians. However,
as the JPC allows for averaging times that are faster than the system’s transition rates,
this deviation from the model can be neglected. The influence of averaging time on the fit
quality is analysed in sec. 5.7.3.

5.6.3 Temperature

A natural question of interest is, whether the number of events g, e, and f follows a
thermal distribution. The average occupation of each state is easily derived from the fitted
Gaussian model. Integrating the amplitude along both dimensions I and Q results in
the ‘peak volume’ Vi = Ai2πσ2/(∆x)2 with i ∈ g, e, f , which directly corresponds to the
number of events in that disk. Fig. 46 shows the occupation derived from the data shown
in fig. 45. The state’s energies are (Eg, Ee, Ef )/~ = (0, ωge, 2ωge−α). Assuming a thermal
distribution, the relative occupation is expected to be proportional to the Boltzmann factor.

76



5 Observing Quantum Jumps

0.0 2.5 5.0 7.5 10.0 12.5

E/h (GHz)

102

103

104

105

O
cc

u
p

at
io

n

|g〉

|e〉
|f〉+ . . .

Figure 46: Occupation Ai2πσ2/(∆x)2 of each peak i ∈ g, e, f as derived from fitting the
IQ histograms. Errors are much smaller than the points. The underlying 162000 points
are measured at np = 4, tavg = 1280 ns and GJPC = 12 dB. The temperature is derived via
minimization of eq. 112, taking into account the additional f state counts stemming from
the higher transmon levels. A Boltzmann factor with the resulting temperature 78.7(3) mK
is drawn in red.

The model
p(E) = V0 exp−E/(kBT ) . (111)

has two free parameters - the ground state occupation V0 and the temperature T . At very
cold temperatures, photons actually obey Bose-Einstein statistics. However, at energy
scales of 6 GHz and temperatures on the order of 50 mK, the Bose-Einstein-distribution is
modelled well by eq. 111 as E ≈ 3kBT . The fit was done using numpy’s scipy.optimize.minimize
method, assuming that the states above f end up as counts in the f state. The sum of
squared residuals used for the optimisation reads

(
p(Eg)− Vg

)2

∆V 2
g

+

(
p(Ee)− Ve

)2

∆V 2
e

+

(
p(Ef ) + p(Eh) + p(Ei) + p(Ej)− Vf

)2

∆V 2
f

, (112)

taking into account three higher excited states (h, i, j) with estimated energies ~(3ωge −
2α, 4ωge − 3α, 5ωge − 4α). Following [56], the residuals are weighted with the standard
deviations ∆Vi which are determined from fitting the IQ data. The minimization routine
calculates a Hessian variance matrix, which allows to derive the standard deviation of the
fit parameters. The fit converges with an R2 of 0.9999 and results in a temperature of
78.7(3) mK. Ignoring the transmon’s higher excited states and simply fitting the occu-
pations Vg, Ve, Vf with eq. 111 results in a slight overestimation of the temperature by
0.5 mK.
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An alternate approach in determining the relative occupation of states g, e and f is to
count the events occurring within one or two standard deviations around the disk centres.
For data that is well modelled by a sum of Gaussians (R2 > 0.98) the resulting temperature
agrees with the value derived from the fit parameters within 2 mK. The following section
shows data sets that deviate strongly from the Gaussian distribution due to squeezing and
other effects. In such measurements the observed difference in the methods of temperature
calculation was up to 10 mK.

5.7 Improving the Contrast

This section relates how the contrast of the dispersive readout scheme depends on the
key experimental parameters, readout power, averaging time and JPC gain. The IQ-data
is binned into two-dimensional histograms and fitted with Gaussian profiles as described
above. Width and separation of the fitted profiles are used as quantitative measures of the
measurement contrast. In addition, the contrast is quantified by the overlap of the fitted
Gaussians. It is calculated as the integrated product of the individual profiles

overlap = 1
AgAeAf

∫ ∞

−∞

∫ ∞

−∞
fg(I,Q) fe(I,Q) ff (I,Q) dIdQ (113)

