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Abstract

In the field of superconducting circuits, waveguide quantum electrodynamics (QED) has
emerged as a promising platform for studying the interaction of quantum emitters with
photons in an open environment [46]. In waveguide QED, superconducting qubits are
coupled to engineered microwave waveguides. This setup facilitates the study of quantum
optics in the microwave domain, enabling novel methods to control and manipulate the
quantum states. The high degree of control and scalability offered by superconducting
circuits makes them an ideal platform for investigating quantum many-body phenomena
and advancing quantum computing technologies [9, 33]. By leveraging waveguide-mediated
interactions, we can explore new regimes of quantum optics that are challenging to achieve
with traditional atom-based systems [37, 60]. In this thesis, I outline a platform that
implements waveguide-mediated interactions and interference effects in an ensemble of four
transmon qubits to build and control decoherence-free subspaces for quantum computing.
In this project, we have implemented an adiabatic elimination scheme realized through
strong coupling to reduce leakage to higher excitation states [60]. As part of this thesis,
I have also developed a coil tuning setup for better individual control of the flux-tunable
transmons.
In the first part we characterized two transmon qubits forming collective states in the
waveguide and demonstrated coherent control over the waveguide-decoupled dark state.
Encoding the qubit in the dark state transition protects the information from radiative
decay into the environment, significantly extending its lifetime. Then, using the developed
flux-tuning schemes, the transmon effective emission frequency was adjusted so that the
waveguide-mediated interactions form delocalized global states and demonstrated coherent
control over them. We determined the characteristic decoherence times and proposed the
implementation of a dark-state gate for future projects.
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CHAPTER 1
Introduction

Quantum physics emerged as a new field of study in the early 20th century, but only a few
pioneers recognized its potential for technological innovation and societal transformation.
By the 1940s, quantum physics had become a source of both hope and fear, as it enabled
the development of nuclear energy and weapons. In the present era, quantum technologies
have matured and diversified, finding applications in various domains such as cryptography
[6, 48], communication [23, 40], computing [1, 42] or even quantum simulations [3, 15].
Some remarkable achievements have been made recently in field of quantum computing,
such as solving problems that are virtually impossible for even the most powerful classical
computers to handle [18, 61]. In these areas superconducting quantum circuits have become
one of the most promising platforms [33]. The superconducting qubits have the advantage
of being tunable and customizable, unlike natural atoms or ions. This allows for the
exploration of novel regimes of light-matter interactions and quantum states.

Advances in quantum computation require a strong light-matter interaction between the
photons and the quantum emitters. For this reason, most platforms incorporate a cavity
or resonator to enhance this interaction and limit the modes for qubit decay. In supercon-
ducting quantum circuits, the protection and readout of quantum information are typically
achieved by designing the qubit so that its resonance frequency is detuned from that of the
resonator. In this regime, the cavity acts as a filter, protecting the qubit from noise around
its resonance frequency, while the dispersive coupling of the qubit to the cavity allows for
a non-demolition readout of the quantum state. Devices designed in this way operate in
the dispersive limit, characterized by frequency detuning between the qubit and the cavity.
However, there is another method for achieving quantum state protection in superconduct-
ing circuits while keeping the qubit resonant with propagating photons, thereby reaching
strong coupling between quantum emitters and the light. Devices operating in the strong-
coupling limit have qubits coupled to a specific channel much more strongly than to all
the decoherence channels present in the system [59]. We use this approach in Waveguide
Quantum Electrodynamics (QED), a platform that combines an open space environment
and strong interactions, enabling state protection and coherent operations. Natural atoms,
due to their small dipole moments, can only weakly couple to propagating photons [24]. In
contrast artificial qubits, such as quantum dots or superconducting qubits, possess strong
dipole moments, allowing for coupling efficiencies exceeding 99% [39]. The strong cou-
pling of qubits to the propagating photons in the waveguide leads to waveguide-mediated
interactions for multiple qubits on resonance, that form collective states.

