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Abstract

Granular aluminium provides desirable properties for designing superconducting quantum cir-
cuits. The material structure that consists of pure aluminium grains surrounded by aluminium ox-
ide is comparable to a network of Josephson junctions (JJ) and features a high intrinsic impedance.
Here, microstrip resonators made from granular aluminium have been simulated performing
finite element simulation (HFSS), fabricated and characterized. The fabrication is related to
conventional JJ fabrication and includes electron lithography and electron beam evaporation of
aluminium in a pure oxygen atmosphere. The film room temperature resistivity determines the res-
onators microwave properties that can be assigned to different regimes, from low (ρ ≤ 100 µΩ · cm)
to strongly disordered (ρ > 104 µΩ · cm). Films of different room temperature resistivity are ob-
tained by adjusting the process parameters, i.e. the oxygen mass flow and evaporation rate during
the deposition. It is suggested to fabricate films with ρ ∼ 103 µΩ · cm, at least one order below
the superconductor to insulator transition (SIT) at 104 µΩ · cm. The critical temperature of films
with ρ = 120(30) µΩ · cm to ρ = 4800(900) µΩ · cm has been determined performing transport
measurements and lies in a range from 1.3(5) K to 2.2(5) K, exceeding the transition temperature of
bulk aluminium (1.2 K). The maximal Tc is reached at ρ = 190(3) µΩ · cm. A U-shaped microstrip
resonator that consists of two films differing in resistivity (ρlow = 50(9) µΩ · cm, 40 nm thickness,
ρhigh = 650(120) µΩ · cm, 20 nm thickness) has been investigated in transmission configura-
tion by mounting it to a copper waveguide. The substrate material is sapphire. Resonance is
found in the vicinity of 9 GHz and a coupling Q factor of 9.45(4)× 104 and is in good agreement
with simulation, corresponding to a kinetic sheet inductance of 20 pH. The internal Q factor is
8.98(5)× 104 for photon numbers N̄ between 102 and 106. A non-linear behaviour is observed
for large N̄ > 106 that leads to a negative frequency shift of −2.7(6)× 10−3 Hz per photon in the
resonator. Moreover, external magnetic fields in the range of ∼ mT cause additional losses by
non-zero restive regimes in the material and Q i decreases by half. The temperature dependence
could not have been investigated due to a small signal to noise ratio.
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Zusammenfassung

Granulares Aluminium lässt sich hervorragend in supraleitenden Quantenschaltkreisen einsetzen.
Isolierendes Aluminiumoxid umgibt die Aluminiumkörner in dem Material, so dass die Struk-
tur an ein Array von Josephson-Kontakten erinnert. Hierdurch erhält das Material eine hohe
intrinsische, kinetische Flächeninduktivität. In dieser Arbeit werden Microstrip-Resonatoren aus
Aluminium mit Korngrenzen hergestellt, simuliert und ihre Mikrowelleneigenschaften werden
untersucht. Der Herstellungsprozess ist vergleichbar mit der konventionellen Herstellung von
Josephson-Kontakten und setzt sich aus Elektron-Lithografie und Aluminiumabscheidung in reiner
Sauerstoffatmosphäre durch einen Elektronenstrahl zusammen. Der spezifische Widerstand bei
Raumtemperatur bestimmt die Mikrowelleneigenschaften der Resonatoren und lässt sich anhand
der Ordnung in Bereiche einteilen, von schwach (ρ ≤ 100 µΩ · cm) bis stark (ρ > 104 µΩ · cm).
Durch das Einstellen der Herstellungsparameter, genauer gesagt des Sauerstoffflusses und der
Verdampfungsrate, lassen sich Filme verschiedener spezifischer Widerstände herstellen. Es wird
dazu geraten, Filme vonρ ∼ 103 µΩ · cm herzustellen, mindestens eine Größenordnung unterhalb
des Supraleiter-zu-Isolator-Übergangs bei 104 µΩ · cm. Anhand von Transportmessungen wurde
die Sprungtemperatur für Filme von ρ = 120(30) µΩ · cm bis ρ = 4800(900) µΩ · cm bestimmt.
Diese überschreitet den Wert von Vollaluminium (1.2 K) und liegt in einem Bereich von 1.3(5) K
bis 2.2(5) K. Der Maximalwert wird für ρ = 190(30) µΩ · cm erreicht. Die Transmission eines
Microstrip-Resonator in U-Form bestehend aus zwei Filmschichten unterschiedlichen Wider-
stands (ρlow = 50(9) µΩ · cm, 40 nm Schichtdicke, ρhigh = 650(120) µΩ · cm, 20 nm Schichtdicke)
auf Saphir wurde untersucht. Hierfür wurde der Resonator in einen Waveguide aus Kupfer einge-
setzt. Der Resonator zeigt Resonanz bei rund 9 GHz und weist einen Kopplungsgütefaktor von
9.45(4) × 104 auf. Für Photonenzahlen zwischen 102 und 106 liegt der interne Gütefaktor bei
8.98(5)× 104. Für größere Photonenzahlen N̄ > 106 wird ein nicht-lineares Verhalten deutlich,
dass zu einer negativen Frequenzverschiebung von −2.7(6)× 10−3 Hz pro Photon im Resonator
führt. Externe magnetische Felder in der Stärke von∼mT rufen nicht-supraleitende Bereiche in
dem Resonatormaterial hervor und führen zu zusätzlichen internen Verlustmechanismen bei.
Dadurch reduziert sich der interne Gütefaktor um 50 %. Die Temperaturabhängigkeit konnte
wegen einem ungünstigen Signal-Rausch-Verhältnis nicht weiter untersucht werden.
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1

Introduction

Superconducting circuits find application in many different fields.. They found use in metrology
[1], low temperatures detectors [2], solid-state quantum optics[3] and quantum nanomechanics [4].
Particular interesting are materials of high intrinsic impedance larger than the resistance quantum
since they can be used to realize devices with sub-Cooper pair charge fluctuations[5]. Materials
with large kinetic inductance comply with this, making them perfectly suitable for superconducting
quantum bits[6] (SC qubits) and kinetic inductance detectors for quasiparticle detection [7][8]. A
prominent candidate of the former one is the transmon qubit [9] that consists of a capacitance and
a Josephson junction (JJ). The JJ leads to a certain anharmonicity, turning the circuit into a non-
linear oscillator that provides a two-level system for quantum computation and simulation [10, 11].
However, the limited anharmonicity of the transmon is a disadvantage [12] but can be overcome
by alternative architectures like the fluxonium qubit [13] that achieves comparable coherence
times in the microsecond range and orders of magnitude larger anharmonicity [14]. In principle,
the fluxonium is a transmon qubit shunted by large inductance. So-called superinductors [15]
provide high enough inductances. They can be realized by arrays of hundreds of JJs [16]. However,
their experimental success is limited due to complexity in design and fabrication. Granular
aluminium (grAl) tough overcomes this difficulty: The material consists of pure aluminium grains
covered by insulating aluminium oxide and behaves as an effective network of JJs [17]. It can be
straight-forward fabricated using convenient JJ fabrication by depositing aluminium in a pure
oxygen atmosphere. Furthermore, grAl features a high critical field [18] and an enhanced critical
temperature [19]. Both are desirable properties for designing SC quantum circuits. Microwave
resonators made of grAl provide low loss resonators, represented by high quality (Q) factors and
their resonance can be flux tuned since grAl is sensitive to magnetic fields [20]. Based on this,
grAl resonators can be used for coupling to other SC circuits, for instance, to read out the state
of SC qubits [21]. This provides new opportunities in the field of analogue quantum simulations,
the simulation of complex quantum phenomena. The figure below on the left side illustrates
such a complex scenario: Transmons (shown in red) in a waveguide are placed in the propagation
direction of the field. They are strongly coupled to each other, realizing a dipolar spin model. The
resonators that are located on substrates (blue) couple to a certain qubit, such that the qubit state
can be read out dispersively via the resonator.

Microwave resonators made from grAl are also suitable for investigating mechanical hybrid
systems [22] that consist of a cavity, for instance, a SC quantum circuit that is coupled to a microme-
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chanical oscillator excited to a quantum state. Those systems find application as ultra-sensitive
acceleration sensors [23], optical to microwave converters [24] or single-photon detectors [25].
In particular, they allow the investigation of the transition from classical to quantum mechanics
and the interplay between gravity and quantum physics. Exciting a mechanical quantum state
requires a coupling strength between the micromechanical mode and the electromagnetic mode
larger than the cavity decay rate [26]. This is also known as strong single-photon coupling regime.
An appealing approach to realize with this is the implementation of a flux-sensitive quantum
circuit [4]. The coupling is established inductively by modifying the circuit inductance through
the motion of the mechanical oscillator. A microwave resonator extended by a SQUID (supercon-
ducting interference device) fulfils this requirement. While conventional SQUID resonators made
of aluminium suffer from high magnetic fields, grAl overcomes this disadvantage since it features
a high critical field, preserving the SC phase and providing a high Q, low-loss resonator. Therefore,
grAl seems to be a good candidate as material for these systems. The figure below on the right
side illustrates such a system: A cantilever modified by a magnet serves as the nanomechanical
oscillator (grey) and is on top aligned of the resonator carrying the SQUID (orange).

(a)

m

�
B

(b)

Figure: (Left) Transmon qubits (red) placed in a waveguide presenting a dipole ladder. Using U-
shaped resonators (black) each sitting on a single substrate (blue), slightly detuned in resonane
compared to a certain qubit, the quantum state of it can be read out. (Right) Mechanical
oscillator (grey) composed of a cantilever functionalized with a permanent magnet. The
coupling to the mechanical mode is inductively achieved by a flux tuneable SQUID resonator
(orange). Figures taken from www.iqoqi.at/de/forschung-gk, access on July 2019.

Overview of this thesis

In this thesis, high-impedance resonators made from grAlto characterize the material
have been designed performing finite element simulation. Conventional aluminium deposition
in an oxygen atmosphere is used for fabrication. Afterwards, the transmission has been measured
to determine the internal and external (coupling) quality factor that represent losses through
coupling to the environment and through internal loss mechanisms, for instance, the generation
of quasiparticles. For this purpose, a fitting routine has been used.
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Further, a low-impedance resonator has been fabricated and characterized. The resonator is
investigated to refine a design for a SQUID resonator and is, therefore, composed of two deposition
layers since they are necessary to realize the insulating barriers of the SQUID loop.
Since the critical temperature influences the microwave properties of superconducting resonators,
samples for this investigation have been fabricated to determine the transition temperature as a
function of room temperature resistivity.

The first part of the thesis introduces the theory on transmission lines and waveguides (chapter 1),
the measurement (chapter 2) and superconductivity in granular aluminium (chapter 3). Chapter
4 presents the developed resonator designs and the fabrication process. Before discussing the
resonator characterization in chapter 6, the determination of the transition temperature of grAl
is given in chapter 5. The last chapter discusses the simulation results on a microstrip resonator
coupled to a transmon qubit (chapter 7).
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Chapter 1
Transmission Lines and Waveguides

As the microstrip resonators investigated in this thesis are conductors in which currents and
voltages are oscillating, the first part of this chapter will offer an introduction to the fundamental
concepts of transmission line theory. The propagation of current and voltage in a conductor are
discussed. Furthermore, understanding the propagation of electric and magnetic fields in hollow
conductors, so-called waveguides, is likewise essential. The second part of this chapter will explain
wave propagation in waveguides.
This chapter only serves as a summary of these fundamentals. Further information can be found
in the detailed textbook of D. Pozar [27].

1.1 Fundamentals

In general, every transmission line consists of two conductors, where an infinitesimal long section
of it can be visualized as an electrical circuit with components l, c, g and r as shown in Fig. 1.1b.
Here, l is the total self-inductance and c the shunt capacitance per length of the two conductors.
The loss of the transmission line is expressed by the shunt conductance g and the resistance r per
length, representing the dielectric loss due to the dielectric material in between the two conductors
and the finite conductivity of the conductor material itself.

i(z,t)

v(z,t)

Δz

– –

++

(a)

Δ

Δ Δ

Δ

Δ

Δ

Δ

(b)

Figure 1.1: Incremental section of a transmission line: (a) Definition of voltage and current.
(b) Equivalent circuit model. Adapted from D. Pozar [27].
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Using Kirchhoff’s current and voltage law, equations for the time and position dependent voltage
v and current j in this circuit can be found:

v (z, t)− r ∆z j (z, t)− l ∆z
d j (z, t)

d t
− v (z +∆z, t) = 0 (1.1)

j (z, t)− g ∆z j (z, t)− c ∆z
dv (z +∆z, t)

d t
− j (z +∆z, t) = 0 . (1.2)

With∆z→ 0, Eq. (1.1) transforms into the telegrapher equation [27] and can be further simplified,
assuming a sinusoidal time dependence:

dV (z)
dz

= − (r + iωl) I (z) (1.3)
dI (z)

dz
= − (g + iωc) V (z) . (1.4)

V (z) and I(z) are the voltage and current in the steady-state condition. By introducing the complex
propagation constant γ

γ= α+ iβ =
Æ

(r + iωl) (g + iωc) , (1.5)

where α is the attenuation and β the phase constant, the two differential equation can be written
as

d2V (z)
dz2

= −γ2V (z) (1.6)

d2 I (z)
dz2

= −γ2 I (z) . (1.7)

The solution of this system corresponds to a travelling wave of the form

V (z) = V+0 e−γz + V−0 eγz (1.8)
I (z) = I+0 e−γz + I−0 eγz (1.9)

with a right propagating term (e−γz) and a left propagating one (eγz). Further, one can define the
characteristic impedance Z0 of the system given by

Z0 =
r + iωl
g + iωc

(1.10)

which also can be expressed by the ratio of the current and voltage:

V+0
I+0
= Z0 = −

V−0
I−0

. (1.11)
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For a transmission line without losses (r = 0 and g = 0)α is zero. This leads to a simplified expression
of the impedance:

Z0 =

√

√ l
c

. (1.12)

1.2 Terminated Lossless Transmission Line

This section will discuss the property of wave reflection, a phenomenon that occurs in transmission
lines terminated by an arbitrary load impedance ZL at z = 0 (see Fig. 1.2). This example illustrates
the case of a system connected to a voltage source. The transmission line is assumed to be lossless
(R = G = 0).

Figure 1.2: Terminated transmission line of length l with a load ZL at its end. Adapted from D.
Pozar [27].

Assuming an incident wave V0e−iβz is generated at z < 0, a part of the wave will be reflected at the
position of the load as the impedance has to be equal to the load impedance to fulfil Eq. (1.11),
ZL = V (0)/I (0):

V (z) = V+0 e−iβz + V−0 eiβz (1.13)
I (z) = I+0 e−iβz + I−0 eiβz . (1.14)

Solving for V−0 at the position of the load one finds the relation

V−0 =
ZL − Z0

ZL + Z0
V+0 ≡ ΓV+0 . (1.15)

Here, the fraction is defined as the reflection coefficient Γ . Rewriting Eq. (1.13), the proportion of
the reflected wave component can be seen immediately, given by the second term in Eq. (1.16).

V (z) = V+0
�

e− jβz + Γ e jβz
�

(1.16)
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Finally, the input impedance Zin, which is located at the beginning of the transmission line in
z = −l is defined by

Zin =
V (−l)
I (−l)

=
1+ Γ e−2iβ l

1− Γ e−2iβ l
Z0

=
ZL + iZ0 tan (β L)
Z0 + iZL tan (β L)

Z0 . (1.17)

In the special situation of an open-circuited lossless line (Zin =∞ and ZL =∞), the equations
for voltage, current and input impedance, Eq. (1.13), (1.14) and (1.17), simplify to

V (z) = 2V+0 cos (βz) (1.18)

I (z) = −2i
V+0
z0

sin (βz) (1.19)

Zin = −iZ0 cot (β l) . (1.20)

Resonance occurs for a transmission line with a length equal to multiples of λ/2. V and I get
reflected at the ends of the line, experiencing a phase jump of 2π. They share the behaviour
of a standing wave, and the transmission line then represents a nλ/2-resonator (n ∈ N). Fig.
1.3a and 1.3b shows a plot of the voltage, current, and impedance distribution as a function of
the wavelength λ of such a special transmission line. The current equals zero at the ends of the
transmission line, having a number of nodes depending on the order of resonance. The voltage
reaches maxima at the nodes whereas the impedance goes to infinity.

0.0 0.2 0.4 0.6 0.8 1.0
l (λ)

−1

0

1

V (l )/(2V +
0 )

I (l )Z0/(−2iV +
0 )

(a)

0.0 0.2 0.4 0.6 0.8 1.0
l (λ)

−2.5

0.0

2.5

Z
in
(l)
/(Z

0)

(b)

Figure 1.3: (a) Voltage (solid) and current (dotted) distribution in a terminated transmission
line compared to the wavelengthλ. Voltage and current are reflected at the ends, experiencing
a phase jump of 2π and having nodes depending on the mode number. (b) The impedance
goes to infinity where the current equals zero according to Zin∝ cot (β l).
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1.3 Waveguides

A waveguide, having the capability to transmit electromagnetic waves with very low-loss and han-
dling high powers, is the special case of a 3D transmission line. Waveguides with two conductors,
e.g. coaxial cables can guide transverse electromagnetic (TEM) waves which are characterized by
the lack of a field component in propagation (longitudinal) direction. Contrary to this, transverse
electric (TE) and transverse magnetic (TM) waves have either magnetic or electric field compo-
nents in the longitudinal direction.
This section starts with a general solution of Maxwell’s equation for wave propagation in waveg-
uides and discusses the solution for the special case of a rectangular one as well.

1.3.1 General Solution of Maxwell’s equation

x

y

z

(a)

x

y

z

(b)

Figure 1.4: (a) Arbitrary shaped two-conductor and (b) single-conductor waveguide.

For an arbitrary, z-axis symmetric waveguide consisting of a single or two conductors presented in
Fig. 1.4a and 1.4b the electric and magnetic fields have the form

E (x , y, z) = [e (x , y) + ez (z) ẑ] e
− jβz (1.21)

H (x , y, z) = [h (x , y) + hz (z) ẑ] e
− jβz , (1.22)

where ē (x , y) and h̄ (x , y) are the transverse field components and ez and hz the longitudinal
ones, respectively. Here, it is assumed that the waves are harmonic in time and propagating in
z-direction without losses, so the propagation constant equals β (Eq. (1.5)).
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When assuming there are no sources in the waveguide, Faraday’s induction law and Ampere’s
current law reduce to [27]

∇× E= −iωµ0H (1.23)
∇×H= iωε0E . (1.24)

As the waves only propagate in the z-direction, one obtains for the x-component

Hx = i
1
k2

c

�

ωε
∂ Ez

∂ y
− β

∂ Hz

∂ x

�

(1.25)

Ex = −i
1
k2

c

�

β
∂ Ez

∂ x
+ωµ

∂ Hz

∂ x

�

(1.26)

and a similar expression for the component in the y-direction. The cutoff wavenumber kc is defined
as [27]

k2
c = k2 − β2 (1.27)

and k =ωpµε= 2π/λ is the wave number. The meaning of the cutoff wavenumber will become
more clear in the next section.