Identical Gaussians result in an overlap of 1, whereas separate peaks result in a quick
decrease towards 0. In order to visualize the trends, the overlap is plotted using a loga-
rithmic scale in the following considerations. The quality of the model is monitored with
the coefficient of determination R2 as defined in eq. 110. Finally, the temperature is eval-
uated for each IQ-data set. The temperature is derived from the volume of the fitted
Gaussians, even when the e and f state populations deviate from the expected thermal
population (compare fig. 59). Together, these five quantities provide an overview about
what to expect from a dispersive IQ-measurement for a particular choice of parameters.
Below, the IQ-data is displayed in form of logarithmic histograms. Circles with a diameter
of 4σ indicate position and width of the fitted Gaussians. Statistically, roughly 95 % of the
measurement results can be expected to lie within the 4σ circles. The states are encoded
in the color of the circles - g, e and f are represented by red, blue and green respectively.
All the quantities presented in this section, are derived from Gaussian fits of the binned IQ
data containing a large number of samples. The statistical uncertainties of the parameters
resulting from the fit are much less than 1 % (compare tab. 7). As a consequence, the
uncertainties of the derived quantities presented in this section are small. Errors are not
shown in the plots as they are below point-size.
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Figure 47: IQ-probe power sweep. 160000 data points measured at f2 with tavg = 320 ns
and GJPC = 15 dB are displayed in each logarithmic histogram. The diameter of the circles
corresponds to 4σ of the fitted Gaussian profiles. Separation of the g and e disk goes up
with increasing probe power. As the JPC begins to saturate, the disks become more and
more ‘sqeezed’, deviating from the symmetric Gaussians.

5.7.1 Readout Power Sweep

Fig. 47 shows eight IQ-data sets measured with increasing probe power. The power is
altered in steps of 3 dB from 1.5 to 190 photons. Data is taken at the two-state probe
frequency f2 with an averaging time of tavg = 320 ns. JPC gain is set to 15 dB. The
analysis is shown in fig. 48.

With increasing probe power, the distribution of the IQ-records begins to deviate from the
model of symmetric Gaussian profiles, indicated by the decreasing R2. At a probe power
of n ≈ 12 cavity photons, a slight asymmetry becomes visible in the plotted histograms.
This ‘squeezing’ is due to the saturation of the JPC, which provides linear amplification
only up to powers corresponding to a few photons in the JPC resonator. Separation rises
with increasing power. The separation in units of voltage is expected to be proportional
to the square root of the power (photon number). A fit ∼ √n including powers up to 25
photons is indicated in the graph (red dashed line). The saturation of the JPC becomes
obvious at higher powers as the separation evens out a a maximum of roughly 10σ. In
accordance with the increasing separation, the overlap calculated with eq. 113 is declining.
The peak width σ is independent of the probe power, reflecting the fact that the main noise
contribution are the transmon’s quantum fluctuations. Temperature also remains constant
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Figure 48: Probe power sweep analysis. Higher probe power results in a stronger con-
trast, as seen by the increasing separation and decreasing overlap. Temperatures are not
calculated for powers below 5 photons. The reason is the large uncertainty in the state
population when σ is on the order of the separation. The dashed red line indicates a

√
n fit

to illustrate the connection between readout power and voltage separation. Only powers
up to 45 photons are included in the fit, as the saturation of the JPC causes the separation
to flatten out at higher photon numbers. Solid lines serve as guides to the eye. Statistical
errors for the temperature, separation and width σ as derived from the fits are too small
to be recognised in the graph.

across the measured range. Non-thermal states (deviating from the fitted Boltzmann
factor) have been observed for probe powers above 10 photons. In some cases, the f state
population equals or even exceeds the excited state population (compare fig. 45 and fig.
59). Consequently, the Boltzmann minimization converges with a lower R2. The resulting
temperatures remain almost unchanged, as they depend mostly on the ratio Ae/Ag which
only varies slightly.

5.7.2 JPC Gain Sweep

The raw data of the JPC gain sweep is plotted in fig. 49. The gain was increased in
irregular steps from 7 dB to 29 dB. Averaging time was set to tavg = 320 ns. A relatively
high probe power of 21 readout photons was chosen, in order to be able to resolve the
states even for low JPC gains. Data was measured at the three-state probe frequency f3.