In this thesis, we investigate one of these phenomena, the formation of multi-qubit dark
states in Waveguide QED. This field studies the interactions of qubits with a continuum of
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modes, which introduce a loss channel and limit the coherence time of quantum informa-
tion. We will investigate how dark states can be created that exploit symmetry properties
and interactions between four qubits. The decay time of the decoupled dark state is much
longer compared to the single qubit decay time limited by the waveguide decay rate. Our
research will enable the exploration of quantum many-body physics in waveguides and
the implementation of quantum information protocols using subspaces that are immune to
decoherence.



CHAPTER 2
Superconducting Quantum Circuits

Following the footsteps of cavity quantum electrodynamics, which has allowed us to explore
the interactions between atoms and electromagnetic fields, superconducting circuits have
emerged as a valuable tool for studying the interactions between microwaves and electrical
circuit elements. Recently, superconducting quantum circuits have become one of the most
promising technologies for building quantum computers [9], being used as the platform to
build these devices by some of the most prominent contributors to this field, such as IBM
Quantum [27]. The LC harmonic oscillator is the most fundamental building block in
circuit quantum electrodynamics [35], realized by arranging an inductor and a capacitor in
a parallel configuration. There are many physical realizations of such a resonant circuit,
which has become one of the most essential elements in quantum information technology
with superconducting devices. In order to describe the electrical circuit in the quantum
regime, we quantize the circuit in the first section. However, the harmonic nature of the
LC harmonic oscillator prevents addressing individual transitions, as the energy levels are
equally spaced. Addressing individual transitions is a necessity when defining a qubit. The
Josephson junction is a device that can transform a harmonic oscillator into an anharmonic
system, enabling selective addressing of individual transitions. In the field of circuit quan-
tum electrodynamics (QED), the transmon qubit [34] is one of the most commonly used
superconducting qubits. It is usually coupled to a microwave resonator or a waveguide to
isolate it from the environment, while maintaining an access channel for coherent control.
This coupling is essential for the proper functioning of the qubit in a quantum computer.
In the final section we discuss a control of a transmon qubit using external magnetic flux
to change to resonance frequency of the qubit.

2.1 The Quantum Harmonic Oscillator

To understand the structure and dynamics of superconducting qubits and waveguides, it is
important to be familiar with the characteristics and properties of an LC resonator. The
LC resonator circuit is a fundamental building block in superconducting quantum circuits.
It is realized by arranging an inductor L and a capacitor C in parallel configuration, as
shown in Figure 2.1 a). In such a circuit, the stored energy alternates between the magnetic
field of the inductive element and the electrical field of the capacitor. In resonance, the
magnetic and electric fields oscillate with frequency É = 1/

√
LC. The instantaneous time-

dependent energy for each element of the circuit can be derived from the current I and the
voltage V

13



14 2.1 The Quantum Harmonic Oscillator

E(t) =

∫ t

0
V (t′)I(t′)dt′ (2.1)

The circuit dynamics can be described by the Hamiltonian equation of motion, which we
obtain from the given equation following the derivations in [13, 58]. We introduce the
generalized branch fluxes Φb(t) and branch charges Qb(t), which are the energy variables
of the circuit. They are related to the branch voltages vb(t

′)) and branch currents ib(t
′) by

the integrals:

Φb(t) =

∫ t

−∞
vb(t

′)dt′ (2.2)

Qb(t) =

∫ t

−∞
ib(t

′)dt′. (2.3)

Here we assume the a vanishing voltage and vanishing current for the limit t −→ ∞. The
instantaneous energies at the components are then given by EC = 1

2C (Q − Qoffset)
2 for the

capacitor and EL = 1
2L(Φ − Φoffset)

2 for the inductor. The Hamiltonian, defined as the
sum of energy contributions, can be formulated for LC resonator circuit without offset as
[55]

H = EC + EL =
Q2

2C
+

Φ2

2L
, (2.4)

recognizing that the charge Q for this system resembles a ’kinetic energy’ term and the
flux Φ the ’potential energy’.