1.3.2 TE Modes in a Rectangular Waveguide

Since a rectangular waveguide consists of one conductor, only TE and TM modes can propagate.
In the case of TE waves, there is no electric field component in the propagation direction (Ez = 0).
To solve the differential equations (1.25) and (1.26), one has to find a solution for Hz by solving the
Helmholtz wave equation at first. As the wave only propagates in the z-direction,
Hz (x , y, z) = hz (x , y) e−iβz , it reduces to

�

∂ 2

∂ x2
+
∂ 2

∂ y2
+ k2

c

�

hz = 0 . (1.28)

Separating the variables, hz (x , y) = X (x)Y (y), the reduced Helmholtz equation leads to

1
X

d2X
d x2

+
1
Y

d2Y
d y2

+ k2
c = 0 (1.29)

which has the general solution

hz (x , y) = (Acos (kx x) + B sin (kx x))
�

C cos
�

ky y
�

+ D sin
�

ky y
��

. (1.30)
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A solution for the constants A, B, C and D is found when using Eq. (1.25) and respecting the
boundary condition that the electric field has to be zero at the waveguide walls. Finally, one
obtains

Hz (x , y) = Amn cos
�mπ

a
x
�

cos
�nπ

b
y
�

e−iβz . (1.31)

Here, Amn represents an arbitrary amplitude constant composed of the remaining constants A and
C, and m and n correspond to the mode order in x- and y-direction. With Eq. (1.31) and (1.26),
an expression for the transverse electric field components propagating in the z-direction can be
found:

Ex = i
ωµnπ

k2
c b

Amn cos
�mπ

a
x
�

sin
�nπ

b
y
�

e−iβz (1.32)

Ey = −i
ωµmπ

k2
c b

Amn sin
�mπ

a
x
�

cos
�nπ

b
y
�

e−iβz (1.33)

and similar expressions for the magnetic field components. The propagation constant β is given
by

β =
q

k2 − k2
c =

√

√

k2 −
�mπ

a

�2
−
�nπ

b

�2
. (1.34)

One can see that only modes with

k > kc =

√

√
�mπ

a

�2
−
�nπ

b

�2
(1.35)

can propagate as β stays real for this condition. For other modes, β is imaginary and the wave will
decrease exponentially in the waveguide. The corresponding cutoff frequency fcmn

is

fcmn
=

kc

2π
p
µε
=

1
2π
p
µε

√

√
�mπ

a

�2
−
�nπ

b

�2
. (1.36)

The lowest cutoff frequency for a rectangular waveguide with a > b, as shown in fig. 1.5, is obtained
for the TE10 mode: [27]

fc10
=

1
2a
p
µε

. (1.37)

Finally, an expression for the wave impedance is found in

ZTE =
Ex

H y
=
βη

k
, (1.38)

where η=
p

µ/ε is the intrinsic free space impedance.
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The power flow of the fundamental TE10 mode through the waveguide can be given using the
expression for the electric and magnetic field components derived in Eq. (1.32) and (1.33):

P10 =
1
2

Re
�

∫ a

x=0

∫ b

y=0

E×H?d yd x

�

(1.39)

=
1
2

Re
�

∫ a

x=0

∫ b

y=0

Ey H?x d yd x

�

=
ωµa2

2π2
Re (β) |A10|2

∫ a

x=0

∫ b

y=0

sin2
�πx

a

�

d yd x

=
ωµa3 b

4π
|A10|2Re (β) .

1.3.3 TM Modes in a Rectangular Waveguide

A solution for the electric and magnetic field components in the xy-plane for the transverse
magnetic modes can be found analogously as done for the TE modes with respecting Hz = 0. For
this, a solution for Ez (x , y, z) has to be found at first, again by solving the Helmholtz equation
(1.28). Finally and under consideration of the boundary conditions that Ez has to be zero at the
waveguide walls, one obtains for the electric field components

Ex = −i
βmπ
k2

c a
Bmn cos

�mπ
a

x
�

sin
�nπ

b
y
�

e−iβz (1.40)

Ey = −i
βnπ
k2

c b
Amn sin

�mπ
a

x
�

cos
�nπ

b
y
�

e−iβz (1.41)

and again a similar expression for the magnetic field components. The propagation constant β
and the wave impedance ZTM stays the same as for the TE modes. However, in this case, the lowest
fundamental mode is the TE11 mode since the fields vanish for other combinations of m and n.
Fig. 1.5 shows an overview of the fundamental modes in a rectangular waveguide with a = 2b with
respect to the lowest TE10 mode.

Figure 1.5: Modes and their cutoff frequencies in a rectangular waveguide with a = 2b, com-
pared to the fundamental mode cutoff TE10. From D. Zöpfl [28].
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1.3.4 Equivalence of Current and Voltage

Determining voltage or current at microwave frequencies is difficult, especially for the single-
conductor waveguide used in this thesis. For a two-conductor transmission line, e.g. a coaxial
cable or a microstrip line, two ports exist such that the current can be determined using Ampere’s
law as the result does not depend on the integration path. The voltage can be calculated via the
relation between current, voltage and impedance, Eq. (1.11). However, in the single-conductor
case, e.g. the rectangular waveguide, current and voltage are spatially dependent [29] as illustrated
in Fig. 1.6.

x

y

0 a

b
𝐸(𝑥, 𝑦)

Figure 1.6: Shape of the electric field: fundamental TE10 mode in a rectangular waveguide
with a = 2b. Adapted from D. Pozar [27].

In the following, a formulation of equivalent voltage and current will be given assuming the
following considerations: [27]

1. Current and voltage are defined only for one certain waveguide mode and are proportional
to the transverse magnetic and electric field.

2. Their product should give the power present to the conductor.

3. The relation defining the impedance, Z = V/I (Eq. (1.11)), has to be respected.

With these considerations, the fundamental Eq. (1.8) and (1.9) for voltage and current can be
modified to:

Et (x , y, z) =
e (x , y)

Cv

�

V+e−iβz + V−eiβz
�

(1.42)

Ht (x , y, z) =
h (x , y)

Ci

�

I+e−iβz + I−eiβz
�

. (1.43)



13

Here, e and h are the transverse field variations of the mode that are sinusoidal shaped for the
fundamental mode in the rectangular waveguide,

e (x , y) = sin
�πx

a

�

ŷ (1.44)

h (x , y) =
ẑ × e (x , y)

Zw
. (1.45)

Here, Zw is the wave impedance. The constants Cv and Ci can be determined by the conditions for
power and impedance mentioned above.

1.3.5 Microstrip Line

This section introduces the architecture of a microstrip line since the system of the resonators
sitting on a substrate that is placed in a waveguide corresponds to this geometry. Further, the
influence on the resonators eigenfrequency of the microstrip intrinsic parameters that are width,
length and impedance, will be summarized. This knowledge is necessary to understand the
development of the resonator designs discussed in chapter 4.1.

𝜖𝑟

𝑊

𝑑

Ground plate

Figure 1.7: Microstrip line geometry: A microstrip (black) lies on top of a dielectric (light grey)
that sits on a ground plate (dark grey). From the other side, the microstrip is covered by air.

Fig. 1.7 shows a schematic drawing of the microstrip line geometry: The system is composed of
a wire (the microstrip) that is located above a ground plate and is surrounded by a dielectric on
one side and air on the other. In this thesis, the dielectric corresponds to the substrate that is in
contact with the ground plate, the waveguide.

Even though this system contains two conductors like a coaxial cable, the microstrip line cannot
guide TEM waves because the dielectric contributes a phase difference between the field con-
tained in the dielectric and the fraction propagating in air [27]. Similar to other resonators, the
fundamental eigenfrequency fr of the microstrip resonator is given by its total inductance L and
capacitance C and is linked to the effective impedance via Z =

p

L/C :

fr =
1
p

LC
∝ Z . (1.46)
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Usually, the dielectric is very thin, d � λ, and the system can be treated like in the static case.
From curve-fit approximations, a solution for the phase velocity vp, propagation constant β and
characteristic impedance Z0 can be found when introducing an effective dielectric constant εe

given by [27]

εe =
εr + 1

2
+
εr − 1

2
1

p

1+ 12d/W
. (1.47)

This constant represents the average dielectric surrounding the whole microstrip. It follows that
vp = c/

p
εe and β = k

p
εe. For the case of this thesis, W ≤ d, the characteristic impedance is

given by [27]

Z0 =
60
p
εe

ln
�

8d
W
+

W
4d

�

. (1.48)

For W � d, one can approximate the logarithm

Z0 =
60
p
εe

ln (8d)− ln (W ) (1.49)

and see that Z0 decreases with increasing length W . So does the eigenfrequency, too, according to
Eq. (1.46) since the characteristic impedance contributes to the total impedance, Z .

Another, more illustrative description of how the geometry of the resonator influences its eigen-
frequency can be given when considering the microstrip resonator as a simple wire as it is: By
increasing the length of the wire, its total inductance L increases similar to coils serially intercon-
nected. When increasing the width, the inductance decreases since the added conductor material
acts as a parallel circuit of inductances. Therefore, the eigenfrequency of the microstrip resonator
rises proportionally to its width while decreasing with its length. Moreover, the microstrip material
itself, the granular aluminium, contributes to a high intrinsic impedance. This allows the realiza-
tion of relative short resonators with high eigenfrequencies compared to conventional resonators
made of pure aluminium or niobium [28].
Finally, one can conclude that length and width are the dominant properties in the determination
of the microstrip resonators frequency.
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Chapter 2
Resonator in an Environment

This chapter will give a closer look at the theory of measurement and the measurement config-
uration. At first, the scattering parameters are discussed which are fundamental for describing
the quality of the coupling between resonator and waveguide. A general discussion on the quality
factor is given in the section afterwards. Before the interaction between resonator and waveguide
is pointed out on a classical basis, the losses are discussed.
Following, an introduction in the measurement configuration that is the notch configuration is
given. At the end of this chapter, the circle fit is presented, a fit routine that has been implemented
in the superconducting circuits group at the IQOQI Innsbruck. This routine is used to extract the
parameters – Q factors and resonance frequency – from the measurement.
For elaborating this chapter, the theses by M.J. Reagor [30], A. Palacios-Laloy [31] and D. Zöpfl [28]
have been used. More details can be found in their works.

2.1 Scattering Parameters

To obtain the transmitted or reflected power in a circuit network, for instance, a resonator coupled
to a waveguide, one can compare the voltage amplitude and phase at the specific ports of the
circuit. The scattering matrix S contains this information and will be introduced next. Furthermore,
S can be transferred into the impedance matrix Z and therefore offers a full description of the
circuit [27]. For an arbitrary circuit represented as a network with n ports the scattering matrix, or
S-matrix, is defined as













V−1
V−2

...
V−N













=













S11 S12 · · · S1N

S21 S22 · · · S2N
... ... . . . ...

SN1 SN2 · · · SNN













=













V+1
V+2

...
V+N













. (2.1)
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For a single entry, one reads

Si j =
V−i
V+j

�

�

�

�

V+k =0 for k 6= j
. (2.2)

The parameter Si j is obtained when port j is driven with a specific voltage V+j and the output voltage
V−i at port i is measured. To determine the bare parameter, every other port except port j should
be terminated in a matched load to avoid reflections. Based on this method, the transmission
coefficient is obtained while the reflection coefficient Sii is measured when every port except port
i is terminated.
Note that in a network without losses, the scattering matrix becomes purely imaginary and unitary.
Furthermore, in a reciprocal network that is the usual case, the S-matrix is symmetric. This means,
for a two-port reciprocal network as it is the case in this thesis, the knowledge of S11 and S21 are
sufficient to offer a full description of the network.

2.2 Quality Factor

Before presenting the measurement configuration, the meaning of the quality factor Q will be
discussed. In principle, the Q factor indicates how long a photon stays in a resonator. Large Q
factors indicates a long photon lifetime. For a resonant circuit, the quality factor is generally
defined as

Q = 2π
average energy stored in resonator

energy dissipated per cycle =
ωr

2γ
, (2.3)

where γ is the damping of the system that corresponds to the bandwidth δω = |ω2 −ω2| = 2γ

shown in Fig. 2.1. The resonance frequency isωr . Moreover, the bandwidth equals the coupling
rate κ= 2γ between the circuit and its environment. The Q factor itself is a dimensionless number
which provides information about the width of the resonance and the energy loss in the circuit. If
a full circuit model is available, the quality factor can be calculated by [30]

Q =
1

Z0Re (Y )

�

�

�

�

ω=ωr

=ωrRC , (2.4)

where Z0 is the characteristic impedance of the resonator and Y = 1/Z is the admittance. R and C

depict the resistance and capacitance of the resonator. The total or load quality factor, QL , consists
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of two loss channels, namely the internal and external (or coupling) ones, Q i and Qc :

1
Q l
=

1
QRe

c
+

1
Q i

. (2.5)

It should be noted that only the real part ofQc is regarded since it is a complex number and describes
besides the coupling losses also the phase shift caused by a possible impedance mismatch in the
circuit [30].

1
QRe

c
= Re

�

1
Qc

�

=
1
|Qc|

eiφ0 . (2.6)

ωr

ωr

δω = ω2 −ω13 dB

S 2
1
(d
B
)

ω (rad ∙ s−1)ω1ω2

Figure 2.1: Transmission spectrum of a resonator at its resonanceωr . The distance between
the maximum and 0 dB equals the internal loss. The bandwidth δω=ω2 −ω1 is read at full
width at half maximum at approximately 3 dB and equals two times the damping γ. Adapted
from S. Meier [32].

The internal channel Q i covers dissipative losses arising from intrinsic variables of the system,
such as material impurities. The external one is determined by coupling losses that enable control
over the circuit from the outside. That means, Q i cannot be changed while Qc can be adjusted, e.g.
by the geometry of the setup [30].

By the ratio of Q i to Qc , one distinguishes between three different coupling regimes:
If Qc � Q i , the majority of losses stem from internal nature. The system then is called "under-
coupled". In the opposite case, Qc � Q i , the losses are mainly paid off the outside, i.e. the
transmission line. In the case, both channels are served equally, the system is critically coupled
(Qc ≈Q i). In general, the resonators lifetime is limited by the lower quality factor.
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Table 2.1: Survey of the different coupling regimes

Qc ≈Q i critically coupled
Qc �Q i under-coupled
Qc �Q i over-coupled

2.3 Loss Mechanisms

In total, a variety of loss mechanisms contribute to the two loss channels, the internal and external
one. The total power dissipated in the circuit is expressed by

Γtot =
∑

n

Γn , (2.7)

where one specific mechanism consumes power at a rate Γn. This leads to the definition

1
Q
=
∑

n

1
Qn
=

1
ωEtot

∑

n

Γn , (2.8)

where Etot is the total energy stored and ω = 2π f . It should be mentioned that Qn is the net
result of all losses. That means Qn will differ for different resonator geometries even if all material
properties are the same.

A loss mechanism is described by its lossiness and the sensitivity to the mechanism [30]. The
quantity that contains information about the sensitivity to this mechanism is the participation
ratio which is defined as

pn =
energy stored in the mechanism

total energy stored . (2.9)

By the definition of the ratio between the energy stored in a specific (lossy) volume compared to
the energy stored in the total volume, the participation ratio is sensitive to the geometrical layout
of the circuit. However, the specific lossiness of the mechanism expressed by the loss tangent
tan (δn) depends on the used materials and their intrinsic properties. Finally, it follows

Qn =
1

pn tan (δn)
=

qn

pn
. (2.10)

If Qn = qn, so pn is close to unity, the system is particularly sensitive to this mechanism.
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2.3.1 External Loss

LC

Ccouple

R
ex
t

(a)

LC

Y
ex
t

Ccouple

(b)

Figure 2.2: (a) Equivalent circuit of a resonator coupled via a capacitance Ccouple to a load
Rext. (b) Model of the circuit with a parallel impedance to simplify the problem and to find an
expression for Qc . Adapted from M. Reagor [30].

For readout purpose, every resonator is coupled to a certain port, sharing the same loss mechanism.
Fig. 2.2 shows a LC circuit capacitively coupled to an external load via a capacitance Ccouple. To
derive an expression for Qc , first the admittance Yext needs to be found:

Yext =
1

R+ 1
iωCcouple

. (2.11)

This expression simplifies in the case of weak coupling,ωCcouple� R, to

Yext = iωCcouple +ω
2C2

coupleRext . (2.12)

The total admittance of the circuit with total inductance L and capacitance C is then given by

Ytot =
1

iωL
+ iωC + iωCcouple +ω

2Rex t (2.13)

=
1

iωL
+ iωCtot +ω

2Rext .

With the characteristic impedance Z0 =
p

L/C and using Eq. (2.4), the coupling quality factor can
be expressed by

Qc =
1

ω2
r C2

coupleRextZ0
. (2.14)

2.3.2 Internal Loss

Multiple mechanisms contribute to the internal loss channel. First, there are losses relying on the
electric and magnetic energy that is stored in the material and, therefore, can be characterized by
the participation ratio. Since the electric and magnetic fields transmit these energies, these losses
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are mainly of dielectric and conductive nature. In the following, the mechanisms behind them
will be described briefly. More details can be found in the PhD thesis of J. Reagor [30].

Dielectric losses occur since the electric field exists in dielectrics. That means, in the substrate,
holding the resonator, and in oxide layers, for instance, the substrate surface and the surface
of the waveguide. Compared to other circuit structures, e.g. planar geometries, the employed
3D waveguide geometry profits from the advantage that the electric field vanishes on its walls,
as discussed in chapter 1.3. Therefore, it supports a higher Q i because less or no energy can be
stored on the waveguide’s surfaces. Additionally, the participation ratio for the dielectric loss scales
inversely proportional with the electrode distance. So, the large distance of the waveguide’s walls
compared to a planar device also provides a low participation ratio, supporting a higher Q i .

Losses caused by magnetic fields appear as conductive losses since the magnetic field induces
currents in the conductive material. Because the resonator will be in the superconducting state
while measuring, conductive losses play a minor role and instead dominate circuits made from
normal conducting metal. However, at finite temperatures, due to non-equilibrium quasiparti-
cles or vortices, the resonator still can have a finite conductivity for which reason it is hard to
exclude magnetic losses. Based on a two-fluid model, the influence on the internal Q factor can
be approximated by [33]

1

Qne ,ns
i

=
A
T

exp
�

−
∆

kB T

�

+
1

Qother
. (2.15)

Based on this, a decrease of Q i with increasing temperature is expected. The energy gap of the
superconductor is∆, and A is a constant determined by fitting. The Boltzmann term accounts
for quasiparticle generation and the additional offset 1/Qother respects other loss mechanisms
without temperature dependency. Eq. (2.15) is valid for bulk superconductors up to T < Tc/2

[32].