The separation is calculated as the arithmetic mean of the individual distances between
the g, e and f disks. Derived parameters are collected in fig. 50. Not surprisingly, the
separation increases with higher JPC gains in agreement with the decreasing overlap. The
peak width σ also rises with increasing gains, reflecting the JPC’s amplification of the
quantum fluctuations and the noise added by the JPC. Increasing gains cause the JPC to
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Figure 49: JPC gain sweep with 4σ circles from the Gaussian fit. Measured at f3 with
tavg = 320 ns and a readout power of 21 photons. 160000 data points per measurement.
At this probe power, the JPC begins to saturate at around 20 dB, causing squeezing and
rotation in the IQ-plane.
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Figure 50: Characteristic parameters of the JPC gain sweep. Lines present a guide to the
eye. As expected, the separation increases while width and temperature are unaffected by
the amplifier. R2 and the overlap are decreasing as the JPC squeezes and deforms the IQ
data with increasing saturation. Point sized errors are not displayed in the graph.
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Figure 51: Sweep of the IQ integration time tavg. Measured at f2 with np = 190 photons
and a JPC gain of 15 dB. At such a high probe power, two states are resolved at averaging
times as fast as tavg = 80 ns. Circles represent 4σ of the Gaussian fit.

saturate, resulting in a drastic drop of R2. The JPC looses its phase preserving quality,
causing sqeezing and rotations in the IQ-plane. As expected, the temperature appears to
be independent of JPC gain. After being reflected by the JPC, the amplified signal is
routed away from the cavity using a circulator with a cross-port isolation of more than
20 dB. Thus, the signal’s effect on the experiment after the round trip to the JPC can be
safely neglected.

5.7.3 Readout Time Sweep

Fig. 51 shows the raw data of the readout time sweep. IQ-demodulation was done averaging
over 1, 2, 4 and 8 periods, corresponding to averaging times tavg = (80 ns, 160 ns, 320 ns,
640 ns). The evaluation is plotted in fig. 52. As expected, the width of the disks decreases
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Figure 52: Readout time tavg sweep analysis. Measured at f2 with np = 190 photons and
a JPC gain of 15 dB. The separation is calculated between g and e, also for the fourth
plot in fig. 51, where three states are already resolved. Solid lines serve as a guide to the
eye. The width σ (signal noise) decreases proportional to

√
1/tavg, as indicated with the

fit (blue dashed line). Point sized errors are not displayed.

with 1/√tavg. The respective fit is drawn in the graph (blue dashed line). With increasing
tavg, events where the system undergoes a quantum jump during the integration time
occur at a higher rate. These events appear in between the g, e and f disks and are most
prominent at tavg = 640 ns. For this reason, the R2 of the Gaussian fit decreases for higher
averaging times. For large averaging times, the f state is resolved even at the two-state
probe frequency f2. The small phase difference of ∼ 20◦ (compare fig. 36) is enough to
distinguish the states. It is interesting to note, that most of the intermediate events occur
between the ground state and the excited state (intermediate events between e and f are
not resolved). One photon transitions are strongly preferred. In fact, direct transitions
between g and f state are dipole forbidden, and therefore strongly suppressed.

5.7.4 Summary

The JPC assisted dispersive IQ readout depends strongly on the experimental parameters of
the measurement setup. The key observation of this section is, that the various parameters
influence each other. Paying attention to this interplay is crucial for the choice of an
appropriate experimental configuration. For example, both the JPC gain and the readout
probe power have the tendency to increase the separation. However, these two parameters
have different side effects. While higher JPC gain causes sqeezing and rotations in the IQ
plane, higher probe power is suspected to interfere with the system in a increasingly not
QND way (e.g. causing deviations from thermal population distributions for powers n >
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10.) The separation is not increased by the IQ integration time tavg. Contrast is improved
regardless as the noise of the signal decreases with 1/√tavg. Longer averaging times result
in a higher number of quantum jump events that happen during the integration time.
These points end up in between the disks in the IQ plane, causing a strong deviation of
the Gaussian model distribution when tavg becomes comparable to the system’s transition
rates.