Since flux and charge are canonically conjugate variables, it is possible to apply canonical
quantization Q ↪→ Q̂, Φ ↪→ Φ̂ to rewrite classical observables into the quantum formalism

H =
Q̂2

2C
+

Φ̂2

2L
. (2.5)

Here the operators Φ̂, Q̂ fulfill the commutation relation [Φ̂, Q̂] = iℏ, where ℏ is the reduced
Plank constant. For determining the eigenstates of this Hamiltonian it is useful to define
the lowering â and raising â operators

Φ̂ =

√

ℏ

2É0C
(â + â ) (2.6)

Q̂ =

√

ℏÉ0C

2
(â − â ). (2.7)

The raising operator â corresponds to adding the energy of a single photon with energy ℏÉ
to the circuit and application of the lowering operator â consequently subtracts this energy
from the system. These operators have to satisfy the commutation relation [ââ ] = 1, if
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b)a)

L C

Figure 2.1: a) A circuit diagram of an LC resonator, consisting of a capacitor
and an inductor connected in parallel. b) The energy spectrum of the quantum
harmonic oscillator, which models the LC resonator as a single degree of freedom
with equally spaced energy levels.

we substitute the relations 2.6 and 2.7 into the Hamiltonian 2.5 it is possible to simplify
the equation to the form

Ĥ = ℏÉ

(

â â +
1

2

)

. (2.8)

In the discrete eigenbasis the expression â â is often abbreviated as the number operator
n̂ = â â as it indicates the number of photons in the circuit. These coherent excitations
are equidistantly spaced, separated by the energy ℏÉ as seen in the fig. 2.1.

In should be noted that at the ground state n̂ = 0, the energy of the circuit is not vanishing,
instead takes a constant expectation value of ℏÉ/2. This constant offset can also be seen
in the prefactors of equations 2.6 and 2.7 and is referred to as ’zero point fluctuations’
[13]. These play an important role for the experimental design of the experiments in
superconducting qubits and will be discussed in the chapter 4 in further detail.

2.2 The Josephson Junctions

The fundamental characteristic of a quantum harmonic oscillator can be seen in its energy
spectrum. The energy levels 2.1 are equally spaced in the potential well, separated by the
energy difference ℏÉ. This inherent harmonic behavior is making it challenging to address
individual energy level transitions. This individual addressability is essential, when aiming
to create a qubit - a coherent, controllable two-level system. To achieve this, we must
incorporate a non-linear element into the LC oscillator circuit, disrupting the harmonicity.
The non-linearity that is being used in superconducting quantum circuits is the Josephson
Junction.
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Figure 2.2: Josephson Junction. a) Picture taken on scanning electron mi-
croscope (SEM), a blue-colored superconductor is isolated from an orange su-
perconductor by a thin insulating barrier at their intersection. In this picture,
both superconductors are thin aluminum wires separated by aluminum oxide
isolator. The rectangular overlap between them effectively creates a capaci-
tance between the two metals. Picture from [60]. b) Schematic drawing of a
Josephson junction consisting of two superconductors separated by a thin layer
of insulator through which the cooper pairs tunnel through.

A Josephson junction is a fundamental circuit element in superconducting qubits. It con-
sists of a thin insulating barrier, typically fabricated from aluminum oxide, that separates
two superconducting layers of aluminum. Experimentally implemented as depicted in Fig.
2.2a), this structure exhibits a non-linear inductance, resulting in different level spacings
between the excited energy levels [55].

When cooled below the critical temperature, Josephson junctions allow for a dissipationless
current, referred to as the supercurrent I, to flow through the aluminum superconductor
layer [56]. The spatial separation of superconducting layers by the barrier leads to dis-
tinct microscopic wavefunctions Ψ1,2 with characteristic phase φ1,2 and amplitude |Ψ1,2|,
describing the Cooper Pair condensates on each side of the tunnel barrier [5]. The phase
difference across both sides of the barrier regulates the tunneling behavior of Cooper pairs
through the barrier layer, resulting in the emergence of the supercurrent. The critical
current Ic is a parameter that represents the maximum absolute current, beyond which
Cooper pairs can no longer tunnel from one side of the junction to the other, while main-
taining superconductivity. When subjected to stronger currents, the Josephson junction
undergoes an abrupt transition to normal conduction behavior, resembling an ohmic resis-
tor. This phenomenon was first observed by Brian D. Josephson in 1962 [30]. He described
the relation between the supercurrent I and phase φ as

I = Icsin(φ). (2.9)