Further, losses to two-level systems (TLS) contribute to the internal loss mechanism [34]. These
are losses due to saturation of impurities that act as dipoles. The impurities can be found in the
substrate and on surfaces. The contributing loss can be approximated by

1

QTLS
i

= FδTLS tanh
�

hfr(T )
2kB T

�

+
1

Qother
. (2.16)

The expression δTLS denotes the loss tangent towards TLS and F is the filling factor of the TLS
containing medium. Based on this, one expects an increase of Q i for large input powers because
the two-level systems get saturated. High temperatures lead to the same effect since they also
support the saturation. In contrast, low power inputs lead to a maximal loss and Q i converges to a
finite value.
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2.4 Waveguide Resonator Interaction

This section provides a closer look at the interaction between a resonator and its environment
based on a classical consideration. An expression for Qc in dependence of the resonator position
relative to the waveguide will be derived. The model has been originally developed by A. Sharafiev.
Details can be found in the handbook by Tai [35].

ϑ

𝑬

𝑏

𝑎𝑥1

𝑦1

Figure 2.3: Waveguide resonator interaction: A resonator (black) is located in (x1, y1) and
tilted by an angle ϑ in a waveguide. The substrate is shown in light grey.

The resonator is assumed to be an elongated dipole with length |l| located in the centre of the
waveguide that has width a and height b, see Fig. 2.3. The electromagnetic field is propagating
through the waveguide with frequencyω and causes the charge q in the resonator to oscillate. The
total charge is given by

q =

∫ π/ω

0

S · |J| sin(ωt)d t =
2
ω

S|J| . (2.17)

Here, S equals the resonator cross section and J is the current density vector that is assumed to
be

J(r) =
�

jx x̂+ jy ŷ+ jz ẑ
�

·δ(r− r′) , (2.18)

where δ(r− r′) denotes the delta-distribution and jx , jy and jz correspond to the components
of J. The direction vectors are x̂, ŷ and ẑ. The dipole moment is given by d = q · l. To satisfy the
dimensional differences between the one-dimensional dipole and its cross section S, the integral
over the delta distributionδ(r−r′) is assumed to be 1/V whereas V = S · |l| is the resonator volume.
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Respecting the phase difference between d and J of π/2, it follows

d= q · l= i
2
ωV

�

jx x̂+ jy ŷ+ jz ẑ
�

. (2.19)

According to Eq. (2.3), the coupling Q factor is defined by

Qc =
W
τ · P10

, (2.20)

where W is the total energy stored in the resonator, τ=ω/2π is the oscillation period and P10 is
the power flow through the waveguide of the fundamental TE10 mode. In the following derivation,
only this mode will be considered (m= 1, n= 0). The resonator modelled as a dipole provides a
total energy equal to the Coulomb energy

W =
q2

4πε0l
=
|d|2

4πε0l3
. (2.21)

The power flow P10 is calculated according to Eq. (1.40):

P10 = 2
ωµa3 b

4π
|A10|2Re{β} . (2.22)

Here, β =
Æ

k2
c − k2 is the propagation constant of the field. The additional factor 2 respects that

the resonator mode decays in both directions of the waveguide. An expression for the amplitude
A10 can be found when calculating the electric field using dyadic analysis and the Green’s function
formalism:

E(r) = iωµ

∫

V ′
Ge1(r, r′) · J(r)dV ′ . (2.23)

The vector r′ points to the location of the dipole charge. The function Ge1(r, r′) corresponds to the
dyadic Green’s function for the electric field of the first kind and is given by

Ge1(r, r′) =
1
k2

zzδ(r− r′) +
i

ab

∑

m,n

2−δ0

k2
cβ

�

Memn(±β) ·M′emn(∓β)
�

+Nomn(±β) ·N′omn(∓β) , z ≶ z′ . (2.24)

The functions Nomn(β) reproduce TM modes and, therefore, can be neglected while Memn(β)

correspond to TE modes. The indices ’o’ and ’e’ identify odd and even, respectively. More details
on these can be found in the book of Chen-Cho Tai [35]. For arbitrary m, n, Memn(β) is given by

Memn(β) =
�

−ky cos(kx x) sin(ky y)x̂+ kx sin(kx x) cos(ky y) ŷ
�

· eiβz . (2.25)

When assuming the current density vector to be only defined in the x- and y-direction, Memn(β)
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reduces for the TE10 mode to

Me10(β) = sin
�πx

a

��π

a

�

eiβz ŷ (2.26)

using the definitions kx = π/a and ky = π/b. The expression for the Green’s function results then
in

Ge1(r, r′) =
i

ab
1

k2
cβ

�π

a

�2
sin
�πx

a

�

sin
�πx1

a

�

exp (iβz) ŷŷ . (2.27)

To obtain the final expression for the electric field, the integral in Eq. (2.23) has to be solved. Note
that J is assumed to be J= jyδ(r− r′). The δ-distribution can be written as
δ(r− r′) = δ(x − x ′)δ(y − y ′)δ(z − z′). Finally, it is

E(r) = iωµ
i

ab
1

k2
cβ

�π

a

�2
sin
�πx

a

�

sin
�πx1

a

�

eiβ(z−z1) jy ŷ . (2.28)

An expression for the coefficient jy can be found using the above definition for the resonator
dipole moment, Eq. (2.19). Dividing the dipole moment in its x- and y-proportions,
d= |d| cos(ϑ) x̂ + |d| sin(ϑ) ŷ , jy is obtained to be:

jy = −
iω
2
|d| sin(ϑ) . (2.29)

The final expression for the electric field yields

E(r) = −i
ω2µ

2ab
|d|
k2

cβ

�π

a

�2
sin(ϑ) sin

�πx
a

�

sin
�πx1

a

�

eiβz ŷ . (2.30)

Comparing this expression with the electric field y-component derived in Eq. (1.33), the amplitude
of the field is given by

A10 = −
ωπ

2a2 b
|d|
k2

cβ

�π

a

�2
sin(ϑ) sin

�πx1

a

�

. (2.31)
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Finally, the coupling Q factor can be defined using the above expressions and the definition in Eq.
(2.20).

Qc =
a5k4

cβ b

π6l3ω2µε

1

sin2(ϑ) sin2
�πx1

a

�

=
ab

l3π2ωZ10(ω)ε
1

sin2(ϑ) sin2
�πx1

a

� (2.32)

Here, the wave impedance Z10(ω) =ωµ/β for the fundamental mode has been used according to
Eq. (1.38) and kc = π/a. One can see that Qc increases to infinity when ϑ reaches multiples of nπ,
n ∈ N, according to the proportionality to sin−2(ϑ).
Concluding, the coupling between resonator and waveguide can be increased by tilting the res-
onator horizontally.

2.5 Measurement Configuration

Z1

Z
3

Z2

1 2

(a)

Rext

RLC

Ccouple

(b)

Figure 2.4: Equivalent circuit representation of a resonator coupled to a transmission line in
notch configuration: (a) For simplification the circuit is presented with general impedances Z1,
Z2, and Z3. (b) shows the same circuit with specific components. Adapted from D. Zöpfl.[28]

As already mentioned at the beginning of this chapter, the resonators in this thesis are measured
in notch configuration. So, the S21 parameter is of interest. In a two-port reciprocal network, S21

is obtained when driving a voltage at port 2 and receiving the signal at port 1. Figure 2.4a shows
the equivalent circuit of this configuration in generality using arbitrary impedances Z1, Z2 and
Z3. In Fig. 2.4b, the same circuit is shown when considering specific elements: The resonator is
modelled as a LCR oscillator with losses R and the transmission line that means the waveguide,
with an external resistance Rext. The coupling capacitance Ccouple expresses the capacitive coupling
between resonator and waveguide. With these assumptions, an expression for the S21 coefficient
can be given in dependency of the total and external Q factors and the resonance frequency fr

[31].
Since the impedances Z1 and Z2 do not have to be equal, there is an impedance mismatch causing
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a phase shift φ0 that leads to a shifted resonance frequency: f ′r = fr + δ f . The transmission
coefficient then depends on the shifted frequency and the load and coupling Q factors:

S21 = 1−
Q l/Qc

1+ 2iQ l
f − f ′0

f ′0

. (2.33)

Fig. 2.5 shows the S parameter of an ideal resonator in notch configuration in the complex plane
and the coupling of different Qc/Q i ratios.

ϕ0

Im(S21)

Re(S21)

10.50

Ql/Qc Ql/Qc

Ql/Qc

d

𝑓 = 𝑓𝑟

𝑓 = ∞

Figure 2.5: Coupling regimes in notch configuration: The diameter of the circle increases
when the system is over-coupled and decreases when under-coupled visualized by the ratio
of Q l/Qc . When critically coupled, the circle crosses the real axis at 0.5. Adapted from D. Zöpfl
[28].

For off-resonant probing frequencies, | f − fr | � 0, the S21 parameter goes to unity, marked by
a red dot in Fig. 2.5. The resonant point, f = fr , lies on the opposite due to the phase shift of
π and is additionally shifted by the impedance mismatch φ0, whereas S21 → 1−Q l/|Qc|. The
circle diameter and its intersection with the real axis give information about the coupling of the
resonator: The axis section between the crossing with the circle and 1 equals the ratio of Q l/Qc . The
remaining distance to the origin corresponds to Q l/Q i . The resonator is critically coupled when the
circle crosses the axis at 0.5. In this case, coupling losses equal the internal losses (Qc ≈Q i). The
diameter increases when the system is over-coupled (Q i �Qc) and decreases when under-coupled
(Qc �Q i).

2.6 Circle Fit Routine

The circle fit routine is applied to extract the Q factors and exact resonance frequency from
the measurement. The superconducting quantum circuits group at the IQOQI Innsbruck has
developed this fit routine using python. This routine fits the measured S parameters by dividing
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the whole process in subroutines that are successively passed. In the following, the effects of the
measurement environment to a resonator are pointed out. This section is based on the master
thesis by D. Zöpfl [28] where more detailed information can be found.

Environmental effects can occur in the form of an additional attenuation a, a phase shift α or a
cable delay τ. This modifies Eq. (2.33) to

S′21 =
�

aeiαe−2πi f τ
�



1−
Q l/Qc

1+ 2iQ l
f − f ′r

f ′r



 . (2.34)

The added term in front respects the attenuation and phase shift by aeiα and the cable delay by
e−2πi f τ. Since the path is the same the signal has to take with or without a cable delay, S21 increases
linearly in frequency. The effect of the delay is roughly sketched in Fig. 2.6a. The additional phase
shift leads to a rotation of the measured S parameter in the complex plane while the diameter of
the circle scales with the attenuation. This is shown in Fig. 2.6b after the cable delay has been
removed.

Before the actual fit routine is applied, the linear background of the transmission line amplitude is
subtracted. This enhances the stability of the fit. Fig. 2.6a to Fig. 2.6d present a survey on how the
environmental effects to the S parameter are subsequently corrected.
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Im(S21)Im(S21)
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𝜏 ∙ 𝑓
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1

(a)

Re(S21)

1

Im(S21)
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(b)

Re(S21)
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Re(S21)

a

α

Im′(S21)

Re′(S21)

θ0

(c)

Re(S21)

1

Im(S21)

Re(S21)ϕ0 f = ∞

f = fr
d

(d)

Figure 2.6: Steps of the circle fit routine: The influence of the environment is respected in
four steps subsequently: (a) Effects of the cable delay, (b) subtraction of the delay and fitting
of the circle, (c) circle normalisation, and (d) circle with removed environmental effects. More
details in the text. Figure adapted from D. Zöpfl [28].
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Subtraction of the Cable delay

The effects of the cable delay appear as a linear slope to the phase. This is shown exem-
plarily in Fig. 2.7. After the delay has been corrected, a circle can be fitted to the data. For this,
an algebraic fit is employed that does need no initial parameters and reduces the problem to an
eigenvalue problem. From the non-normalized circle, the diameter d ′ and centre-point can be
extracted.

θ

f

θ

f

fr

f

fr

Figure 2.7: Subtracting the cable delay: The delay adds a linear slope to the phase (left)
that is corrected using a linear fit (right). Expect for the resonance at f = fr , no frequency
dependency is expected. Adapted from D. Zöpfl [28].

Determining the off-resonant point

The off-resonant point is extracted by transforming the coordinate system in the way the
origin of the complex plane lies in the centre of the circle, see Fig. 2.6c. By fitting Eq. (2.35), the
parameters fr , Q l and θ0 are obtained where tan(θ0) is the resonant point.

θ ( f ) = −θ0 + 2 arctan
�

2Q l

�

1−
f
fr

��

(2.35)

Since the off-resonant point lies opposite to the resonant point, the argument of the off-resonant
point is θ∞ = θ0+π. Knowing the absolute position of θ∞ and the shift of the coordinate system,
the attenuation a and phase shift α can be determined since the circle diameter is known from the
previous step, d ′ = 2a · r. The frequency fr and Q l obtained in this step are not used as results.
This is because the fit according to Eq. (2.35) is very sensitive to noise, so the fitted values for fr

and Q l are not robust. Both parameters get extracted in the fourth step of the routine.

Normalization

Because the circle has already been fitted in the first step, it only has to be normalized.
This is done by compensating the phase shift α and dividing the radius by a. Finally, the phase
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shift caused by the impedance mismatch is given by

sin (φ0) =
yc

r
. (2.36)

Here, yc equals the y-coordinate of the centre-point.

DeterminingQ l and fr

As explained in the second step, Q l and fr can be obtained by fitting Eq. (2.35) to the
phase. However, the hereby extracted values for Q l and fr are not robust. Therefore, Q l and fr are
extracted by a fit to the magnitude of the S parameter because it is more stable and provides the
same information.

DeterminingQc andQ i

At this point, every fitted parameter is known. The coupling and internal Q factors then
can be determined using to Eq. (2.5) whereas Qc is linked via the real part to Q l by

QRe
c =

Q l

d · cos (φ0)
. (2.37)

The circle fit routine is now complete and all values describing the measured data are known.
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Chapter 3
Theory on Granular Aluminium

Granular aluminium provides interesting properties that are desirable for designing superconduct-
ing quantum circuits. It features not only an enhanced critical field and critical temperature but
also a high intrinsic impedance that relies on its grain-like structure. After a brief introduction to
superconductivity, the second section of this chapter discusses the benefits of a high-impedance
circuit. An impedance larger than the resistance quantum contributes to low charge fluctuations
which are advantageous to realize charge qubits. The last section of this chapter presents a model
of the electrodynamics in granular aluminium.

3.1 General on Superconductivity

Superconductivity is a macroscopic quantum state certain materials reach under specific circum-
stances. The state is described by a wave function with phase χ (r, t) that is coherent on a length
χ0 and an amplitude given by the electron density Ψ0 (r, t) =

p

ns (r, t):

Ψ (r, t) = Ψ0 (r, t) eiχ(r,t) . (3.1)

In general, these circumstances are defined by a certain temperature Tc and external magnetic
fields that do not exceed a certain strength Bc . Then, the electrons in the material condense into
the superconducting state, showing several unique properties [36]: The electrical resistance of the
material almost vanishes while the conductivity reaches infinity. The electrons couple weakly via
a phonon to a bosonic state, forming a so-called Cooper pair [37]. In an external magnetic field,
the so-called supercurrent Js, given by Eq. (3.2) arises in the material, shielding every magnetic
field below certain strengths and leading to perfect diamagnetism (Meissner effect).

Js(r, t) = 2eRe
�

Ψ?
�

ħh
ms i
∇−

2e
ms

A(r, t)
�

Ψ

�

=
2ensħh

ms

�

∇χ (r, t)−
2π
Φ0

A(r, t)
�

. (3.2)
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In Eq. (3.2), 2e is the charge of a Cooper pair with mass ms, and Φ0 = h/2e denotes the flux
quantum. The vector potential is B(r, t) = ∇× A(r, t). However, if the external magnetic field
exceeds Bc , the superconducting state collapses. Depending on the collapse mechanism, one
distinguishes between two types of superconductors (SC) [38]: Type I SCs collapse at a magnetic
field strength Bc while type II SCs allow the field to penetrate the material in the form of flux
hoses until the state collapses at a value Bc,2. In general, Bc < Bc,2, for which reason type II
superconductors endure higher fields. Granular aluminium can be assigned to the type II
superconductors with critical field strengths of up to 3.6 T [18].

A Pseudogap Superconductor

According to BCS theory (named after J. Bardeen, L. N. Cooper, and J. R. Schrieffer) [36],
in a superconducting condensate, all states up to an energy ∆ = 1.764kB Tc below the Fermi
energy are occupied. The states between the superconducting gap 2∆ are suppressed, shown in
Fig. 3.1a.

EF
2𝐸𝑔

E

DOSDOS

2∆𝑐

(a)
(b)

Figure 3.1: (a) Density of states (DOS) of a normal superconductor (black curve) and a pseu-
dogap one (red curve): In the normal SC, all states are occupied up to the Fermi-energy EF
(shaded area) and no states exist in between the superconducting gap 2∆ whereas theses
states get observed for a pseudogap SC. (b) Two-step transition to superconductivity: Pseudo-
gap SCs feature a high Tc , which origin relies on the preformation of Cooper pairs at T ? > Tc ,
leading to the observation of two energy gaps, Eg and∆c . Figure taken from Dubouchet et al.
[39]

However, this theory cannot explain superconductivity in disordered SCs like granular aluminium
consistently [40]. In SCs of this type, electrons pair up to preformatted Cooper pairs already at a
temperature T ? > Tc , leading to a second energy gap∆p (pairing gap) that can be experimentally
observed [39]. This energy gap is also called ’pseudogap’ because it is not isotropically distributed
in the material [41]. At Tc , the electrons of the material then condense into the phase-coherent
superconducting state with an energy gap∆c (collective gap), and the pseudogap evolves into
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a hard gap Eg . Fig. 3.1b illustrates the transition to superconductivity for such a SC. The two
energy gaps of granular aluminium have been experimentally proven by Andreev spectroscopy [39].

Josephson Effect

The existence of Cooper pairs has been experimentally proven [37] in superconductor-
insulator-superconductor structures, so-called Josephson junctions (JJ), by measuring the
I-V-curve of this structure, shown in Fig. 3.2a. A schematic drawing of a JJ is seen in Fig. 3.2b.
Since the Cooper pairs cannot exist in the non-superconducting layer, they tunnel through the
barrier, leading to a measurable current IJ with amplitude Ic (first Josephson equation):

IJ = Ic sin (ϕ) (3.3)

𝐼𝑐

𝐼

𝑉

(a)

SC I SC III

x

ΨI ΨII

(b)

Figure 3.2: (a) I-V-Curve: An external current below the critical value Ic leads to no voltage
difference. Currents above this value cause a potential difference because it breaks apart
Cooper pairs which tunnel through the junction. (b) Josephson Junction: Two superconductors
(SC I, SC II, dark grey) are contacted via an insulating layer (I, light grey). The Cooper pairs
in SC I tunnel through the barrier in SC II, leading to interference between the two wave
functions with phasesχ1 andχ2. Since the superconducting state cannot exist in the insulator,
the wave functions ΨI, ΨII decrease exponentially.