A straightforward way to determine a suitable readout configuration seems to begin with
a JPC gain of about 20 dB, promising the highest gain in SNR (compare sec. 4.4.5). Then,
the choice of probe power and tavg becomes a trade-off in contrast, measurement time
and ‘QNDness’ of the measurement. In some cases, squeezing and JPC gains of up to
25 dB might be acceptable, as the increased separation can result in a higher fidelity in the
identification of the states.

When distinguishing two states, the contrast can be nicely quantified by the miscount
probability pmis as defined in eq. 114. When working on this project, I found np = 6,
tavg = 640 ns and GJPC = 15 dB a convenient configuration. It provides a miscount
probability of only 1 % while introducing a negligible amount of squeezing. The main
limiting factor of the contrast in this setup was clearly the low Qint of the cavity. Adapting
the readout resonator would be a simple and quick way to improve the readout scheme.
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5.8 Quantum Jumps

This section investigates the temporal evolution of the transmon state. Measurements are
done probing at f2, distinguishing whether the transmon is in the ground state or not.
The JPC is operated at a gain of 15 dB. A probe power of 6 photons is sufficient to reach
a detection fidelity of 99 % (at averaging times of tavg = 640 ns). Analysis of how long
the systems remains in the same state allows to estimate the excited state lifetime T1.
Assuming a negligible e state population, the system is treated as an effective two-level-
system (qubit) in this section.

Figure 53: IQ data taken with n ≈ 24, tavg = 320 ns and a JPC gain of 15 dB. Left:
Histogram (100× 100 bins) of the full set of 1300000 records. Gaussian fits are indicated
with circles of 4σ diameter. The separation line is drawn in green. Right: Jumptrace.
Distance from the separation line over time for 180 IQ-records. Quantum jumps are clearly
resolved in time. This section of the trace features a thermal excitation and subsequent
decay after ∼ 14µs.

5.8.1 Jump Traces

As observed in sec. 5.7, high readout power allows for well resolved IQ-measurements with
short averaging times. Fig. 53 (left) shows 1300000 IQ records measured at a power of
n ≈ 24 photons and tavg = 320 ns. The separation line (green) is drawn in equal distance
from the centres of the fitted Gaussians, crossing the connection line (not shown) in a right
angle. The right panel of fig. 53 shows the distance between that separation line and the
individual IQ-records over time. 180 data points are displayed in the graph, corresponding
to a duration of 58µs. Each measurement result is assigned to one of the qubit states |g〉
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Figure 54: Long jumptrace with even higher separation due to high readout power n ≈ 190.
Averaging time and JPC gain as above tavg = 320 ns and 15 dB. Three transitions to the
excited state appear in the depicted section. Dwell times in |e〉 are on the order of tens of
µs.

and |e〉, depending on whether it ends up below or above the separation line. Two sudden
transitions (quantum jumps) are visible in the trace. A presumably thermal excitation is
followed by a decay back into the ground state. A second example of a quantum jump trace
is depicted in fig. 54. A longer trace of 800µs was measured at high power n ≈ 190. Three
quantum jumps back and forth to the excited state occur in the plotted section. Although
the separation is large in comparison to the data variance, there is still a finite probability
of an assignment error. Following [57], the miscount probability can be calculated as the
probability of actual ground state results to end up above the separation line

pmis =
∫ −∞

dge/2

1
σ
√

2π
ex/(2σ2) dx. (114)

Variance σ and separation dge =
√

(Ig − Ie)2 + (Qg −Qe)2 are taken from the fitted Gaus-
sians. With my assumption of equal widths the miscount probability is the same for ground
and excited state. The fidelity is simply defined as

F = 1− pmis. (115)

A fidelity of one corresponds to a perfectly faithful measurement, whereas a F = 0 cor-
responds to a completely random measurement that extracts no information. Fig. 55
illustrates the integration scheme of the miscount probability (left) and calculated values
for various probe powers (right). The power sweep is derived from the same data as shown
in fig. 47. A probe power of 6 photons is sufficient to reach pmis ≤ 1 %. The power depen-
dence of pmis will become important when analysing the statistics of the quantum jumps
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Figure 55: Left: The miscount probability pmis describes the probability of a measurement
result to end up on the wrong side of the separation line. It can be calculated by integrating
the Gaussian probability distribution from the position of the separation line to∞. Right:
Power sweep for pmis measured at tavg = 640 ns and GJPC = 15 dB.

in the next section.