The current I flowing across the tunnel barrier is clearly dependent on the phase φ. Addi-
tionally, Josephson introduced a relation describing the time evolution of the phase differ-
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ence on both sides of the barrier, resulting in the appearance of a voltage drop V across
the Josephson junction

V =
ℏ

2e

∂φ

∂t
, (2.10)

with the elementary charge of the electron e and the reduced Planck constant ℏ. Equation
2.10 allows us to relate the junction phase difference to the generalized flux [52] through
Φ = ℏϕ/2e. The charge and flux are thus related through

q̇(t) = Ic sin(
2ÃΦ(t)

Φ0
), (2.11)

where the magnetic flux quantum Φ0 = h/2e was used. The Josephson junction can be
seen as a flux dependent inductor with an inductance given by

L(ϕ) = − Φ0

2ÃIc cos φ
=

LJ

cos φ
, (2.12)

where LJ = Φ0/2ÃIC is the characteristic inductance of the Josephson junction. The
Josephson inductance LJ is describing a nonlinear inductor, as it depends on the cosine of
phase difference φ across the junction.

Using the definition of charging energy EC = e2

2CJ
, which describes the energy required

to add each electron of the Cooper pair to the remaining Cooper pairs [56] and CJ the
capacitance arising from the close proximity of the large metallic electrodes the Hamiltonian
for the Josephson junction can be expressed as

Ĥ = 4EC(N̂)2 − EJcos(
Φ̂2Ã

Φ0
) = 4EC(N̂)2 − EJcos(φ̂), (2.13)

where the normalized charge operator N̂ = Q̂
2e and phase operator φ̂ = Φ̂2π

Φ0
were used.

The Hamiltonian 2.13 shows that the energy spectrum of a Josephson junction has an
anharmonic behavior. The nonlinearity of the Josephson inductance introduces corrections
to the energy spectrum, when expanding the cosine term. Consequently, the energy levels
have unequal spacings, as depicted in Fig. 2.2b).

2.2.1 The Transmon Qubit

Replacing the linear inductor of a harmonic LC-oscillator with a Josephson junction alters
the energy spectrum, as discussed in the chapter 2.2.

The different transition frequencies in the energy spectrum enable identifying a uniquely
addressable two-level system within a multi-level anharmonic oscilator. Typically, we uti-
lize the ground state and the first excited state as the computational basis states for qubit
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b)a)

L J C J

Figure 2.3: Transmon Qubit. a) A lumped circuit model of a transmon qubit,
that consists of a capacitance in parallel with a Josephson junction, which is
indicated by an orange cross symbol. b) Anharmonic energy spectrum of the
eigenmodes of the LC resonator circuit with a Josephson junction replacing an
inductor compared to quantum harmonic ocillator (QHO).

operations. A resonator circuit with Josephson inductance used instead of a linear induc-
tive element is presented in Fig. 2.3. To distinguish the Josephson inductance from its
linear counterpart, it is denoted by a cross symbol in the circuit diagram. This circuit can
be modeled by the Hamiltonian

Ĥ =
(Q̂ − Qg)2

2CΣ
− EJ cos

(

2ÃΦ̂

Φ0

)

= 4EC(N̂ − Ng)2 − EJ cos φ̂. (2.14)

The Hamiltonian of the system given by equation 2.14 exhibits a strong dependence on
the ratio EJ/EC . By engineering the system such that EJ k EC , we can suppress the

effect of offset charges Ng =
Qg

2e on the transition frequency, which are a significant source
of dephasing [34]. To access this regime, a preferred approach is to reduce the charging
energy EC by shunting the junction with a large capacitor CS . This circuit is commonly
known as a transmon qubit [34], schematically depicted in Fig. 2.3 and the large shunt
capacitors can be seen in Fig. 2.5. However, this regime also leads to a reduction in
anharmonicity ³ = E12 − E01, which implies a smaller energy gap between levels. This
can result in unwanted leakage from the ground state to higher excited states, especially
when using fast pulses that are broad in frequency. Taking this into account, the Transmon
typically operates in a regime where the ratio EJ/EC is sufficiently large to render small
charge noise negligible, while enabling fast manipulation of the qubit state relative to the
decoherence time. When the inductive energy is large, we can expand the phase of the
potential in the first terms

cos(φ̂) ≈ 1

2
φ̂2 +

1

24
φ̂4. (2.15)

This expansion results in a modified Hamiltonian
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b)a)

E J E J

Josephson
Junction

Superconductor

External magnetic ûeld

Figure 2.4: SQUID. a) Two Josephson junctions connected in parallel on a ring
form a SQUID. Josephson junctions in SQUID configuration have an external
flux-tunable EJ . b) Schematic circuit representation of a SQUID.