The current IJ depends on the phase difference ϕ = χ2 − χ1 between the wave functions of
the two SCs. The phase difference depends on the potential difference ∆V between the two
superconductors (second Josephson equation):

∂ ϕ

∂ t
=

2π
Φ0
∆V . (3.4)

The critical current, Ic , represents the maximal current that can flow through the junction before
Cooper pairs will break apart. For currents below this value, no voltage difference is observed.
However, a current exceeding Ic will break up a proportion of Cooper pairs tunnelling, causing a
potential difference. This mechanism leads to the observed I-V-curve shown in Fig. 3.2a.
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3.2 Kinetic Inductance

The inductance of a resonant circuit that consists of a geometrical and kinetic part, Lg and Lkin,
determines the microwave properties of the circuit. Especially, materials of high inductance like
granular aluminium are interesting for building superconducting quantum circuits because they
provide a large impedance that contributes to small charge fluctuations as will become clear in
this section.

In general, the inductance L is defined by the relation of magnetic flux and current:

Φ= L · I . (3.5)

For a superconducting two-dimensional wire, Lkin is given by [38]

Lkin =
me

nse2
N . (3.6)

Here, me is the electron mass, e the elementary charge, ns the superconducting charge carrier
density and N = l/w, the length to width ratio of the wire. According to BCS theory, the total
kinetic inductance for a superconducting wire is given by

Lkin,tot = N L�kin = N
1

1.76π
ħh

kB Tc

ρ

t
. (3.7)

Here, L�kin is the kinetic sheet inductance of the wire. The factor 1/1.76 = π/(2k) respects the
deviation of resistances below 10mK from room temperature measurements and k = 0.87 is
a correction factor [42]. By this relation, the kinetic (sheet) inductance is linked to the room
temperature resistivity ρ = Rs · t of the wire (Rs is the sheet resistance and t the thickness of the
wire). Eq. (3.7) is valid for T � Tc and superconductors with a coherence length exceeding the
mean free path, l � χ0, (local limit) which is true for grAl [17][43].

As discussed earlier, the inductance influences the impedance of a LC circuit increasingly. The
impedance again determines the flux and charge fluctuations δΦ and δq that again contribute to
the total inductive and capacitive energy of the circuit, δq/2C and δΦ/2L. The charge and flux
fluctuations are given by [16]

δq = 2e

√

√ 1
4π

Rq/Z0 (3.8)

δΦ= Φ0

√

√ 1
4π

Z0/Rq . (3.9)

The flux quantum is Φ0 = h/2e ' 2.0x1015 Wb and the resistance quantum is
Rq = h/(2e)2 ' 6.5 kΩ. Therefore, low impedance resonators with Z0 < Rq keep the flux localized
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in the inductance while high-impedance resonators with Z0 > Rq localize the charge on the
capacitor. Consequently, small charge fluctuations that are desired for building charge qubits
are only possible with high-impedance devices. Granular aluminium features such a high kinetic
inductance (Z0 > Rq) due to its structure of Josephson coupled superconducting grains: In the
superconducting state, Cooper pairs tunnel through the insulating barriers of AlOx which limits the
number of tunnelling charges. The current decreases and consequently the (kinetic) inductance
increases since the magnetic flux needs to be conserved, Eq. (3.5). The total kinetic inductance
of a film made from granular aluminium is the sum of all Josephson inductances [43]. A film
made of granular aluminium with a room temperature resistivity of 4000 µΩ cm features a critical
temperature of Tc = 2.2 K which results in a 8 × 103 higher kinetic inductance as a geometric
equivalent film made from conventional aluminium [17].

3.3 Superconductivity in Granular Aluminium

Although, granular superconductors are subject to research since the 1960s a complete model
that explains the rich properties of grAl consistently, for instance, the high Tc , Bc and large kinetic
inductance, does not exist yet [19]. Therefore, this section will only present a summary of what is
known today. The discussion is based on the work of Levy-Bertrand et al [40].

As a first approach, one can describe the material as superconducting nanograins (made from
aluminium), surrounded by insulating matter (made from aluminium oxide) and the grains being
Josephson coupled. The ratio∆/Tc gives the coupling strength. The electrons have to overcome the
Coulomb barrier of energy Ec between the grains to tunnel through the material. The coherence of
the phase through the grains is represented by the phase stiffness J . Experimentally, J is estimated
in two ways, J∆ =

ħh
4e2

π∆
Rs

and Lkin, JLk
= ħh2

4e2 Lkin
. The energy gap is∆, Lkin is the kinetic inductance

and Rs is the surface resistance. Primarily, the relation of superconducting and insulating material
influences the electronic transport, conducting and microwave properties [43][44].

Based on the room temperature resistivity ρ, one can distinguish the properties of grAl in three
regimes. The phase diagram in Fig. 3.3 summarizes the behaviour.
For small values, ρ ≤ 100 µΩ · cm, the superconducting phase is coherent through all grains. This
is also visible in the energy scales: The phase stiffness J exceeds Ec , indicating a strong phase
coherence. In this regime, the critical temperature already reaches values above the value of bulk
aluminium (Tc,Al = 1.2 K) [45]. The coupling strength is∆/Tc = 1.78kB , comparable to BCS theory
and close to the bulk value of 1.8kB, indicating a moderate coupling strength.
The maximal Tc = 2.17 K is reached in the next regime, 100 µΩ · cm≤ ρ ≤ 1000 µΩ · cm, at
ρ = 160 µΩ · cm to ρ = 220 µΩ · cm. With J lying in the order of Ec , the coherence of the phase
is still given, and the grain coupling strength is comparable to conventional bulk aluminium,
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Figure 3.3: Top panel: Phase diagram: Based on the room temperature resistivity ρ, three
regimes can be indicated: ρ ≤ 100 µΩ · cm, 100 µΩ · cm≤ ρ ≤ 1000 µΩ · cm, ρ > 104µΩ · cm.
The regimes are described by the phase stiffness J (approximated by J∆ = ħh/(4e2) · (π∆)/(Rs)
and JLk

= ħh2/(4e2 Lkin)), the Coulomb energy Ec and the energy gap ∆. The maximal Tc is
reached forρ = 220 µΩ · cm. Bottompanel: Coupling strength∆/Tc as a function of resistivity.
To the left of the maximal Tc , the coupling strength corresponds to a value comparable to BCS
theory (1.78 kB) and increases to 2.10 kB for higher resistivity. Figure taken from Levy-Bertrand
et al [40].

∆/Tc = 1.8kB.
For ρ > 104 µΩ · cm, J falls below the Coulomb energy: The phase coherence weakens due to
fluctuations and the superconducting state is progressively suppressed. The grain coupling is
increased,∆/Tc = 2.10kB, leading to a lower critical temperature, indicating that the film has a
strong disorder. While BCS theory fits the properties of films with resistivity in the first and second
regime so far, it cannot describe grAl consistently in this regime. When ρ increases further, the
film turns insulating. The electrons then localise due to the Coulomb blockade [40].

3.4 Electrodynamic Model

This section introduces a model for describing the electrodynamics in granular aluminium, result-
ing in an expression for the dispersion relation of it. The content and model have been originally
derived by N. Maleeva et al. [17]



35

Figure 3.4: Electrodynamic model: (a) Sketch of a stripline made from granular aluminium
with length l, width b and thickness d. The insert shows the material structure. (b) The
structure is modelled as a 1-D network of effective Josephson junctions with critical current Ic
and junction capacitance CJ . (c) Equivalent circuit of the considered model: chain of cells
with each containing one Josephson junction with self-capacitance C0, current In and voltage
Vn. The current goes in the x-direction along the resonator. Figure taken from N. Maleeva et al.
[17]

The structure of granular aluminium is similar to an array of Josephson junctions since the super-
conducting grains are connected via an insulating oxide barrier. Therefore, one can model the
system as an effective network of Josephson junctions shown in Fig. 3.4.

In a homogeneous film (Fig. 3.4a,b) of width b and thickness d the superconducting grains
(diameter a) have a self-capacitance C0 and are connected to effective Josephson junctions with
critical current Ic and capacitance CJ (Fig. 3.4c). The phase and voltage of the nth junction are
given by χn and Vn, respectively. To calculate the dispersion relation of the system, the equation of
motion for the phase difference ϕn = χn+1 −χn will be derived, starting with the Kirchhoff laws
and the Josephson equations for two neighbouring junctions:

In = In+1 + C0
dVn

d t
(3.10)

Vn+1 − Vn =
ħh
2e

d (χn+1 −χn)
d t

. (3.11)

Since the microstrip resonators are elongated structures, the following calculation is performed in
the limit of one-dimensional current distributions along the stripline. Moreover, the current is
assumed to be homogeneously distributed through the sample cross-section as the film thickness
is much smaller than the magnetic field penetration depth, λL = 0.4 µm [17].
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The next step is to introduce the external excitation Iext cos (ωt) to the mth cell. Combining this
with Eq. (3.10) and (3.11) leads to

2 In+1 − In+2 − In +δm,n Iext cos (ωt) =
ħhC0

2e
d2ϕn

d t2
. (3.12)

The current trough the nth JJ is given by the phase difference and time-varying voltage (first and
second JJ equation):

In = Ic sin (ϕn) +
ħhCJ

2e
d2ϕn

d t2
. (3.13)

Substituting In in Eq. (3.12), an expression for the equation of motion for the phase difference in
the discrete limit can be formulated:

2Ic sin (ϕn+1)− Ic sin (ϕn+2)− Ic sin (ϕn)

+
ħhCJ

2e
d2

d t2
(2ϕn+1 −ϕn+2 −ϕn)

+δm,n Iext cos (ωt) =
ħhC0

2e
d2ϕn

d t2
. (3.14)

To obtain the dispersion relation for the resonator, Eq. (3.14) needs to be rewritten in the contin-
uous limit. The current distribution is considered to be sinusoidal, I (x , t) = I (t) sin

�

πx
l

�

. The
corresponding phase difference is ϕ (x , t) = ϕ (t) sin

�

πx
l

�

. Substituting these considerations and
integrating along the resonator (x-direction), the equation of motion for the resonator is found to
be

d2ϕ (t)
d t2

+
4eĨc

ħhC̃
J1 [ϕ (t)] =

4e
ħh

1

C0 +
π2a2

l2 CJ

a
l

Iex t cos (ωt) , (3.15)

where Ĩc is Ĩc = Ic
π2a2

l2 and C̃ = C0 +
π2a2

l2 CJ . The Bessel function J1 [ϕ (t)] is approximated to
first order by ϕ(t)/2. Solving Eq. (3.15) and performing the calculation for all higher modes, the
dispersion relation is obtained to be

ωn =
naπ

l

√

√

√

2eIc

ħh
�

C0 +
n2π2a2

l2 CJ

� . (3.16)

A plot of Eq. (3.16) is shown in Fig. 3.5. For the lowest mode, the dispersion behaves linearly with a
slope aπ/l

p

CJ/C0 and saturates at the effective plasma frequencyωp =
p

2eIc/ħhCJ , shown in
Fig. 3.5. The plasma frequency for granular aluminium films with a room temperature resistivity
of 4000 µΩ · cm isωp ' 70GHz, several times lower than the plasma frequency for conventional
aluminium that is 14× 106 GHz [46].
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Figure 3.5: Dispersion relation of the electrodynamic model: The resonance frequencyωn of
mode n saturates at the plasma frequencyωp and rises linearly for the lowest modes. Figure
taken from N. Maleeva et al. [17]

3.5 Circuit Electrodynamics in Granular
Aluminium

In the following, the circuit electrodynamic properties of grAl will be presented. Like the previous
discussion, this section is also based on the work by N. Maleeva et al [17]. After defining the
Hamiltonian, the self-Kerr and cross-Kerr coefficients will be derived.

In first-order approximation, the resonator modes can be described as a harmonic oscillator with
non-linear properties related to the self-Kerr and cross-Kerr effect. The non-linearities occur since
the resonator is modelled as a network of JJs. That means interactions between the fundamental
mode with itself (self-Kerr, Knn) and with higher modes (cross-Kerr, Knm) exist. The corresponding
Hamiltonian can be written in the familiar quantum optical form:

H = ħh
∑

n=1

�

ωn + Knna†
nan

�

a†
nan +ħh

∑

n,m=1
n 6=m

Knm

2
a†

nana†
mam . (3.17)

The operators an and a†
n are the lowering and raising operators.
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self-Kerr coefficient

To derive the self-Kerr coefficient of the fundamental mode, the equation of motion for
the resonator, Eq. (3.15), is expanded by a damping term with constant γ:

ϕ̈ + γϕ̇ +
4eĨc

ħhC̃
J1 [ϕ (t)] =

4e

ħhC̃

a
l

Iex t cos (ωt) . (3.18)

Since the self-Kerr effect is only obtained at resonance, the drive is assumed to be near resonant.
The system then only oscillates with the driving frequencyω, so the phase difference is

ϕ = ϕa cos (ωt +δ) . (3.19)

The amplitude response is ϕa and δ is the phase delay due to losses in the system. Applying this
to Eq. (3.18) and expanding the Bessel function to third order, one obtains an expression for the
amplitude

ϕa =
4e
ħhC̃

a
l Iext

s

�

ω2 −ω2
1

�

1− 3ϕ2
a

32

��2
+ γ2ω2

. (3.20)

Maximizing Eq. (3.20) for ϕa, one finds the resonance frequency to be

ω=ω1

√

√

1−
3ϕ2

a

32
≈ω1

�

1−
3ϕ2

a

64

�

. (3.21)

At this point, one can see that the non-linearity of the array is similar to the one of a single JJ,
ω=ω1

�

1− ϕ2
a

4

�

, but has a lower first order non-linearity. At resonance, ϕa reaches its maximal
value given by

ϕa =
2π
Φ0

Ires LJ . (3.22)

Here, Ires =
q

2π a
l ħhω1N̄/LJ is the amplitude of the current circulating in the resonator and

LJ = ħh/ (2eIc) is the Josephson inductance of a single junction. Φ0 is the magnetic flux quantum,
and N̄ is the average photon number in the resonator. The square ofϕa is correlated to the average
photon number in the resonator and given by

ϕ2
a = 4πea

ω1

IcVgrAl
N̄ . (3.23)
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Note that jc = Ic/(bd) and VgrAL = bdl is the film volume. Substituting this expression in Eq. (3.21),
one obtains

ω=ω1 −
3

16

πeω2
1

Ic

a
l

N̄ =ω1 − K11N̄ . (3.24)

The self-Kerr coefficient of the fundamental mode is given by

K11 =
3
16
πea

ω2
1

jcVgrAl
. (3.25)

cross-Kerr coefficient

For the derivation of the cross-Kerr coefficient, the modes m and k with eigenfrequencies
ωa andωb are considered. Similar to the derivation of the self-Kerr coefficient, one starts with the
equation of motion in the continuous limit expanded by a drive, Im cos (ωa t) + Ik cos (ωb t), on
the mth and kth mode:

Ica
2 d2

d x2
sin (ϕ(x , t)) +

ħhCJ

2e
a2 d2

d t2

d2

d x2
ϕ(x , t)

+aδ
�

x −
l
2

�

(Im cos (ωa t) + Ik cos (ωb t))

=
ħhC0

2e
d2

d t2
ϕ(x , t) . (3.26)

Im and Ik are the excitation amplitude on the mth and kth mode, respectively. In the following
derivation, the interaction between the first and third mode will be investigated, so the phase is
assumed to be

ϕ (x , t) = ϕ1 (t) sin
�πx

l

�

+ϕ3 (t) sin
�

3πx
l

�

. (3.27)

When using Eq. (3.27) and considering strong pumping of the first mode and weak probing of the
third, Eq. 3.26 splits in a differential equation for each mode.

ħh
2e

�

C0 +
�πa

l

�2�

ϕ̈1 + 2Ic

�πa
l

�2
J1 [ϕ1] = 2

a
l

I1 cos (ωa t) (3.28)

ħh
2e

�

C0 +
�

3πa
l

�2
�

ϕ̈3 + 2Ic

�

3
πa
l

�2
�

1−
ϕ2

1

4

�

ϕ3 = 2
a
l

I3 cos (ωa t) (3.29)

Eq. (3.28) looks similar to the differential equation of the self-Kerr coefficient, Eq. 3.18: Since
the drive on the first mode is strong, it only contains self-Kerr non-linearities. Eq. (3.29), on the
contrary, contains only cross-Kerr non-linearities. Analogue to the derivation of the self-Kerr
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coefficient, the drive is assumed to be in resonance and the phase response is

ϕ3 = ϕb cos (ωt +δ) (3.30)

where ϕb is the phase amplitude of the third mode and δ being the delay due to losses. Again, the
phase response is maximized for ϕb, yielding the resonance frequency to be

ω=ω3

√

√

√

1−
ϕ2

b

8
≈ω3

�

1−
ϕ2

b

16

�

. (3.31)

Since ϕb reaches its maximum in resonance analogous to ϕa, the ϕb is given by Eq. (3.23)

ϕ2
b = 4πea

ω1

IcVgrAl
N̄ . (3.32)

Applying this to the above equation, it is found

ω=ω3 − K13N̄ =ω3 −
1
4
πea

ω1ω3

IcVgrAl
N̄ . (3.33)

The cross-Kerr coefficient between the first and third mode is given by

K13 =
1
4
πea

ω1ω3

jcVgrAl
. (3.34)

Expanding this procedure for the first and all other modes, the cross-Kerr coefficient is defined
as

K1n =
1
4
πea

ω1ωn

jcVgrAl
. (3.35)
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Chapter 4
Fabrication Process and Design
Consideration

In this chapter, the fabrication procedure and considerations of the resonator dimensions are
presented. At first, an introduction to the developed simulation routine will be given. The simula-
tions have been performed to figure out appropriate dimensions of the resonators that result in a
coupling Q factor in the range of the internal one, which is in the order of 104 to 105. This ensures
that the later fabricated resonators are well suited for the circle fit routine.
The second part of this chapter presents the fabrication procedure that is composed of two main
steps: electron beam lithography and the deposition of aluminium in a pure oxygen atmosphere.
For the film deposition, the commercial electron beam evaporator MEB 550STM (Plassys) has been
used. The deposition process has been investigated in detail regarding reproducibility and the
variation of the process parameters, which are oxygen mass flow and growth rate. The sample
position in the evaporator has been investigated as well.

4.1 Design Consideration

Finite element simulations have been done to determine the correct geometrical dimensions of
resonators that result in eigenfrequencies above the waveguide cutoff frequency of 6 GHz. The
coupling quality factors should be of the order of 104 to 105. The coupling Q factor and coupling
rate are determined using the circle fit routine.
This section starts with some basic information on the simulation software used, HFSS, and the
established simulation routine. Afterwards, the developed resonator designs are presented.

4.1.1 Finite Element Simulation

Ansys HFSS is a commercial finite element solver for electromagnetic fields at microwave frequen-
cies in 3D structures. By solving Maxwell’s equations, it calculates numerically the electric and
magnetic fields contained by the object. For this, the object is divided into tetrahedral elements
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(a) (b)

Figure 4.1: Applying an appropriate mesh: (a) Mesh of a microstrip line on a substrate. (b)
Closer look on the mesh of the microstrip. The mesh has a size four times smaller than the
smallest size of each object. The resonator has a dimension of (10× 450) µm.

with a local function, interrelating each other so that Maxwell’s equation are satisfied across the
network of finite elements. This network is known as the mesh. The fields are calculated by
transforming Maxwell’s equation into a matrix that is solved at every node of a tetrahedron. An
appropriately sized mesh has to be assigned to achieve high accuracy in results. Although HFSS can
assign the mesh automatically, the experience shows that more precise results are achieved when
assigning it manually. However, the required computational capacity increases with the fineness
of the mesh, so a compromise between the required computation power and result accuracy has
to be found. By experience, good results are found when assigning each structure a mesh size
four times smaller than the structures smallest length. Fig. 4.1a and 4.1b show the mesh structure
exemplarily for a (10 × 450) µm microstrip line.