5.8.2 Qubit Lifetime Estimation

Investigating the distribution of the quantum jumps, allows to give an estimate of the qubit
lifetime T1. Looking at the high power measurement shown in fig. 54, typical durations
of excited state events are on the order of tens of µs. Ground state events can easily
extend up to several hundreds of µs. The full trace containing 1300000 data points was
filtered numerically, extracting the event durations for ground and excited state. Events
of an extent of only time step (320 ns) are considered noise and neglected in the filtering,
corresponding to a rejection count Nrej = 1. The distribution of the event durations are
depicted in fig. 56 in the form of histograms. Its exponential shape reflects the probability
of events of a certain extent. Fitting the data with an exponential model ∼ exp(−t/T )
results in a qubit lifetime of T1 = 1/γ1 = 6.1(3)µs. The typical duration of a ground state
event is T↑ = 1/γ↑ = 257(8)µs. The ratio T1/T↑ ≈ 2.3 % agrees well with the calculated
temperature (compare population distributions listed in tab. 7).

Even longer lifetimes are observed in jump traces measured with lower IQ probe power. Fig.
57 (left) shows a T1 power sweep, as derived from fitting the histograms of jump traces with
various probe powers. The results of this method should be treated with caution. Lower IQ
probe powers result in a reduced separation (compare fig. 47) and a higher chance of falsely
assigned noise events distorting the event statistics. At low probe powers, the histograms
become top-heavy with a large number of noise events with a duration of one timestep,
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Figure 56: Histograms of the event durations for ground (left) and excited state (right.)
Derived from the full high power jump trace measured with np = 190 photons. An excerpt
of that trace is shown in fig. 54. Exponential fits (red) allow to estimate the excited and
ground state lifetimes T1 ≈ 6.1(3)µs and 1/γ↑ = 257(8)µs.

deviating strongly from the expected exponential distribution. This problem is addressed
by using a power dependent rejection count Nrej when filtering the jump traces. For each
probe power, Nrej is chosen such, that the resulting histogram follows an exponential shape
while still rejecting as few events as possible. Rejection counts Nrej start at 3 and quickly
drop to 0 following roughly the distribution of the miscount probability plotted in fig. 55.
The qubit lifetime is stable up to a readout power of approximately 20 photons, before
dropping abruptly to about half its value. It is clearly Purcell-limited as it never exceeds
1/γP = 18.9(1)µs. The complementary data showing the ‘ground state lifetime’ T↑ is
shown in the appendix in fig. 61. The low power lifetime of about T1 = 16µs agrees well
with T ref

1 = 18µs as determined in an independent measurement on the same transmon
qubit. T ref

1 is measured by exciting the qubit with a π/2 pulse followed by a readout
pulse after a varying delay time [34]. The measurement was done by group member Oscar
Gargiulo.

The right panel of fig. 57 shows the relative occupations of the |e〉 and (|f〉 + . . .) state
results. At probe powers of more than ∼ 5 photons, non thermal distributions, where
the f state population significantly exceeds the e state population are observed (compare
sec. 5.6.3). Together with the power dependent T1 decrease, this indicates an increasing
impact of the dispersive IQ readout scheme on the measured system. Both effects are
observed at lower powers than anticipated, as the dispersive approximation is expected to
be valid up to a power of ncrit ≈ 60 photons. The temperatures, that are derived from the
distribution of the |g〉, |e〉 and (|f〉 + . . .) state population is only slightly affected by the
unexpectedly high counts of f state results. The reason for this is, that the temperature
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Figure 57: T1 power sweep and relative e and f state population illustrating the breakdown
of ‘QNDness’. Left: T1 is derived from quantum jump traces measured at f2 with tavg =
640 ns and GJPC = 15 dB. An abrupt drop in T1 is observed at about 20 photons. The
observed lifetimes appear to be Purcell-limited with 1/γP = 18.9(1)µs. Right: Relative
|e〉 and |f〉 state populations are extracted from IQ measurements taken at f3 with tavg =
1280 ns and GJPC = 15 dB. Statistical uncertainties are smaller than the size of the points.
Stronger population of the (f + . . .) state compared to e for probe powers exceeding ∼ 10
photons is surprising. Note that the relative population of the excited state stays roughly
constant, in agreement with the observed power independence of the temperature (compare
fig. 48).