Ĥ = 4EcN̂
2 − Ej

(

1

2
φ̂2 +

1

24
φ̂4
)

. (2.16)

To see the effect of the anharmonicity more clearly, we can quantize the Hamiltonian 2.16,
which introduces the creation and annihilation operators [56]

Ĥ ≈ (
√

8EJEC − EC)â â − EC

2
â â ââ. (2.17)

The equation 2.17 shows that the fundamental qubit transition frequency is Éqb =
√

8EJEC−
EC , with a correction for each state by the anharmonicity EC . As a consequence the energy
level spacing becomes increasingly smaller for higher energy levels.

2.2.2 Flux Tunability

To manipulate the resonance frequency of the qubits externally, many circuits use a direct
current superconducting quantum interference device, commonly known as dc-SQUID [35,
52], instead of a single Josephson junction. A dc-SQUID consists of two identical Josephson
junctions connected in parallel on a ring, as shown in picture 2.4 and an external magnetic
flux Φ̃ flowing through the ring loop. The current passing through the SQUID is given by
the sum of currents passing through each of the Josephson junctions.

I = Ic,L sin(ϕ1) + Ic,R sin (ϕ2) (2.18)

where Ic is the critical current and ϕ the phase drop for each of the junctions respectively.
For a symmetric SQUID loop with identical Josephson junctions the total current can be
reformulated as [55]

I = Ic

(

sin(ϕ1) + sin

(

ϕ1
2ÃΦ̃

Φ0

))

, (2.19)
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with the total flux through the loop ΦB = BA and the flux quantum Φ0 = h/2e. For a
given Φ̃ there is a value of ϕ1 that maximizes the total current I. The maximum value is
the effective critical current of the SQUID, given by

Ic,s(ΦB) = 2Ic

∣

∣

∣

∣

∣

cos

(

ÃΦ̃

Φ0

)∣

∣

∣

∣

∣

. (2.20)

The quantized critical current leads to an altered Josephson energy of the transmon [52]

E′
J(Φ̃) = 2EJ

∣

∣

∣

∣

∣

cos

(

Φ̃

2

)∣

∣

∣

∣

∣

, (2.21)

that is tunable with an external magnetic flux Φ̃. Consequently, any changes in the effective
Josephson energy E′

J lead to alterations in the resonance frequency

É01(Φ̃) = (
√

8E′
JEC − EC)/ℏ (2.22)

of the qubit. For this effect, only the flux component that flows through the SQUID loop
is of consideration.

Figure 2.5: Transmon Qubits in SQUID Configuration. A picture of a
half-open waveguide under an angle, such that both qubit sapphire chips are
visible. A sapphire chip cut from a wafer by mechanical dicing saw is shown in
the center, with zoom-in by an optical micrograph revealing the SQUID loop
and individual junctions.
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The SQUID loops used in this experiment have dimensions of 100 µm × 100 µm and are
spaced inside a pair 800µm center to center of the SQUID loops. Figure 2.5 shows the
sapphire chip with a pair of transmon qubits including a zoom-in to the SQUID loop
and the Josephson junction and a side view inside the waveguide with both qubit pairs
visible.



22 2.2 The Josephson Junctions



CHAPTER 3

Waveguide Quantum Electrodynamics

In the field of Waveguide Quantum Electrodynamics (QED) an artificial emitter is coupled
to a one-dimensional channel that is propagating electromagnetic radiation to study the
interaction between emitters and propagating mode continuum. In this chapter, we derive
the mathematical description for a transmon qubit coupled to a rectangular waveguide.