The software provides multiple simulation modes, the assignment of materials and different
boundary conditions. In this thesis, the Eigenmode and the Driven Modal solver have been
used primarily. The former one calculates the system eigenfrequency of first and higher orders.
The latter one finds the system response when it is excited at a port with a swept frequency. In
both modes, the entire system consisting of the waveguide, the substrate, and the resonator has
been modelled using 3D boxes for the substrate and the waveguide. The microstrip resonator is
presented by a 2D sheet to reduce the calculation time. In the Driven Modal mode, the substrate is
placed off-centre the same way it is positioned in the experiment, see Fig. 4.2a. Note that in the
Eigenmode solver the waveguide works as a ’vacuum box’ that restricts the space the simulation
is done in and is, therefore, sized small. By this, the box eigenfrequencies increase according to
Eq. (1.36), preventing coupling between the box modes and that of the resonator. The model for
the Eigenmode solver is shown in Fig. 4.2b. In both models, the substrate has a dimension of
(2× 13)mm corresponding to the actual size of the substrate that will be used for fabrication.

Further, both offer the possibility to visualize the electric and magnetic field, including vectorial
plots, plots of the magnitude and the animation of the time evolution. The magnitude of the
electric field of the system, including the substrate and resonator, is shown in Fig. 4.3 using the
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(a)
(b)

Figure 4.2: Different model designs: (a) Driven Modal solver: The box (transparent) surround-
ing the substrate (blue) that carries the microstrip resonator corresponds to the waveguide
used in the experiment. (b) Eigenmode solver: The box is of small dimensions to restrict the
space the calculation is executed in. More details in the text.

Driven Modal. The field propagating along the waveguide axis reaches a maximal value in the
waveguide centre and decreases to a minimum at the walls. This agrees with Eq. (1.33) since
the field magnitude is in space proportional to a sinusoidal function. The distance between the
field maxima corresponds to the excitation wavelength. Note that the speed of light is reduced
inside the waveguide according to vp =ω/β (vp is the phase velocity in the waveguide). The small
asymmetry of the field is caused by the substrate as it has a higher dielectric constant and thus
confines the field.

Figure 4.3: Magnitude of the electric field inside the waveguide: The field reaches a maximum
in the centre of the waveguide axis and decreases to the walls. The substrate confines the field
and leads to a small deformation of the field. Red colours indicate high values whereas blue
colours indicate low values.

To correctly regard the high impedance of granular aluminium, in both modes the boundary
condition impedance is used. Here, the resonator is assigned a certain reactance X = 2π f Lkin and



44 Chapter 4 Fabrication Process and Design Consideration

zero resistance since it is superconducting. The kinetic sheet inductance is Lkin. The frequency f

is a parameter that can adopt different values and should equal the solution frequency Freq to
achieve a self-consistent solution. Since the Driven Modal treats an excited system, the solution of
both modes is not consistent. The difference between the modes could be reduced by refining the
mesh in the way mentioned above. By this, the differing has been reduced to∼ 15 MHz
(∼ 0.2 %). After all, the solution of the Driven Modal is given more trust because the eigenfrequen-
cies converged here faster on refining the mesh compared with the Eigenmode solver.

4.1.2 Simulation Routine

The simulation routine developed to find appropriate dimensions for resonators providing the
desired properties (resonance fr > 6GHz, Qc ∼ 104) consists of two main steps.
First, a survey of resonators with the same width but different lengths in a microwave regime
of 6 GHz to 8 GHz is created. This is done using the Eigenmode solver and implementing the
impedance boundary as described above and applying the tool optimetrics. This tool allows setting
a parametric sweep. That means the resonator width is, e.g., W = 20 µm while the parametric
frequency f and resonator length l are varied, solving the system for every value set. When f

matches the system solution frequency F req, the resonance fr of a resonator with a particular
length is found, so fr = Freq. In Fig. 4.4, the result of this first step is plotted. The black markers
show where f matches the solution frequency, indicating possible resonator geometries. As
discussed in section 1.3.5, lower resonances are found for longer resonators, while short resonators
result in a higher frequency. The error bars in Fig. 4.4 are point-sized.
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Figure 4.4: Overview: Using the Eigenmode solver, the length l of a microstrip resonator with
a fixed width W = 20 µm is varied in a microwave regime from 8 GHz to 9 GHz. The black
dots mark the points where the parametric frequency matches the solution frequency and a
resonance is self-consistently found. These points indicate possible resonator geometries.
Error bars are point-sized.

However, the obtained ’map’ provides only a rough overview of geometries since it consists only
of interconnected data points and no continuous data set. To refine the result and to apply the
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circle fit routine for determining Qc , fr and κ, the simulation is repeated for one selected resonator
geometry in the Driven Modal. Because longer resonators result in a lower Qc , Eq. (2.32), it is useful
to choose a geometry of short length l. Again, the impedance boundary is employed; however,
in the Driven Modal the solution frequency Freq can be used as parametric frequency f . So, the
resonance can be found directly without the need for varying any parameter. In principle, one
could find an appropriate resonator geometry by executing only this step. However, the interval in
which the resonance frequency might be and in which the driving frequency has to change needs
to be guessed. This can be bypassed when providing an overview as described in the first step.

9.11 9.12 9.13
f (GHz)

−20

−10

0

S 2
1
(d
B)

(a)

9.11 9.12 9.13
f (GHz)

−150

−100

−50

0

Ph
as
e(
de
g)

(b)

Figure 4.5: Simulation of a (20× 550) µm microstrip resonator on a sapphire substrate in
Driven Modal: (a) The resonance appears in the form of a dip in the magnitude of the S21
parameter. (b) shows the corresponding phase.

Fig. 4.5 presents the resulting magnitude and phase following the second step. The resonance
appears in the form of a dip in the magnitude of the S parameter and a modification of the phase.
The solution from the Driven Modal differs from the result of the first step by∼ 10 MHz. This is
due to the inconsistency between the two solution modes and because the first step only offers
a rough estimation. To achieve a higher resolution in the Driven Modal result, the steps of the
driving frequency can be refined. Next, the circle fit routine is applied to the data to extract the
coupling Q factor. The coupling rate is determined by κ= 2π fr/Qc .

4.1.3 Resonator Designs

4.1.3.1 Resonators for Characterizing Granular Aluminium

To characterize resonators made of granular aluminium, in total six designs of microstrip geometry
have been developed, each sitting on a single sapphire substrate of size (2 × 13) mm. Additionally,
the coupling property to a transmon qubit will be investigated in chapter 7. Each resonator is a
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large kinetic sheet inductance of Lkin = 2 nH assigned. By this, eigenfrequencies above 6 GHz are
obtained already at resonators of lengths below 400 µm. Because the resonators will be fabricated
using silicon substrates, see section 4.2.5, the simulation has been performed using silicon instead
of sapphire as well.

Table 4.1: Simulation results using a sapphire and a silicon substrate: The table lists the
fundamental mode fr , the coupling Q factor Qc and coupling rate κ.

Width × Length (µm) Parameter Sapphire Silicon

10 × 550
fr (GHz) 7.137168(8) 6.593259(6)

Qc 1.12(2) 0.895(13)
κ/2π (kHz) 635.0(14) 737(10)

8 × 460
fr (GHz) 7.660942(4) 7.076082(4)

Qc 2.11(4) 1.7(3)
κ/2π (kHz) 363(6) 426(7)

5 × 350
fr (GHz) 8.1170167(8) 7.4962884(14)

Qc 5.16(4) 4.3(5)
κ/2π (kHz) 157.2(13) 173(3)

20 × 625
fr (GHz) 8.20341(4) 7.580111(7)

Qc 0.53(3) 0.593(5)
κ/2π (kHz) 1534(87) 1279(11)

10 × 450
fr (GHz) 8.466985(3) 7.8205617(20)

Qc 2.03(3) 1.73(13)
κ/2π (kHz) 416(5) 452(3)

20 × 550
fr (GHz) 9.11627(3) 8.42081(2)

Qc 0.77(4) 0.67(2)
κ/2π (kHz) 1185(70) 1256(42)

Tab. 4.1 lists the developed geometries for a sapphire substrate and for a silicon one. The res-
onators on sapphire lie in a frequency range of 7.0 GHz to 9.2 GHz while the frequency of the
resonators simulated on a silicon substrate is shifted by∼ 600 MHz. According to Eq. (1.38), the
higher permittivity of silicon lowers the impedance of the microstrip resonator while increasing
the capacitance (C ∝ ε), leading to lower resonances at the same geometry. The increased capaci-
tance also explains the decrease in Qc of the resonators involving a silicon substrate as Eq. (2.14)
predicts.

As suggested in section 2.4, the coupling to the waveguide can be increased when tilting the
resonator by an angle ϑ. Therefore, a simulation of this has been investigated. The simulation is
done using the Driven Modal solver and modelling a microstrip of size (20× 625) µm located at
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the centre of a sapphire substrate according to the previous description in section 4.1.1. Again,
the impedance boundary is used, and a kinetic sheet inductance of 2 nH is assigned. By using
a command for rotating the microstrip around its centre, the tilting angle can be varied using
the tool optimetrics and solving the system for every angle. The coupling Q factor is extracted
by applying the circle fit routine to the data. Fig. 4.6 shows the simulation results. The obtained
Qc increases inversely proportional to sin2(ϑ) as the result of the model derived in section 2.4
suggests. Error bars in Fig. 4.6 are point-sized.

20 40 60 80
ϑ (rad)

10000

20000

30000

40000

50000

Q c Eq. (2.33)

Figure 4.6: Coupling Q factor as function of the angle ϑ: Qc increases proportionally to
sin−2(ϑ). Note that ϑ is defined as the angle between the horizontal waveguide axis and
the resonator. Error bars are point-sized.

In Fig. 4.7a, the magnitude of the electric field and surface current caused by a resonator of
dimensions (8×460) µm on a sapphire substrate is presented. One can see that the field reaches a
maximal value at the ends and to the centre of the microstrip while having a minimum in between.
This corresponds to theory as discussed in section 1.2, so the microstrip equals a λ/2 resonator.
The small asymmetry seen in the field magnitude is caused by the coupling to the waveguide. Fig.
4.7b presents the corresponding surface current. It behaves exactly opposite to the fields, fulfilling
the theoretical expectations according to Eq. (1.19).
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(a) (b)

Figure 4.7: (a) Magnitude of the electric field of a resonator with the dimensions (8×460) µm
on a sapphire substrate. The field reaches a maximum at the ends of the microstrip while
having a node in the centre, corresponding to aλ/2 resonator. (b) The surface current behaves
exactly opposite to the field. Red colours indicate high values, whereas blue colours represent
low ones.

4.1.3.2 U-shaped Microstrip Resonator

Besides the resonators to characterize the material grAl, another resonator design has been de-
veloped that will be investigated experimentally to test a design for a SQUID resonator. Fig. 4.8
illustrates a schematic drawing of this kind of resonator: The SQUID loop that is a superconducting
circuit interrupted by two JJs [47] is added to the head structure of the resonator. The junctions
are realized by separating two low-ohmic films with a high ohmic one, see the bottom insert in
Fig. 4.8. In fabrication, these structures are achieved by two-angle deposition [48]. Details on this
process can be found in section 4.2.1.

Figure 4.8: From left to right : U-shaped resonator of dimensions (50× 5650) µm carrying a
SQUID in its head structure. Top insert : Zoom on the SQUID loop. The two crosses indicate the
Josephson junctions that interrupt the superconducting circuit. Bottom insert : The insulating
tunnel barriers of a junction is created by two deposition films differing in resistivity (light grey:
low-ohmic, dark grey: high-ohmic). Such structures are achieved by two-angle evaporation.

Therefore, the resonator investigated here will be made up of two films as well. For simulation,
the resonator is modelled the same way as described in section 4.1.2, representing it by a single



49

Table 4.2: Resonance frequencies from the simulation of the U-shaped resonator: A kinetic
sheet inductance between 20 pH to 30 pH results in resonances between 8.5GHz and 9.3 GHz.
The resonator has a dimensions of (50× 5650) µm. The coupling Q factor is 7.92(7)× 104 in
average and κ/2π= 135.1(12)kHz.

L�kin (pH) fr (GHz)
20 9.2962020(11)
22 9.1342106(6)
24 8.9820365(4)
26 8.8365983(3)
28 8.6931676(3)
30 8.54890747(15)

rectangular sheet with a kinetic sheet inductance that corresponds to the average of both deposition
layers. The resonator is assigned a low kinetic sheet inductance of 20 pH to 30 pH. This ensures
that only the SQUID will be sensitive to external fields while the actual resonator is hardly affected.
The eigenfrequency shall lie in the vicinity of 9 GHz. These conditions require the resonator to
have a great length, so it is bent into U-shape as seen in Fig. 4.8. The total length of the resonator
is 5650 µm and its width equals 50 µm. Tab. 4.2 lists the simulated resonances together with the
corresponding kinetic sheet inductance. Resonances between 8.5 GHz and 9.3 GHz are achieved
that decrease for the highest value of L�kin = 30pH. Qc is on average 〈Qc〉= 7.92(7)× 104 and the
average coupling rate is 〈κ/2π〉= 135.1(12) kHz. In Fig. 4.9a the magnitude of the electric field
caused by the resonator is shown. Similar to the resonators presented in section 4.1.3.1, the field
reaches a maximal value at the ends of the resonator while having a minimum in between. By
this, it corresponds to a λ/2-resonator. Again, the magnitude of the surface current shown in Fig.
4.9b behaves the opposite, according to theory. The small asymmetries can be traced back to the
coupling to the waveguide.

(a) (b)

Figure 4.9: (a) Magnitude of the electric field and (b) surface current of the U-shaped res-
onator of dimensions (5650×50) µm. Red colours indicate high values, whereas blue colours
represent low values. The electric filed reaches a maximum at the ends of the resonator while
having a node in between (λ/2 resonator). The surface current behaves exactly opposite.
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4.2 Fabrication

As mentioned at the beginning of this chapter, the fabrication process consists of two main steps,
the electron lithography and the film deposition. Additional, steps like wafer cleaning, applying
the photoresist, sample development and lift-off are necessary. Therefore, this section starts with
a general overview of the whole procedure, followed by the characterisation of the deposition
process in detail. In the end, details on the fabricated samples are given.

4.2.1 Sample Fabrication in General

To understand the sample fabrication in a better way, this section summarizes the individual steps:
wafer cleaning, applying the photoresist, lithography and sample development, followed by film
deposition and the lift-off. A schematic cartoon of the whole procedure is presented in Fig. 4.10. A
detailed discussion of the evaporation process is given in section 4.2.2.

Figure 4.10: The fabrication procedure can be divided in six steps: wafer cleaning, applying
photoresist, electron lithography, sample development, film deposition and lift-off. Details
are given in the text.

Wafer cleaning: Each wafer has been wet chemically cleaned by going through different solvent
baths: The first bath is in acetone while receiving an ultrasonication at 35 kHz for 15 min, so any
leftovers of the wafer fabrication and other dirt are removed. Any acetone remains are washed
away in an isopropanol (IPA) bath (ultrasonication at 35 kHz for 10 min.). To wash away the IPA,
the wafer runs through a bath of deionized water (DIW) for 5 min (ultrasonication at 35 kHz). Last,
the wafer is rinsed under DIW and blown dry using a N2 gun. Every switch between the baths is
done as fast as possible to prevent any dirt to dry out on the wafer surface.
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Spinning off the photoresist: A photoresist by MicroChem consisting of polymer chains
made from polymethyl methacrylate with a molecular weight of 950k is used. The chains are
dissolved in anisole with a solid share of 4 % (950K PMMA A4). One layer of resist is spun on
employing the LabSpin 6 by Suss. The wafer is rotated at a speed of 1000 RPM for a total of 100 s.
According to MicroChem, these spin settings yield a photoresist thickness of about 400 nm [49].
Finally, the resist is hardened by baking the wafer on a hotplate at 200◦C for 10 min.

Electron beam lithography: To create a pattern on the wafer the commercial lithogra-
phy system eLine Plus by RAITH is employed. By radiating a high energy beam of electrons of a
certain dose onto the resist, the polymer chains break up and their solubility changes. Afterwards,
the broken chains are removed in the development step. An illustration of the so-called positive
lithography is shown in Fig. 4.11. The scanning electron microscope (SEM) Sigma by ZEISS is
used as beam source. The microscope additionally features two detectors (InLens Duo and SE2)
for taking images of a sample surface. After aligning the electron beam and setting the focus
onto the wafer surface, the surface is divided into an exposure grid made of so-called write fields.
These write fields are stitched together, giving rise to the stitching error: When a pattern exceeds
the size of a write field and the write fields are not properly aligned the final structure might be
interrupted by a gap. An example of this error is shown in Fig. 4.12.
Each sample fabricated in this thesis has been exposed using a dose of 200 µC · cm2, an
acceleration voltage of 30 kV and a 120 µm sized aperture.

Figure 4.11: Positive lithography: The solubility of the photoresist (violette) is changed after
the exposure (light pink). The exposed resist then can be washed away in the development
step, leaving the non-exposed photoresist on the substrate surface (grey) behind. It remains a
negative of the sample structure.

Figure 4.12: Stitching error: The picture shows a (20× 625) µm microstrip on a silicon wafer.
During the lithographic process, the wafer is divided into a grid of write fields. If these write
fields are not properly aligned, the final structure might be interrupted by a gap. Picture taken
using an optical microscope.
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Development: After the exposure the broken up polymer chains are dissolved in a developer
solvent made from methyl isobutyl ketone (MIBK) and IPA in a ratio of 1:3 for 90 s, yielding a high
resolution in development [49]. The dissolving is stopped by an IPA bath. Finally, the sample is
rinsed under DIW, blown dry and mounted into the evaporator machine.

Film deposition: In the deposition process, an electron gun heats an aluminium target.
After letting in pure oxygen to the evaporation chamber, the evaporated aluminium formates
grains on the wafer surface which are surrounded by aluminium oxide. To achieve films of certain
resistivity, the evaporation rate and oxygen mass flow is adjusted. Details on the evaporation
process are given in section 4.2.2. Moreover, it is possible to create multilayer structures: After
depositing the first layer of film, the sample holder is tilted by a certain angle α. Because the
photoresist layer now shades the sample surface partially, the second film deposited will cover
only a certain area of the sample. A schematic representation of this process called shadow
evaporation is shown in Fig. 4.13.