which minimizes the ‘cost function’ (sum of weighted squared residuals eq. 112) of the
fitting routine is for the largest part defined by the ratio between ground and excited state
results. This ratio being roughly constant at 2 % leads to the observed power independent
transmon temperature, regardless of the relative population of |f〉 and higher states. A
less thermal distribution is solely reflected in a slight decrease of the R2 of the temperature
calculation. Considering this obvious interaction of the measurement beam with the qubit-
cavity-system, the ‘QNDness’ of the continuous dispersive readout scheme appears to be
already compromised at powers as low as ∼ 5 photons, corresponding to only 10 % of ncrit.
A similar behaviour in a pulsed readout scheme still needs to be investigated. A raw IQ
data set of such a non-thermal measurement is presented in fig. 59 of the appendix.

5.9 Summary

In this chapter, the realization of the continuous dispersive readout scheme is demonstrated.
Experimental results with three clearly resolved transmon states are presented. IQ con-

89



6 Conclusion & Outlook

trast, data quality and temperature are evaluated for various JPC gains, probe powers and
averaging times. As expected, a higher readout power was found to increase the separa-
tion, while causing only a slight increase in the disk width due to the amplified quantum
fluctuations and JPC noise. The temperature is independent of the readout power, as the
ratio of ground and excited state population stays constant. Deviation from the Gaussian
shapes (‘sqeezing’) caused by saturation of the JPC was observed at a probe power of ∼ 20
photons at a JPC gain of 18 dB. When distinguishing three transmon states, non-thermal
population distributions with the e state population exceeding the f state population are
observed for readout powers > 5 photons. This surprising result suggests a breakdown of
the ‘QNDness’ of the continuous dispersive measurement at powers far below the critical
photon number ncrit ≈ 60. This assumption is confirmed further by looking at the tempo-
ral evolution of the measured transmon state. With the use of the JPC, it is possible to
measure the qubit faster than its internal transition rates. Two examples of quantum jump
traces are shown. Analysis of the traces allows to estimate the qubit lifetime T1. For probe
powers exceeding 20 photons, the observed lifetime quickly decreases, again indicating that
the measerement is only QND for powers below 5 to 10 photons. The actual T1 values
derived from binning the quantum jump traces should be treated with care, as a power
dependent pre-selection (rejecting noise events, see sec. 5.8.2) is used when evaluating the
jump traces. An accurate method to determine the qubit lifetime would be a T1 experiment
using pulsed probe signals.

6 Conclusion & Outlook

The main goal of this thesis was to improve the SNR of the measurement chain by in-
tegrating a Josephson parametric amplifier (JPC) into the existing experimental setup.
The functionality of the amplifier was tested thoroughly in various configurations, con-
firming its specifications. A shift of the amplification range towards lower frequencies by
about 100 MHz was observed after a year in the cryostat and about 20 cooling cycles. Re-
measuring the fluxmaps of both the JPC’s signal and idler resonator at least once per year
seems advisable. Even though the JPC is not always easy to use, it definitely pays off. An
SNR increase of up to 12 dB was observed in the optimal operation range GJPC = 15 dB
to 20 dB.