(a) (b)

𝛼

(c) (d)

Figure 4.13: Steps of the shadow deposition process: (a) Substrate (grey) after lithography.
The remaining photoresist is coloured purple. (b) Deposition of the first film (light grey). (c)
Before applying the second film (blue), the sample is tilted by an angle α. (d) Sample after
lift-off: It remains a structure composed of two different deposition layers.

Lift-off: Since the film is covering the whole wafer that means the non-exposed photoresist
and the cleared locations where the resist has been dissolved, it is necessary to get rid of
the surplus film to win the actual structure. For this purpose, the wafer runs through an
acetone bath. The acetone dissolves the non-exposed resist and the surplus of film on top
of the resist is carried away. It remains the sample structure. For this, the wafer is kept in a
tilted position in the acetone bath until only the sample structure remains. Finally, the wafer
is rinsed under acetone to not let the wafer surface dry out and washed in IPA and DIW, successively.

Dicing: As multiple samples are fabricated on a single wafer, the wafer has to be cut to
each sample. This is done with the support of the research group of I. Pop at the Karlsruhe Institute
of Technology. Using a diamond saw, the wafer is cut into sections, obtaining each sample lying
on a single substrate.
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4.2.2 Aluminium Deposition in Oxygen Atmosphere

This section will discuss the film deposition process in detail. The employed machine Plassys MEB
550STM is introduced and the evaporation process is characterized. In general, films of granular
aluminium are created by the deposition of aluminium oxide in ultra-high vacuum on to a substrate
[19]. This can be done in a sputtering process using a reactive DC magnetron plasma and injecting
an Al/O2 mixture [43]. In this thesis, however, the films are fabricated by thermal evaporation of
pure aluminium in an pure oxygen atmosphere using a commercial e-gun evaporation machine.

4.2.2.1 Electron Beam Evaporator MEB 550TM

The evaporation machine features two chambers that can be independently vented from each
other and are both evacuated by a pump providing an ultra-high vacuum about∼ 1.0× 10−8 mbar.
The bottom chamber is used for metal evaporation only while in the upper one the oxidation
takes place. The top one also functions as load lock. Both chambers are separated by a motorized
shutter. In Fig. 4.14, a CAD drawing of the machine is shown.

Figure 4.14: Screen shot of the user in-
terface: The bottom left panel records
the growth rate. The cartoon on the right
contains all components of the machine,
including pumps and vents that can be
controlled manually.

Load lock

Chamber

Pump

Stepper motor
for shutter

Figure 4.15: CAD drawing of the elec-
tron beam evaporator: The cylindrical
top chamber (load lock) sits on the evap-
oration chamber. Details given in the
text. Picture taken from the official
Plassys website (www.plassys.com; ac-
cesed on: 23rd january 2019)

The metal evaporation chamber features an electron gun (TELEMARK ) with a maximal power of
10 kW and a rotatable target table with crucibles of aluminium, titan and, niobium. The pattern
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the gun creates on the target surface can be customized. The load lock provides next to the circular
sample holder an ion etching gun (Kaufmann source) and a supply of argon and O2. The gun is
used to create an Ar/O2 plasma to remove PMMA leftovers and other impurities from the sample
surface. For this, the sample holder can be tilted and rotated to bring the sample in position in
front of the plasma gun. The Ar and O2 flows are controlled each by mass flow controllers with a
maximum flow rate of each 20 sccm.

The whole machine, starting with the pumps, the target selection and the electron gun, is controlled
via a software with a user interface that is shown in Fig. 4.15. The software provides the possibility
to create recipes for the evaporation process. A typical evaporation process starts with plasma
etching the sample and a gettering process in which titanium is evaporated in the chamber with
closed shutter. The titanium evaporation improves the vacuum. After this, the actual evaporation
process takes place which is described in the following section.

4.2.2.2 The Deposition Recipe

Before presenting the results of the process characterization, the general deposition procedure
will be pointed out. After cleaning the substrate, it is mounted to the evaporator and the following
recipe is executed:

1. Pump load lock down to a pressure in the range of PLL < 5× 10−7 mbar (about 3 hours)

2. Ion plasma etching for 2 minutes to descum any residuals: Ar/O2 plasma made from 10
sccm Ar, 5 sccm O2 at an accelerating voltage of 200 V and a current of 10 mA

3. Getter process: evaporation of titanium with a rate of 0.2 nm/s for 2 minutes to gather
hydrogen and other residuals in the bottom chamber, enhancing the vacuum

4. Regulate aluminium evaporation rate nRate to the desired value within 2 minutes

5. Open oxygen vent and regulate to the certain flow fO2

6. Wait for 15 s for rate stabilization

7. Open shutter between chamber and load lock

8. Deposit desired film thickness

9. Close shutter, stop oxygen flow and ramp down aluminium evaporation rate

10. Clean aluminium target by evaporation of 20 nm with a rate of 1.0 nm/s and closed shutter
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Inertially, the shutter between the chamber and the load lock is closed. To create structures of
multiple layers, step 4 to step 10 are repeated for each layer. The desired resistivity of each film
is achieved by regulating to a certain evaporation rate and oxygen mass flow. If not mentioned
separately, this recipe is used for every sample fabricated in this thesis. The evaporation process
listed above is based on the work of Grünhaupt et al. [20]

The samples fabricated for the following investigation are produced on glass substrates of size
26 mm× 76mm to save the more expensive sapphire or silicon wafers. The cleaning process of
these consists of a 10 min ultrasonic bath in acteone at 35 kHz, followed by an IPA bath and
ultrasonication for 5 min at 35 kHz and finally rinsing under DIW and blown dry. To determine
the film resistivity of the sample, its surface is divided into sections of width w and length L to
define a geometry for measuring the sample sheet resistance R, see Fig. 4.16. For the resistance
measurement needles made from wolfram and a commercial multimeter are used. The determined
resistance equals the average of multiple strips measured. Finally, the film sheet resistance Rs and
resistivity ρ can be calculated according to ρ = Rs · t and Rs = R · w/L where t equals the film
thickness.

L
w t

Glass

grAl

Figure 4.16: Defining a geometry to determine the sheet resistance: The film with
thickness t (blue) is divided into strips of width w and length L on the glass substrate (white).

4.2.2.3 Testing the Reproducibility

Because the fabrication consists of several steps in total, a study on the reproducibility has been
done. For this, five samples have been fabricated keeping all circumstances as equal as possible
and comparing the film resistivity afterwards. The samples of each 20 nm thickenss have been
fabricated following the process described in 4.2.2.2 with fO2 = 4.0 sccm and nRate = 1.0nm/s.
In Tab. 4.3, the oxygen partial pressures in the load lock and chamber, pLL and pCH that set after
injecting O2 into the chamber and the determined resistivity ρ, are listed. The uncertainty in the
partial pressures equals the accuracy of the measurement while the uncertainty in ρ corresponds
to the standard deviation of the resistance measurement. The reproduction error of the total
process has found to be 18 % (standard deviation). While the resistivity of samples #1, #2, #4 and
#5 lie in close range to the average of 〈ρ〉= 500(100)µΩ · cm, sample #3 differs from this value by
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31 %. This is an indication of the sensitivity of the total fabrication procedure since it consists of
multiple steps.

Table 4.3: Reproducibility study: Based on five samples fabricated keeping all circumstances
as equal as possible ( fO2 = 4.0 sccm, nRate = 1.0 nm/s. 20 nm film thickness), the relative error
in fabrication has found to be 18 %. The uncertainty of the pressures in the load lock and in
the chamber pLL and pCH equals the measurement uncertainty of 0.1× 10−5 (mbar).

#1 #2 #3 #4 #5

ρ (µΩ · cm) 570(80) 550(50) 370(30) 640(160) 570(20)
pLL × 10−5 (mbar) 7.5 7.5 7.5 7.9 7.7
pCH × 10−5 (mbar) 1.5 1.0 1.0 1.2 1.1

〈ρ〉= 500(100)µΩ · cm

4.2.2.4 Variation of Oxygen Mass Flow and Growth Rate

To gain understanding of the influence of the two deposition parameters, the oxygen mass flow
fO2 and the evaporation rate nRate, on the film result a parameter variation has been done. In
total, five samples have been fabricated to examine the influence of the oxygen mass flow and
three additional samples for investigating the impact of the evaporation rate. Except for setting a
certain evaporation rate and oxygen mass flow, the film deposition followed the routine described
in section 4.2.2.2. Also, the determination of each film resistivity has been carried out as described
there. For the flow variation, each sample has been fabricated using a fixed evaporation rate of
1.0 nm/s while setting an oxygen mass flow on a value between 4.0 sccm and 6.5 sccm. The samples
for investigating the impact of the evaporation rate have been fabricated using a constant oxygen
mass flow of 4.0 sccm and regulating nRate to a value between 0.7 nm/s and 1.2 nm/s. All films
have a thickness of t = 20 nm.

In Fig. 4.17a and Fig. 4.17b the results are plotted on a logarithmic scale. As expected, the film
resistivity increases with more oxygen mass flow since more oxygen enables the formation of
more insulating oxide between the pure aluminium grains and, therefore, decreases the electron
tunnel probability due to larger barriers. The result is a poorer conductivity. Also, the resistivity
increases with decreasing the evaporation rate is expected. When the aluminium evaporates
slowly, more time passes in which more oxide is formed on the sample surface. This leads to
the same effect as increasing the oxygen mass flow. Error bars in Fig. 4.17a and Fig. 4.17b are
point-sized. Since the measurement points in Fig. 4.17a and Fig. 4.17b almost lie on a straight
line, a simple exponential fit (ρ = exp (m · fO2 + b)) is applied. A more complex fit that passes the
origin (ρ = A · (exp (m · fO2 + b)− 1)) would be more sophisticated, however, for this approach
more data points are necessary.
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Figure 4.17: Parameter variation: The (a) oxygen mass flow fO2 and (b) evaporation rate
nRate influence the film resistivity ρ in an exponentially way. The solid lines correspond to
exponential fits. Error bars are point-size.

Additionally, some more observations have been made while fabrication:

Target level: A refilling of the target leads to a different value of the sheet resistance. That means,
an almost full target causes lower resistive films while samples that have been fabricated using
an almost empty target result in a higher film resistivity when keeping every other parameter
the same. Fig. 4.18 shows a comparison of samples that have been fabricated using the same
parameter set but different targets. The films have been evaporated on glass substrates. For every
sample, the evaporation rate has been kept at nRate = 1.0 nm/s while the oxygen mass flow has
been regulated to different values. The difference in resistivity between the samples is noticeable
and, moreover, increases with increasing the oxygen mass flow. Because the electron gun current
adapts to the target level, the different gun currents cause a different evaporation temperature.
Consequently, the oxidation happens differently. Error bars in Fig. 4.18 are point-sized.
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Figure 4.18: Impact of the target level: Comparison of samples that have been fabricated
under the same circumstances but using different targets. Almost empty targets result in
samples of high resistivity while an almost full target leads to a lower one. This is caused by a
different oxidization depending on the electron gun current and target level. The samples
have been fabricated using glass substrates and keeping an evaporation rate of nRate = 1.0
nm/s. Solid lines correspond to exponential fits according to ρ = exp (m · fO2 + b). Error bars
are point-sized.
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In conclusion, after a target refill a calibration of the film growth parameters ( fO2
, nRate) in the

form like it has been done in this thesis is necessary to figure out the right values for fabricating
films of certain resistivity.

Electron gun pattern: Different electron gun patterns have been tested. Since the pat-
tern influences the stability of the evaporation rate strongly, it has a large impact on the film
result. To ensure reproducibility, one should take care to stabilize the evaporation rate as much as
possible. For example, a circular pattern causes the evaporation rate to oscillate and the rate is
hard to be stabilized. Best results have been reached using an undefined dot-like pattern. Also, a
rate of 1.0 nm/s could be stabilized best for which reason this rate has been chosen in the further
fabrication process.

4.2.2.5 Spatial Distribution of the Resistivity

Since the valve for the oxygen supply is located laterally to the sample, a spatial gradient of the film
sheet resistance has been suspected. In this section, an investigation of the spatial distribution of
the resistivity is presented.

×

x

y

Figure 4.19: Sample matrix on a 2" wafer: To investigate the spatial distribution of the film
resistivity on a wafer, a 4 × 5 matrix of meander structures has been fabricated on a silicon
wafer. The black cross signs the wafer centre that corresponds to the origin of the coordinate
system. Size not for scale.

For this purpose, a matrix of meander structures has been written on a single silicon wafer (Si-Mat,
ρ = 1 – 30 Ω·cm, p-Typ, orientation: <100>). Fig. 4.19 shows the distribution of the samples on
the wafer. In total, two wafers have been fabricated in this way by following the recipe given in
section 4.2.2.2, so two films differing in resistivity are analysed. Contrary to the investigation of
the glass substrates, a lift-off is necessary to determine the resistivity of each sample. This is done
employing baths of acetone. Averaging over all samples, the first film results in a resistivity of
490 µΩ cm. For this,
nRate = 1.0 nm/s and fO2 = 4.0 sccm has been used. The average resistivity of the second film
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Figure 4.20: The spatial distribution of the resistivity is investigated for two films:
(a) ρ = 490 µΩ cm and (b) ρ = 4900 µΩ cm. The values correspond to the deviation relative to
the value at the wafer centre. Although both films show a different distribution, a gradient
from the top right corner to the bottom left corner is noticeable. The difference between both
films is caused by statistical errors.

resulted in 4900 µΩ cm. The fabrication parameter used are nRate = 1.0 nm/s and
fO2 = 5.8 sccm.

The spatial distribution in resistivity is shown in colour in Fig. 4.20a and Fig. 4.20b relative to the
value at the wafer centre. The distributions of both films show a gradient that increases from the
top right corner to the bottom left corner. Since the oxygen valve is located to the left of the wafer,
the oxygen gas reaches the bottom left area first and spreads from there on over the wafer. On
this way, more insulating oxide is formed on the bottom left, resulting in lower conductivity. Also,
the pump that regulates the chamber pressure contributes to the inhomogeneity. Rotation of the
sample holder during the deposition may counteract this effect. However, the influence on the
area around the wafer centre seems to be small. The exact values of both samples differ from each
other and can be traced back to statistical errors. However, to verify this a comparison of more
samples is necessary.

4.2.3 Samples for Measuring the Critical Temperature

The critical temperature of grAl is necessary to calculate L�kin, see Eq. (3.7). To determine Tc , five
samples of different resistivity have been fabricated in duplicate. The investigation of the samples
and the measurement of the critical temperature are given in section 5.

All samples have been fabricated on a single low-ohmic 2" silicon wafer (Si-Mat, ρ = 1 – 30 µΩ · cm,
p-Typ, orientation: <100>). In Fig. 4.21, the geometry of the sample structure is shown. To reach
a high net resistance and to neglect contact resistances during the measurement, a meander
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structure is chosen. The pads of 300 µm× 300 µm are used for bonding the structure to a printed
circuit board. After sample development, the wafer is divided into five sections using a diamond
cutter. A 20 nm thick film of granular aluminium of different resistivity is deposited on each wafer
section, following the recipe in section 4.2.2.2. This is done by regulating the oxygen mass flow to
values between 3.7 sccm and 5.5 sccm. The evaporation rate has been kept constant at 1.0nm/s for
each sample. After lift-off in acetone, the sample resistances have been measured using wolfram
needles and a commercial multimeter. Tab. 4.4 lists the determined values whereas the uncertainty
of ρ equals the reproducibility error of 18 %.

Table 4.4: Samples for measuring the critical temperature: To provide films of different resis-
tivity, the oxygen mass flow is regulated to different values while keeping an evaporation rate
of 1.0nm/s for each sample. The uncertainty in ρ is 18 %.

fO2 (sccm) 3.7 4.0 4.5 5.0 5.5

ρ (µΩ · cm)
140(30) 200(40) 450(80) 1900(40) 4800(900)
150(30) 190(40) 470(90) 2000(400) 5000(900)

Figure 4.21: Sample geometry: The meander structure has been chosen to ensure that the
net resistance is large, so contact resistances can be neglected during measurement.

Additionally, the evolution of the grain size versus resistivity has been investigated by comparing
the most low-ohmic and high-ohmic samples. For this, the sample surface is investigated using
the InLens Duo detector of SEM of the lithography machine. In Fig. 4.22, pictures of both surfaces
are shown. Although the resolution is poor because the maximal magnification of the detector is
in the order of grain size, one can see that the grain size stays approximately at 5 nm independent
from the resistivity. This is in agreement with earlier observations [17, 19].
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(a) ρ = 140(30) µΩ · cm (b) ρ = 4800(900) µΩ · cm

Figure 4.22: Grain size: The grain size stays constant at approximately 5 nm independent
from the resistivity. This is in agreement with earlier observations [17, 19]. The pictures of the
films fabricated on a silicon substrate has been taken using the InLens Duo detector of the
SEM. (a) Low-ohmic sample: Magnification: 372k, Aperture: 30 µm, Acceleration voltage: 3 kV,
Working Distance: 5.8 mm (b) High-ohmic sample: Magnification: 437k, Aperture: 30 µm,
Acceleration voltage: 5 kV, Working Distance: 5.8 mm

4.2.4 Fabrication of the Multilayer Resonator

As introduced in section 4.1.3.1, the resonator is made from two films laying congruently on each
other. The resonator has been fabricated by C. Schneider. For fabrication, a single 2" sapphire
wafer (KYOCERA, 0.33mm thickness, single crystal) has been chosen and the fabrication rou-
tine described in section 4.2.2.2 has been carried out. However, to create two layers of granular
aluminium, step 4 to 10 in the fabrication recipe are repeated: In the first run, a high-ohmic
film using fO2 = 4.5 sccm and nRate = 1.0nm/s of 20nm thickness is deposited. After this, the
sample holder is tilted by 45◦ and a second low-ohmic film of 40nm thickness is applied using
fO2 = 3.2 and nRate = 1.0nm/s. The average resistivity of the two-layer structure is determined to
be ρ = 150(30) µΩ · cm whereas the high-ohmic layer shows a resistivity of ρ = 650(120) µΩ · cm

and the low-ohmic one is ρ = 50(9) µΩ · cm. The latter two values have been determined based
on equivalently fabricated films.

4.2.5 Resonators for Characterizing Granular Aluminium

The resonators introduced in section 4.1.3.1 have been fabricated on a 2" silicon wafer of 300 µm

thickness (Sil’tronix, ρ > 104Ω · cm, intrinsic, orientation: <100>). A 20 nm thick film of granular
aluminium has been deposited using an oxygen flow of fO2 = 5.5 sccm and an evaporation rate of
1.0 nm/s. To determine the sheet resistance of the film, five additional meander structures have
been fabricated on the same wafer. Using wolfram needles, the resistivity has been determined to
be ρ = 4600(800) µΩ · cm.
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4.3 Summary

A simulation routine to develop microstrip resonators made from granular aluminium has been
figured out. The high intrinsic impedance is respected by employing the impedance boundary and
adjusting a kinetic sheet inductance. Following this routine, geometries of six high-impedance
resonators have been determined that provide coupling Q factors of ∼ 104. Depending on the
substrate that is either sapphire or silicon, the resonances lie in a range from 7 GHz to 9 GHz. The
theory that Qc can be increased by tilting the resonator has been verified by executing simulations
similar to the routine developed for the geometry determination. Further, a low-impedance
resonator design has been developed to refine a design for a SQUID resonator.

The fabrication of films made from granular aluminium has been characterized. Films of specific
resistivity are obtained by electron beam evaporating aluminium in a pure oxygen atmosphere
and adjusting the process parameter that is the oxygen mass flow and the evaporation rate. A large
evaporation rate ≥ 1.0 nm/s is suggested since it supports the stabilization of the evaporation
rate, which is crucial for the film quality and reproducibility. Experience shows that an undefined
pattern of the electron beam supports the stabilization of the evaporation rate as well. It is also
suggested to rotate the sample holder during the evaporation process, so a spatially homogeneous
film is deposited. Finally, the resonators investigated by simulation have been fabricated.
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Chapter 5
Critical Temperature of Granular
Aluminium

The critical temperature of the films made from granular aluminium is not only of interest but
necessary for calculating the kinetic inductance of the resonators fabricated in this thesis. There-
fore, this chapter presents the results obtained from transport measurement. The fabrication of
sample made for this purpose is described in the section 4.2.3.

5.1 Setup & Sample Mounting

Figure 5.1: Sample mounting: Six samples have been bonded to the PCB using aluminium
wires. Thermalization is ensured applying low-temperature varnish between the samples and
the board. The PCB is screwed to the base stage of the dilution refrigerator.

In total, six samples differing in resistivity, are bonded to a printed circuit board (PCB) using
aluminium wires. The board is made from non-flammable epoxy laminate material (FR-4). To
ensure the thermalization of the samples, low-temperature varnish has been applied between
these and the PCB. The PCB is then screwed by two M3 screws to the base stage of a delusion
refrigerator. A detailed description of the cryogenic system is presented in Fig. B.1. The samples
are connected to an AC resistance bridge (LAKESHOREModel 370) that provides a bias current
and measures the voltage drop over the sample. A superconducting DC-loom connects the bridge
to the PCB via superconducting wires (NbTi) that have been soldered onto the board. To reduce
thermal impacts the loom is connected to every stage of the cryostat using fed-throughs. A drawing
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of the PCB is shown in Fig. 5.1. To determine the present temperature, an additional ruthenium
oxide sensor (LAKESHORE ROX 102B) is placed on one of the screws holding the PCB. The sensor
works below 10 mK and up to 40 K with an uncertainty of 16 mK [50] .

5.2 Experiment & Discussion
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Figure 5.2: Transition to superconductivity: The resistance R versus temperature T for six
samples differing in resistivity have been observed performing transport measurements. (a)
For the high-ohmic samples (#4 – #6) the transition occurs rather soft while (b) for the low-
ohmic ones (#1 – #3) the resistance drops abruptly. Error bars have been neglected since they
are of a few Ohms. Details are given in the text.

Fig. 5.2a shows the result of the transport measurement for all six samples and Fig. 5.2b zooms
on the low-ohmic samples #1 – #3. Error bars have been neglected since they lie in the range
of a few Ohms. In total, the cryostat temperature has been ramped down to below 0.5 K three
times while recording the samples resistances. The critical temperature is determined by reading
off the inflection point. The uncertainty is estimated to be 0.05K, corresponding to the spacing
between the measurement points around the inflection point. The results are listed together with
the samples resistivity and fabrication parameters in Tab. 5.1. The resistivity has been determined

Table 5.1: The table lists the results from the measurement together with the oxygen mass
flow fO2used for fabrication. The critical temperature Tc decreases with increasing resistivity
ρ as phase fluctuations get prominent. All samples have been fabricated using an evaporation
rate of 1.0 nm/s.

#1 #2 #3 #4 #5 #6
fO2 (sccm) 3.7 4.0 4.5 5.0 5.0 5.5
ρ (µΩ · cm) 120(20) 190(30) 400(70) 1800(300) 2000(400) 4800(900)

Tc (K) 1.90(5) 2.20(5) 2.20(5) 1.60(5) 1.60(5) 1.30(5)
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after the samples were bonded to the PCB. Since the contact to the sample via a bonded wire
is more stable than using wolfram needles as done so far, the determined values differ by up to
−16%. The uncertainty in ρ equals the reproduction error of 18 %.

Having a look at Fig. 5.2, the way the resistance changes for the high ohmic samples compared
with the low-ohmic ones is noticeable: For sample #4 – #6, the transition occurs rather softly
than abruptly. According to Dubouchet et al. [39], the mechanism behind this relies on quantum
localization of the single electron states that start preforming Cooper pairs and causing the two
energy gaps, ∆c and ∆p that get observed in grAl. As discussed in section 3.1, the pseudogap
∆p then evolves into a hard gap Eg . Applying this explanation to the transition of the low-ohmic
samples #1 – #3, one can conclude that the superconductivity of these samples might feature low
disorder since their resistances drop occurs abruptly. So, samples #4 – #6 carry high-disordered
films.

102 103 104
ρ (µΩ · cm)
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T c
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)

Si Resonators
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Figure 5.3: Critical temperature Tc determined in this thesis (white squares) compared with
results from Levy-Betrand et al [40] (black circles): The distribution of the temperature follows
the dome-like behaviour, reaching almost the same maximal value (2.2 K) and decreasing for
films of higher resistivity. The deviation of the high-ohmic samples (> 20 %) might be caused by
strong disorder. The red star indicates the location of the high-impedance resonators made on
silicon whereas as the blue dashed line indicates the location of the U-shaped low-impedance
resonator since for the Tc has not been determined. The black solid line at ρ = 104 µΩ · cm
indicates the superconductor-to-insulator transition (SIT) [44]. Error bars are point-sized.

Fig. 5.3 shows the critical temperature versus resistivity compared with results obtained by the
research group of I. Pop at the Karlsruhe Institute of Technology (KIT) [40]. The error bars in Fig. 5.3
are point-sized. The blue dashed line assigns the U-shaped resonator introduced in section 4.2.4.
Since the critical temperature of this film has not determined, no data point is available. The red
star indicates the high-impedance resonators made on silicon substrates: The film parameters used
for their fabrication correspond to sample #6, therefore the critical temperature of the resonators
is assumed to be same. The solid line in Fig. 5.3 indicates the superconductor-insulator transition
(SIT) [44]. Except for sample #6, the Tc of all samples lies in a range of 1.30(5) K to 2.20(5) K,
exceeding the Tc of bulk aluminium (∼1.2 K) [51]. and is well comparable to the results from Levy-
Bertrand et al. Although less data points are available, the dome-like distribution is recognizable.
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Particularly, the maximal Tc is reached for almost the same value (2.2 K, 98 % matching) from a
similar film resistivity of 190(30) µΩ · cm (86 % matching). Sample #6, however, differs in Tc by
> 30% and the Tc lies close to the value of bulk aluminium like the insulating samples left from the
SIT in Fig. 5.3 measured by Levy-Bertrand et al. Since the sample film is located close to the SIT at
ρ = 104 µΩ · cm, the sample film might be already influenced by localization effects and features a
special high disorder with strong grain coupling. Based on this observation, it is suggested that
the SIT might be not located at an exact value but rather spreads over an area around this, causing
high disorder and strong localization effects already below 104 µΩ · cm.

5.3 Summary

Performing transportation measurements the critical temperature of six samples fabricated on
silicon substrates has been determined. The results correspond well to previous observation [40].
The typical dome-like distribution of the critical temperature as a function of the room temperature
resistivity is observed, revealing a maximal Tc of 2.20(5) K for films of ρ = 190(30) µΩ · cm.
However, the observed results suggest that the SIT rather happens over a range of (1.0± 0.1×
104) µΩ · cm than at a fixed border of so far communicated 104 µΩ · cm [44], leading to special high
disordered films close to this drop off.
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Chapter 6
Transmission Measurements

This chapter presents the experimental results obtained by investigating the resonators in trans-
mission configuration. Measurements have been performed using different input powers and
temperatures between 30 mK to 500 mK. Also, the effect of a micro magnet mounted on the setup
has been analysed. After introducing the employed setup, the results are discussed and compared
to the simulation as far as possible.

6.1 Measurement Setup

In essence, the employed setup consists of the resonators on their substrates that are inserted in
the waveguide. The waveguide itself is placed in a dilution refrigerator. The measurements are
performed in notch configuration.

(a) (b) (c)

Figure 6.1: CAD rendered picture of (a) and (b) the waveguide (WR102 standard) and (c)
the clamp holding a sample on a sapphire substrate. For creating the picture the software
SolidWorks has been used.

6.1.1 Waveguide

Since the waveguide takes up a certain volume inside the space limited refrigerator, it is designed
in a way that multiple samples can be installed similar to previously performed experiments.[28]
In total, the waveguide system consists of three parts: The waveguide itself, three clamps which
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Figure 6.3: Illustration of the waveguide to visualize its size.

each hold two substrates and two couplers, one at the beginning and one at the end of the waveg-
uide. Both, the waveguide and the clamp are made from copper. A CAD rendered picture of the
waveguide can be seen in Fig. 6.1a and 6.1b. Fig. 6.1c shows a clamp used for holding the samples.
The employed couplers are commercial ones (PASTERNACK ) and used to match the impedance
of the incoming microwave and to receive it at the end of the waveguide. They correspond to
the WR102 standard that equals a waveguide width and height of 25.9 mm× 12.9 mm. The total
length of the waveguide is 130 mm. By this, the substrates are spaced 13mm from each other along
the waveguide axis and have a lateral distance of 5.84mm. Fig. 6.3 illustrates the dimensions.
According to Eq. (1.36) the waveguide cutoff frequency is 5.78 GHz which is also verified by Fig.
6.2 that shows a transmission measurement of the waveguide at room temperature.
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Figure 6.2: Transmission measurement of the waveguide at room temperature. The cut off
frequency lies at 5.8 GHz.

6.1.2 Dilution Refrigerator Setup

The waveguide is installed to the baseplate of the cryostat (Oxford Instruments) and is surrounded
by a double layer permalloy can along with superconducting aluminium shields to shield any
magnetic fields from the outside. The waveguide is connected via SMA ports to the feed line. To
couple in a clean input signal, first, any DC-offset is removed by a DC block. Next, the signal passes
a −20 dB at the 4 K stage and a −30 dB attenuator at the base plate (20 mK) to lower thermal
noise. Before the signal then enters the waveguide, an Ecosorb filter absorbs any infrared radiation.
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Propagating through the waveguide and leaving it again on the other end, the signal passes a DC 12
GHz filter and two isolators subsequently. The latter two ensure that no signal is entering through
the output port. By this, noise form the high-electron-mobility transistor (HEMT) leaking back to
the waveguide is prevented. The HEMT is located at the 4 K plate. This and a +40 dB amplifier
finally amplify up the signal again before being recorded by the vector network analyser (VNA). A
survey of the complete setup is presented in the appendix B, Fig. B.1.

6.2 Experimental Results

6.2.1 Resonators Made on Silicon Substrates

The highimpedance resonators introduced in chapter 4 have been mounted to the set up as
previously described. Considering the discussion on the critical temperature in chapter 3.24,
the resonators feature a kinetic sheet inductance of 2.4(5) nH following Eq. (3.7). This is in good
agreement with the L�kin = 2.0nH used for simulation. However, no resonances have been observed
in a broad investigated frequency range from 3 GHz to 12 GHz. This can have multiple reasons
that are discussed in the following.

While mounting the samples they might have been damaged. However, no destruction has been
observed after demounting them again.
Another reason might be the fabrication of an incorrect resonator geometry that does not exactly
equal the design developed during the simulation. Slight variations in the dimensions change
the resonator eigenfrequency. However, the broad frequency range mentioned above has been
investigated without measuring any resonance. Therefore, this reason is discarded.
Since the resistivity of the film the resonators is located far to the right of the superconducting
dome and close to the SIT, see Fig. 5.3, the film might be insulating or it is strongly disordered
and no phase coherence over the whole resonator is achieved. Although, the superconductivity of
an equivalent film has been proven (5.2a, sample #6), spatial inhomogeneities of the deposited
film might lead to an higher ρ since the resistivity of the film has been measured at test structures
located to the upper edge of the wafer whereas the resonators are fabricated in the wafer centre.
According to the investigation made in section 4.2.2.5, the film resistivity varies up to 15% over
the wafer which can lead to an effective resistivity of ρ ≥ 5.0 µΩ · cm. This consideration supports
the hypothesis made in the previous chapter: The SIT might occur already for smaller values and
rather happens over a range of (1.0× 104 ± 0.1× 104) µΩ · cm than at a fixed border.

Concluding, to obtain superconducting resonators made from granular aluminium, it is useful
to create films of resistivity that is located to the dome centre in a range from 102 µΩ · cm to
103 µΩ · cm, at least one order below the SIT. The desired kinetic sheet inductance can be achieved
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by adjusting the film thickness according to Eq. (3.7). It also shall be pointed out that using higher
evaporation rates might lead to a more homogeneous distributed film as discussed in section
4.2.2.

6.2.2 U-shaped Resonator

6.2.2.1 Overview

Measurements have been performed with zero and non-zero external magnetic field. First, the
results with the influence of the field are discussed. These have been performed in dependency
on the input power Pin and refrigerator temperature T . The results obtained with zero external
field are given in section 6.2.2.4. The exact value of the magnetic field strength that reaches the
resonator could not be determined directly but it is estimated to be∼mT.

To discuss the effect of the input power and temperature on the Q factors and resonance, the
number of photons in the resonator is an important variable that is estimated by [52]

N̄ =
1

2πhf 2

Q2
L

Qc
Pin . (6.1)

Note that the input power is attenuated by the employed cables and attenuators in the measure-
ment setup by −90 dBm.
For the temperature dependency measurements, a heater inside the fridge was used, regulated by
a PID controller. Before recording the sample transmission at a specific temperature, it has been
waited until the sample thermalizes.
To extract the Q factors from the measurement data, the circle fit routine described in section 2.6
is used.

6.2.2.2 Power Dependency Measurement

To investigate the impact of the photon number in the resonator, the input power applied at the
VNA has been varied between +15 dBm and −75 dBm. Using Eq. (6.1), the corresponding photon
number lies between N̄ = 1 and N̄ = 108. Fig. 6.4 shows the evolution of the coupling and in
internal Q factor. Error bars are point-sized. Contrary to the expectation, Qc decreases for small
photon numbers close to the single-photon regime. According to Eq. (2.14), the coupling to the
waveguide depends only on the resonator geometry and should remain the same, independent of
variables like the photon number. To achieve small photon numbers below N̄ = 102, the (VNA)
input powers have to be in the range of −75 dBm to −60 dBm, leading to a noisy transmission
signal and a faulty determination of Qc , illustrated in Fig. 6.5. For N̄ ≥ 106, the non-linearity of
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Figure 6.4: Measured (a) coupling Q and (b) internal Q factor versus the photo number: For
N̄ ≥ 106, the non-linearity of the resonator influences the resonance strongly, so Qc and Q i
cannot be determined to the true value since the circle fit routine is based on a linear model.
The decrease in Qc and increase in Q i for small N̄ < 102 is caused by a low signal to noise ratio
and are given no trust. The average value for Qc in the range between N̄ = 102 to N̄ = 106 is
9.067(4)× 104 and 〈Q i〉= 4.278(18)× 104. Error bars are point-sized.

the resonator influences the resonance and leads to a distorted peak, see Fig. 6.5. In this regime,
the circle fit routine fails to determine the exact Q factors since it is based on a linear model.
Concerning Eq. (2.14), the Qc factor should stay at a value that corresponds the average between
N̄ = 102 to N̄ = 106, 〈Qc〉= 9.067(4)× 104 that is indicated by the blue dashed line in Fig. 6.4a.
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Figure 6.5: Measured transmission signal for (a) photon numbers between 102 and 108 and
(b) for N̄ = 2: For values of N̄ > 106, the peak shifts due to the non-linearity of the resonator.
A low signal to noise ratio occurs for N̄ ≤ 102.

Similar observations are made for the internal Q factor: Fig 6.4b shows an increase for small photon
numbers while Q i decreases in the non-linear regime. According to the discussion in section 2.3.2
and observations made by other groups [8], one would expect the opposite behaviour. Therefore,
it is assumed that the increase for N̄ < 102 is caused by a low signal to noise ratio as well whereas
the decrease at N̄ > 106 is caused by the non-linearity, see Fig. 6.5. The average value for Q i in
the range from N̄ = 102 to N̄ = 106 is 4.278(18)× 104. This value lies at least one order below
internal Q factor measured by other groups (Grünhaupt et al.: Q i ≥ 105) [8]. As it will become
clear in section 6.2.2.4, the external magnetic field causes this low Q i value.
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Figure 6.6: (a) Frequency shift ∆ f = f − fr on a linear scale. For large N̄ > 106, the non-
linearity results in a negative frequency shift. By applying a liner fit (solid line), the shift is
determined to be K11 = −2.7(6)× 10−3Hz. Averaging over all temperatures, fr is 9.378946(4)
GHz. (b) shows the same plot on a logarithmic scale. Error bars are point-sized.

The internal Q factor could be enhanced using an aluminium waveguide instead of a copper one
since aluminium reaches superconductivity below 1.2 K. This shields external magnetic fields and
prevents losses caused by flux formations. Recent observations suggest depositing low gapped
aluminium islands on the substrate around the resonator [53]. These islands act like phonon
traps and lead to a reduction of quasiparticles that are generated by high energetic phonons in the
substrate.

Further, a shift of the fundamental frequency is observed. Fig. 6.6 shows the shift∆ f = f − fr on
a logarithmic scale measured at 30 mK, 100 mK and 150 mK. Averaging over all temperatures, fr is
9.378946(4) GHz. The error bars in Fig. 6.6 are point-sized. Because of the non-linear behaviour
for large photon number, N̄ > 106, the shift appears to be negative. However, for small photon
numbers N̄ < 102, the resonance shifts to higher frequencies. This is traced back to the small
signal to noise ratio. Applying a linear fit to the data according to Eq. (3.24) and averaging, the
shift per photon in the resonator is determined to be K11 = −2.7(6)× 10−3 Hz when considering
it is related to the self-Kerr effect. This value is one order below the K11 of a comparable film
(Maleeva et al.: ρ = 160 µΩ · cm, K11 = 2× 10−2 Hz) [17]. The measured K11 might lay below the
comparable value since only the average resistivity of the resonator matches the compared film
whereas the resonator investigated here actually is composed of two films differing in resistivity.
Therefore, no verification can be given whether the shift is exactly related to the self-Kerr effect
as well. For temperatures below 150 mK, the shift is the same. A discussion on the temperature
influence is given in the next section.
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6.2.2.3 Temperature Dependency Measurement
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Figure 6.7: Temperature dependency for N̄ = 5 and N̄ = 50 for (a) the internal Q factor and
(b) the frequency shift∆ f = f − fr , fr = 9.378946(4) GHz for both photon numbers. While
∆ f fluctuates around zero, a decrease in Q i for N̄ = 5 is observed. The lack of measurement
points prevents the verification of an exact trend.