The capabilities of the JPC were tested experimentally on a transmon artificial atom
strongly coupled to a 3D microwave resonator. After determining the relevant system
parameters in spectroscopic measurements, a protocol for dispersive readout using contin-
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uous probe signals was developed. With the use of the JPC, the transmon state can be
measured faster than the internal transition rates. Quantum jumps are directly visible in
the continuously measured traces. In this setup, a 1 % ground state detection fidelity was
achieved at a readout power of 6 resonator photons, an integration time of tavg = 640 ns
and a low JPC gain of GJPC = 15 dB (no accepted squeezing). The contrast was limited
by the large phase shift of 264◦ between ground and excited state results, which was close
to a full circle. Even though we succeeded in engineering the system close to the optimal
readout condition κ = χe, the contrast was compromised by a lower than anticipated inter-
nal quality factor. Improved contrast would allow for measurements at even lower readout
powers or with even shorter averaging times. The quantum jump traces even allow to
examine the temporal evolution of the system. An unconventional and simple method of
deriving an estimate about the qubit lifetime T1 is presented in this thesis. Evaluation of
the statistical distribution of the quantum jump events results in T1 = 16µs at low powers.
The lifetime in the investigated setup is clearly Purcell-limited as 1/γP = 19µs.

The next step in the development of the continuous readout scheme presented in this thesis
will be to move from continuous probe signals to pulsed signals. Pulsed measurements
populate the cavity only for a short time. Integrating the signal leaking out of the cavity
(including ring-up and decay) allows for high contrast readout with minimal back action
on the system [58] [59]. Being able to perform a series of high fidelity manipulation and
readout operations is a indispensable prerequisite for succesfull quantum simulation and
computation experiments [5].
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Appendices

A Additional Plots

A.1 Logarithmic projected histograms

In comparison to fig. 45 of the main text, fig. 58 shows a fitted IQ data set with a logarithmic
scale of the projected histograms. The individual Gaussian peaks are indicated with the
usual color coding where (g, e, f) correspond to (red, blue, green). The actual fitting
function (sum of the three Gaussians with equal width) is drawn in orange. Both the
visual agreement and the high R2 of 0.998 suggest that the data is described well by the
Gaussian model. (as long as the JPC is not saturated).

A.2 Non thermal transmon population at high readout powers

At readout powers above roughly 20 photons, non thermal distributions of the state pop-
ulation have been observed. A typical example of such a measurement is shown in fig. 59.
The f state population clearly exceeds the e state population. The presumed reason is the
breakdown of the QND interaction between drive and measured system. Calculating the
temperature via the minimizing routine discussed in sec. 5.6.3 still converges reasonably
well, resulting in T = 84(1) K with an R2 of 0.998.

A.3 Reject counts for T1 power sweep

As discussed in sec. 5.8.2, the qubit lifetime T1 was determined for various IQ probe powers
by binning the quantum jump traces into histograms. However, the in the low power traces,
the ground and excited state are not separated that well and the probability of falsely
assigned events is higher. In order to compensate for those ‘noise events’, quantum jumps
shorter than Nrej = 1, 2, 3 timesteps have been ignored when computing the histograms.
The rejection counts used for each power are plotted in fig. 60. They roughly follow the
miscount probability shown in fig. 55 of the main text.
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Figure 58: Same plot as in fig. 45, but with logarithmic histograms to allow an easier visual
comparison of fit and data. IQ-measurement with np = 4 probe photons, tavg = 1280 ns,
162000 points and GJPC = 12 dB. The scatter plot shows the first 10000 data points with a
transparency of 0.1. The circles represent 4σ (diameter) of the Gaussian profiles obtained
by the fit.

A.4 Ground state lifetimes vs. power

For completeness, fig. 61 depicts the inverse excitation rate (or ‘ground state lifetime’)
derived from quantum jump traces with various powers as discussed in sec. 5.8.2.

A.5 Resolving four states in the IQ plane

A high-power IQ measurement with long integration time reveals the signature of the
transmon’s third excited state |h〉, see fig. 62. The measurement was conducted at the
three state probe frequency f3, resulting in a small phase shift between f and h. The
fourth disk is clearly visible in the data, along with a large number of intermediate events
indicating jumps during the IQ integration time.
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Figure 59: Example of non-thermal state population for high IQ-probe powers np � ncrit.
Same plot as in fig. 45, but with a readout power of ∼ 70 photons and tavg = 640 ns. State
occupation (volume of the fitted Gaussians) vs. energy is shown in the top right graph. The
parameters for the exponential fit (red) are calculated with the usual minimizing scheme,
taking into account the contributions of the higher transmon states.