In Fig. 6.7a, the results for the internal Q factor varying the temperature between 30mK and
500 mK at N̄ = 5 and N̄ = 50 are presented. No actual trend can be seen for N̄ = 50 and Q i seems
to fluctuate around an average value of 〈Q i〉 = 4.24(3)× 104. A decrease in Q i is seen for N̄ = 5.
According to the discussion on loss mechanisms in section 2.3.2, conductive losses result in a
decreasing trend, Eq. (2.15), while the activation of two-level systems leads to an increase of Q i .
However, Eq. (2.15) is only valid for bulk SC and the lack of measurement points prevents the
assumption of conductive losses to be the dominant loss mechanism.

Fig. 6.7b shows the frequency shift∆ f observed for different temperatures between 30mK and
150 mK for N̄ = 5 and N̄ = 50. For smaller photon numbers, the frequency is shifted by ±7 kHz

while for N̄ = 50,∆ f is close to zero. Remembering the small signal to noise ratio in this regime, it
is suggested that these observations are related to noise. No significant frequency shift has been
expected according to the observations made by other groups [54]. A strong temperature influence
is expected for T > 300 mK. The shift then can be predicted by a BCS model [8].

6.2.2.4 Results at Zero External Magnetic Field

In the first part of this section, the influence of the external magnetic field applied to the resonator
is discussed. The second part compares the measurement at zero external field to the simulation
performed in section 4.1.3.2.
The measurement recorded before the micro magnet has been installed was performed at
T = 300 mK and at an input power of -40 dB (VNA) corresponding to N̄ = 1× 104. The results
are compared to a measurement with non-zero external field at the same photon number but
T = 150 mK. Tab. 6.1 lists both measurement results.
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Table 6.1:Measurement results with zero and non-zero external magnetic field for N = 1×104.
The coupling Q factor and resonance frequency lie above the values obtained by simulation,
revealing a small kinetic sheet inductance of∼ 20pH. The measured Q i lies in the order of
expectation.

T (mK) fr (GHz) Qc/104 Q i/104 κ/2π (kHz)
B = 0 300 9.27113196(4) 9.45(4) 8.98(5) 98.1(4)
B 6= 0 150 9.3789489(8) 9.07(5) 4.28(3) 103.4(6)

Although the results obtained with non-zero external magnetic field have been recorded at a
different temperature, both measurements are comparable since the impact of the temperature
is low according to the previous discussion. Noticeable is the decrease of Q i by more than 50 %.
According to the discussion on superconductivity in section 3.1, grAl belongs to the type II SC. The
external field penetrates the material in the form of flux tubes in which no superconducting phase
exists. Based on this, losses occur due to non-zero resistance [55] and the formation of vortices.
This also causes the shift to a 1 % larger resonance frequency with non-zero external field. The
sensitivity of granular aluminium to magnetic fields has also been shown by other groups [20].

Comparing the measurement recorded for B = 0 with the simulation performed in section 4.1.3.2,
the measured resonance is in good agreement with the simulation using a kinetic sheet induction
of 20 pH. However, the resonator fabricated shows a larger Qc . The enhanced coupling can be
traced back to small dimensional differences of the fabricated waveguide and the mounting of
the sample. The measured internal Q factor lies in the expected range of 104 but below the Q i

observed by other groups who determined Q i ≥ 105 [8]. Internal loss mechanisms like two-level
systems related to impurities might cause the lower Q i . However, without further investigations,
no exact explanation can be given.

6.2.3 Summary

Microstrip resonators made from granular aluminium differing in geometry and intrinsic
impedance have been investigated in transmission configuration. No signal could be detected
for the resonators fabricated with a large kinetic sheet inductance of∼ 2.4(5) nH. It is assumed
that the superconductivity of the film is strongly disordered and no phase coherence is achieved,
so the superconducting state is prevented. To avoid this, it is suggested to fabricate films with a
resistivity in the range of the dome centre that is 103 µΩ · cm to 104 µΩ · cm. The desired kinetic
sheet inductance can be adapted by adjusting the film thickness.

A double-layer U-shaped microstrip resonator has been characterized with zero and non-zero
external magnetic field. For photon numbers between N̄ = 102 and N̄ = 106, the average coupling
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Q factor is 〈Qc〉 = 9.45(4)× 104 and the internal Q factor is 〈Q i〉 = 8.98(5)× 104. Resonance is
found in the vicinity of 9 GHz, corresponding to an average kinetic sheet inductance of 20 pH.
After installing a micro magnet to the setup, the resonator has been characterized by different
temperatures and photon numbers with non-zero external magnetic field of strength∼mT. Tem-
peratures between 30 mK and 150 mK do not influence the resonator performance significantly.
The internal quality factor decreases by half to a value of 〈Q i〉 = 4.28(3) × 104 for N̄ = 102 to
N̄ = 106 for all temperatures. The resonance shifts to a 1 % higher frequency. The frequency shift
and the decrease in Q i is caused by the external field. It penetrates the material in the form of flux
tubes and causes additional internal losses due to vortices and non-superconducting areas with
non-zero resistance. For small photon numbers below N̄ = 102, Qc and Q i differ from the average
values which can be traced back to a low signal to noise ratio. A strong non-linearity occurring in a
peak shift is observed at photon numbers of≥ 106. The resonance shifts for large photon numbers
to a lower value. The shift per photon in the resonator has been determined to be 2.7(6)×10−3 Hz

for all temperatures. In the non-linear regime, Q i and Qc differ from the average values as well.
Concluding, it is suggested to extend the results by further measurements and to enhance the
signal to noise ratio by longer averaging while recording the transmission.
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Chapter 7
Coupling to a Transmon Qubit

To meet the final goal of realizing a resonator suitable to readout the state of a superconducting
qubit, this chapter presents the investigation of a microstrip resonator made from granular alu-
minium that is coupled strongly to a transmon qubit. This is done by performing finite element
simulations using the software HFSS. Before presenting the simulation results, the physics of
coupling is described. Details on this can be found in the appendix A.

7.1 Coupling Theory

To simplify the derivation of the coupling between a transmon qubit [56] and a resonator, the
transmon is modelled as two-level system neglecting its anharmonicity and the resonator is
considered to be a linear oscillator. The complete derivation is given in the appendix A.

The Jaynes-Cumming Hamiltonian, appendix Eq. (A.1), expresses the interaction between a two-
level system with modeωa and a linear oscillator with modeωb. The interaction of both modifies
the original modes to so-called dressed statesωA andωB [57]. These modes do not represent the
bare states of the qubit or resonator but a hybridization of these. The dressed states are given by
Eq. (7.1) and (7.2).

ωA =
1
2

�

ωa +ωb −
Æ

4g2 +∆2
�

(7.1)

ωB =
1
2

�

ωa +ωb +
Æ

4g2 +∆2
�

(7.2)

Here, g denotes the coupling strength between the transmon and the resonator and∆ corresponds
to the detuning between both bare modes,∆=ωa −ωb. When plotting the dressed states as a
function of the detuning, one obtains the characteristic avoided crossing presented in Fig. 7.1.
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Figure 7.1: Avoided crossing: Dressed statesωA andωB as a function of the detuning
∆ = ωa −ωb. At∆ = 0, a maximal coupling is achieved and each mode is half-qubit and
half-resonator. For large ∆ or a small ratio of g/∆, the dressed states turn to the original
modes,ωa andωb.

For large ∆, so g/∆ being small, the dressed states turn to the original modes, ωA → ωR and
ωB →ωQ. A maximal coupling of 2g is obtained for∆= 0 at which each mode is half-qubit and
half-resonator.

7.2 Simulation

Figure 7.2: (From left to right) Simulation model: The resonator (dark grey) and transmon
qubit (red) modelled by 2D sheets are each placed on a single sapphire substrate (blue) that
are aligned in a L-form. The insert shows a zoom on the structures. The vertical displacement
z of the resonator relative to the transmon is adjusted during the simulation.

To observe the avoided crossing between the resonators and the qubit, finite element simulations
are performed using the Eigenmode solver of the software HFSS introduced in section 4. Doing
this, the resonator and qubit are modelled as 2D sheets as suggested in section 4.1.1. Both, the
resonator and the qubit are each placed on a single substrate (sapphire) that are arranged in
a L-like formation as shown in Fig. 7.2, so the resonator and qubit face each other. While the
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transmon is placed at the centre of the substrate, the resonator is placed horizontally close to
the substrate border (the distance is x = 200 µm) and its vertical displacement z relative to the
transmon is adjusted during the simulation.
The qubit is composed of two larger rectangles of dimensions (500× 400) µm representing the
capacitors that are connected by a smaller rectangle of dimensions (10× 40) µm corresponding
to the junction, see Fig. 7.2. The resonator has a dimensions of (20× 625) µm and a kinetic sheet
inductance of 2 nH. To correctly regard the impedance of the junction, the boundary Lumped RLC
is employed. This allows the assignment of a kinetic inductance, resistance and capacitance to
the element. Because the junction is considered to act as a pure inductance, the element has a
zero resistance and zero capacitance but a kinetic inductance LJ . Similar, the capacitor pads are
assigned to be perfect conductors using the Perfet E boundary that turns elements to supercon-
ductors. Note that this boundary is assigned to every element by default. The resonator is again
the boundary impedance assigned to correctly regard the high impedance granular aluminium
has. The avoided crossing is obtained when the system is solved for the first and second mode for
different detunings. To achieve this, the qubit frequency is changed by sweeping its inductance LJ

using the tool optimetrics. Finally, the coupling g is obtained by determining the minimum of the
difference betweenωA andωB, 2g =min{|ωA−ωB|}.

7.3 Discussion
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Figure 7.3: (a) Coupling strength g between the microstrip resonator with the dimensions
(20× 625) µm and a transmon qubit. At a fixed horizontal position, the resonator is shifted
vertically upwards. The coupling enhances since it increases proportionally to the field gradi-
ent. In (b), a plot of the magnitude of the electric field is shown when the resonator is 500 µm
shifted upwards. A deviation from the symmetric identical field distribution of the transmon
pads is observed. Red colours indicate higher values whereas blue colours represent low
values.
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At a horizontal position of x = 200 µm, the vertical position of the resonator then has been changed
between z = 0 µm and z = 500 µm. The result is shown in Fig. 7.3a. Fig. 7.3b shows a plot of the
magnitude of the electric fields.

The coupling strength g enhances for larger vertical displacements up to a maximal value of
g > 100 MHz. As the coupling mechanism is of capacitive nature and the resonator causes a larger
field gradient when shifted upwards. The field gradient causes a non-symmetrical distribution of
the electric field. This is recognized at the transmon pads, shown in Fig. 7.3b. So, the increase in g

is expected for this configuration. When shifting the resonator above further, g will decrease again.
Although g would reach an even higher value when the resonator is placed closer to the substrate
border, this position has been chosen because otherwise the resonator might be damaged during
fabrication.

7.4 Summary

Performing finite element simulations, the coupling of g > 100 MHz between a microstrip res-
onator to a transmon qubit has been investigated. A large coupling is achieved when the resonator
is placed laterally close to the transmon and vertically shifted upwards, so a large overlap of the
electric field gradient is achieved. This is realized by arranging the resonator and the qubit in a
L-like formation.
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Chapter 8
Conclusion

The first part of this thesis investigated the fabrication process of resonators made from granular
aluminium. The fabrication consists of several preparing steps of electron beam lithography and
depositing aluminium in a pure oxygen atmosphere by electron beam evaporation. It has been
shown that the film resistivity strongly depends on the oxygen mass flow and evaporation rate.
High evaporation rates of 1.0 nm/s or more are suggested since these are well to stabilize and
enhance the film homogeneity. Due to the location of the oxygen valve and vacuum pump in the
chamber, the film resistivity differs spatially. To prevent this, the sample holder can be rotated
planetary.
The next part of this thesis investigated the critical temperature of granular aluminium. For this,
six samples differing in resistivity fabricated on a silicon substrate have been bonded to a printed
circuit board that is placed on the base stage of a dilution refrigerator. The characteristic super-
conducting dome has been observed and the transition temperatures for all samples correspond
well to the results made by other groups except the high-ohmic samples. It is assumed that the
superconductor to insulator transition (SIT) happens rather over a range around a resistivity of
104 µΩ · cm than at a fixed border.

To characterize the material, microstrip resonators with a large kinetic sheet inductance of 2 nH

have first been simulated performing finite element simulation before fabricating and investigating
them in transmission configuration. To do so, the resonators have been placed in a custom-
designed waveguide made from copper that is mounted to a dilution refrigerator and cooled
down below 100 mK. However, no resonance has been observed. It is assumed that the film the
resonators are made from is located close to the SIT, supporting the hypothesis that this transition
happens over a range. To obtain resonators made from granular aluminium, it is suggested to
fabricate films with a resistivity close to the dome centre of 102 µΩ · cm to 103 µΩ · cm. The desired
kinetic sheet inductance can be adjusted by the film thickness.

Additionally, a U-shaped microstrip resonator consisting of two deposition films, a high-ohmic and
a low-ohmic one, has been investigated to refine a design for a SQUID resonator. Before fabrication,
the correct resonator dimensions have been determined by performing finite element simulation
as well. By mounting the resonator to the same copper waveguide, it has been characterized in
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transmission configuration. Resonance is observed in the vicinity of 9 GHz, corresponding to
an average kinetic sheet inductance of 20 pH. Different input powers down to the single-photon
regime have been observed as well as different temperatures up to 500 mK. The average coupling
quality factor is 9.45(4)× 104 and the internal quality factor is 8.98(5)× 104 for photon number
from N̄ = 102 to N̄ = 106. For small N̄ ≤ 102, the quality factors behaves contrary to the expecta-
tion. This observation is caused by a low signal to noise ratio. For large photon numbers≥ 106,
the non-linearity of the resonator leads to a decrease in the internal quality factor and an increase
of the coupling Q factor. The frequency shift caused by the non-linearity has been determined to
be 2.7(6)× 10−3 Hz.
A decreasing trend of the internal quality factor for raising temperatures has been observed. How-
ever, no exact dependency could be verified. For this, more measurements at higher temperatures
are necessary. According to the observations made, the resonance does not depend on tempera-
tures below 150 mK which is also in agreement with results by other groups.
Further, the effect of an external magnetic field of mT strength has been investigated. The external
field causes the internal quality factor to decrease by half and shifts the resonance to a 1 % higher
frequency. This verifies the flux tuneability of granular aluminium.

In the last part of this thesis, the coupling between a high-impedance microstrip resonator and a
transmon qubit has been investigated performing finite element simulations. A large coupling
rate of g > 100 MHz is obtained when arranging the resonator and the qubit in a L-like formation
and placing the resonator horizontally close to the transmon but vertically positioned above of
it.

With its rich physical properties, granular aluminium is applicable in a large field of supercon-
ducting quantum circuits. In the continuation of this thesis, one can figure out different resonator
geometries that result in a large coupling rate to transmon qubits to serve as a readout resonator.
For this, the qubits are placed in a waveguide strongly coupled to each other and to the microstrip
resonator. The readout out is performed by the resonator that is strongly coupled to the waveguide.
Further, granular aluminium is suited to realize so-called superinductors and can be used to realize
a fluxonoium qubit.
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Appendix A
Coupling a Resonator to a Transmon

In general, a transmon qubit is built from a capacitor and a Josephson junction, interconnected
to a non-linear resonant circuit [56]. In contrary to a linear LC circuit, the Josephson junction
adds an anharmonicity, so the energy levels of the transmon are not equally spaced but the energy
difference decreases with the level number.

The following derivation is based on the PhD thesis by K. L. Geerlings [57]. The coupling between
a two-level system and a harmonic oscillator is expressed by the Jaynes-Cummings Hamiltonian
given in Eq. (A.1).

HJC = ħhωR

�

a†a+
1
2

�

+
ħhωQ

2
σz +ħhg

�

a†σ− + aσ+
�

(A.1)

The system can be modelled by the circuit shown in Fig. A.1 when assuming the resonator and
transmon qubit are capacitively coupled via two capacitors with each 2Cc . The Jaynes-Cummings
Hamiltonian then modifies to Eq. (A.2) by summing up the energies of each element (capacitor,
inductance, JJ).

Figure A.1: Circuit model: The resonator is modelled as a linear oscillator with inductance LR
and capacitance CR. The transmon qubit is represented as a circuit consisting of a capacitance
Cs and a Josephson junction EJ . Both are coupled by two capacitances 2Cc . Figure adapted
from K. L. Geerlings [57].
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In Eq. (A.2), the first term corresponds to the resonator mode (mode a), the second one equals
the qubit mode (mode b) and the last term describes the coupling. Because in this derivation,
the qubit mode is assumed to be a harmonic oscillator, so the cosines term in Eq. (A.2) has to
be extended for small values of the qubit phase Φ2. Rewriting the equation and using several
substitutions given in Eq. (A.5) to (A.10), the Hamiltonian splits in an ordinary term H0 and a
non-linear term H1. The index j adapts a (resonator mode) or b (qubitresonator mode).
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Ec =
e2
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(A.10)

The last term in Eq. (A.3) can be neglected when assuming g �ωa,ωb (rotating wave approxima-
tion). The frequenciesωa andωb correspond to the bare modes that are modified by the coupling
to two dressed modesωA andωB, given in Eq. (A.12) and (A.13). These states are obtained after
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diagonalizing the Hamiltonian, Eq. (A.11) and neglecting the anharmonicity.
�

a

b

�

=

�

λa µa

λb µb

��

A

B

�

(A.11)

λa = −g

√

√

√1+ (4g2)−1
�

∆+
p

4g2 +∆
�2

4g2 +∆2
,

λb = g

√

√

√1+ (4g2)−1
�

∆−
p

4g2 +∆
�2

4g2 +∆2
,

µa = −
∆−

p

4g2 +∆2

2

√

√

√1+ (4g2)−1
�

∆+
p

4g2 +∆
�2

4g2 +∆2

µb =
∆+

p

4g2 +∆2

2

√

√

√1+ (4g2)−1
�

∆−
p

4g2 +∆
�2

4g2 +∆2

ωA =
1
2

�

ωa +ωb −
Æ

4g2 +∆2
�

(A.12)

ωB =
1
2

�

ωa +ωb +
Æ

4g2 +∆2
�

(A.13)

When introducing the number operators NA and NB, the Hamiltonian can finally be written ac-
cording to Eq. (A.14).

H0 = ħhωA

�

A†A+
1
NA

�

+ħhωB

�

B†B +
1

NB

�

(A.14)

The dressed states do not represent the qubit or resonator mode directly. However, for large∆, so
g/∆ being small, they go toωA→ωR andωB →ωQ. In Fig. 7.1,ωA andωB are plotted versus the
detuning∆. One can see the characteristic avoided crossing with a maximal coupling of 2g that is
observed for∆= 0. At this point, each mode is half-qubit and half-resonator.
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Appendix B
Refrigerator Setup

Figure B.1: Measurement setup: The waveguide is placed inside a dilution refrigerator. To
couple in a clean input signal different attenuators and filters are used to lower any thermal
noise. Details in the text.
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