A.6 Linear and logarithmic plot of sqeezed data

Fig. 63 shows the 2D histogram of a set of IQ data in linear and logarithmic depiction.
The disks (attraction centres) in the IQ plane are slightly sqeezed due to the comparatively
high readout power and JPC gain. The graph compares directly to fig. 44 of the main text
which displays a measurement with little to no sqeezing.
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Figure 60: T1 power sweep (same data as shown in the main text) and rejection counts Nrej

used for filtering the quantum jump histograms. The Nrej roughly follow the miscount
probability and are chosen such, that the resulting histograms agree with the expected
exponential decrease of the probability of longer events.
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Figure 61: Power sweep of the ground state decay time 1/γ↑. A slight drop at an IQ probe
power of ∼ 20 photons appears, in agreement with the observed drop in T1 at the same
photon number.
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Figure 62: IQ measurement while strongly driving both the transmons g ↔ e and the
e ↔ f transitions. Recorded at f3 with a power of 10 photons with a high JPC gain of
25 dB. Averaging times of tavg = 1280 ns allow to have a glance at the third excited state.
A fit of four Gaussian profiles did not converge due to the large amount of intermediate
events in between the disks.
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Figure 63: Another comparison of linear and logarithmic IQ histograms with 100 × 100
bins. The disks show a slight squeezing due to high gain of GJPC = 18 dB and readout
power of 21. Measured at f3 with tavg = 320 ns. In the logarithmic depiction, the squeezing
appears to be more drastic.

A.7 JPC SN010 Fluxmaps

Fig. 64 shows the reference ‘fluxmaps’ for signal and idler resonator of the JPC SN010.
Note that the depicted resonances are suspected to shift towards lower frequencies due to
Junction aging. Still, this image provides a valuable starting guess for the pump frequency
when working with the JPC SN010.

A.8 Flip book full image

Fig. 65 shows the full graph of the flip book images plotted at the bottom right corner of
the odd pages of this thesis. Ground and excited state results are drawn in black and grey
respectively. Scrolling through the flip book gives an intuitive idea about the continuous
monitoring of the transmons quantum state. Each page adds a new measurement record
corresponding to one timestep tavg = 160 ns. The final image contains 51 points taken
in a total monitoring time of roughly 8µs. A quantum jump occurs in chapter 4 after
approximately 4µs. Finding the exact page is left to the reader.
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Figure 64: Signal and idler reference fluxmaps for the JPC SN010 as provided by the
manufacturer [52]. Blue dots indicate the position of the resonance frequencies. Amplifi-
cation is possible only at the sides of the large lobes. In the experiment, the current axis
is typically offset (due to trapped flux) and scaled differently.
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Figure 65: Full image of the flip book from the right bottom of the even pages. Measured
at the two-state probe frequency f2 at high probe power of np = 190 resonator photons
with tavg = 160 ns and GJPC = 18 dB. The squeezing is not evident in the selected sample
showing just 51 data points. Separation line calculated from the full data set as described
in sec. 5.8.
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B JPC Pictures

A photograph of the assembled JPC SN010 without protection shield is shown in fig. 66.
The housing of the Josephson ring modulator (JRM) is seen at the bottom. Two hybrids
ensure the correct addressing of the JRM modes as discussed in sec. 4.2. They are con-
nected to the main chip via four two inch minibend rf cables. When the mu metal shied
of the JPC is closed, only the main ports ‘signal’ ‘idler’ and ‘pump’ are accessible for the
user. They are labelled accordingly (see top part of left image). The coil which is providing
the magnetic flux for the tunability of the amplifier is also obscured by the housing on the
bottom. The black coated wire (‘DC coil bias’) connects the coil to an outside DC source.
As the connection to the coil is quite fragile, the wire is stabilized with adhesive aluminium
tape (right image). Nevertheless, any stress on that cable should be strictly avoided as any
damage would critically compromise the functionality of the JPC. Fixing a damaged cable
isolation close to the coil inside the chip housing involves the risk of opening the protective
enclosure.

hybrids

DC coil bias

mu metal shield lid

JRM

mount

+ coil

Figure 66: Photograph of the JPC SN010 without mu metal shield. Full view (left) and
enlarged section of the internal wiring (right). Description in the text.
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