3.1 Waveguide Circuit Quantization

To describe quantum properties of the system, we start by mathematically defining the
waveguide. We model the continuous waveguide mode using the distributed elements
approach. For the beginning, consider infinitesimal unit cells with a length of dx, each
containing linear inductors Ldx and capacitors Cdx, as shown in Fig. 3.1. The derivations
in this chapter closely follow quantization procedures from [22, 31, 58]. The voltage drop
between positions x and dx can be expressed as

V (x + dx, t) = V (x, t) − Ldx
∂I

∂t
(3.1)

I(x + dx, t) = I(x, t) − Cdx
∂V

∂t
. (3.2)

When we take the limit dx −→ 0 and rearrange the equations, we arrive at the so-called
“telegrapher equations”

∂V (x, t)

∂x
= −L

∂I(x, t)

∂t
(3.3)

∂I(x, t)

∂x
= −C

∂V (x, t)

∂t
. (3.4)

These equations describe the current flow and voltage across a transmission line or waveg-
uide. Furthermore, we can define the generalized flux variable ϕ(x, t) in terms of voltage
V along the waveguide [58]

ϕ(x, t) =

∫ t

−∞
V (x, r)dÄ, (3.5)

which leads to the expression for voltage

V (x, t) = ϕ̇(x, t). (3.6)

23
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Figure 3.1: Circuit Diagram of a Waveguide. A circuit element model of a
lossless transmission line (superconducting), characterized by inductance L and
capacitance C per unit length. The flux nodes are denoted by Φn = Φ(ndx, t).

Additionally, by considering the flux at each node Φn = Φ(ndx, t) we can derive expressions
for the inductive and capacitive energy density

EC =
C

2
V (x, t)2 =

C

2
ϕ̇(x, t)2 (3.7)

EI =
L

2
I(x, t)2 =

L

2

(
∫

dt

L

∂V

∂x

)2

=
1

2L

(

∂ϕ

∂x

)2

. (3.8)

The Lagrangian is given by the difference between the kinetic energy T and the potential
energy U , defined as L = T − U . When considering ϕ as the position that leads to velocity
ϕ̇, the Lagrangian can be expressed as

L = EC − EI =
C

2
ϕ̇(x, t)2 − 1

2L

(

∂ϕ

∂x

)2

. (3.9)

Differentiating with respect to velocity reveals the conjugate momentum of the flux node
Φ(x, t), which corresponds to the charge density

q(x, t) =
∂L
∂ϕ̇

= Cϕ̇(x, t) = CV (x, t). (3.10)

Taking the Legendre transformation leads us to the Hamiltonian

H =

∫ ∞

−∞

[

1

2
Cq2(x, t) +

1

2L

(

∂Φ(x, t)

∂x

)2
]

dx, (3.11)

where we have integrated over the infinite length of the waveguide. We can quantize
the Hamiltonian using the standard quantization procedure by promoting the generalized
coordinates to quantum operators, given that the charge and flux density are canonical
conjugates: q(x, t) = Cϕ̇(x, t). Additionally, we introduce the creation and annihilation
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operators âk and â 
k for a bosonic mode with wave vector k [47]. These operators fulfill the

commutation relations

[

ϕ̂(x, t), q̂(x′, t)
]

= iℏ¶(x − x′) (3.12)
[

âk, â 
k′

]

= ¶(k − k′), (3.13)

from which can be seen that the relation for the same operators in different bosonic modes
is zero and the operators do not commute for x = x

′

and k = k
′

. Thus, enabling us to
express the Hamiltonian in terms of the creation and anihilation operators

H =
∑

k

ℏÉk

(

âkâ 
k′ +

1

2

)

. (3.14)

The Hamiltonian indicates that each mode k behaves like a linear quantum harmonic
oscillator. The voltage and flux operators can be found to be [17, 58]

V̂ (x, t) =
i√
2Cl

∑

k

√

ℏÉk

(

âkei(kx−ωkt) − â 
ke−i(kx−ωkt)

)

(3.15)

Φ̂(x, t) =
1√
2Cl

∑

k

√

ℏ

Ék

(

âkei(kx−ωkt + â 
ke−i(kx−ωkt)

)

, (3.16)

where length l was used as a periodic boundary condition, which we consider in limit
l −→ ∞ to create a continuum of modes along the waveguide propagation direction and
and arrive at the continuous form of voltage and flux

V̂ (x, t) = i

∫

dÉ√
2Ã

√

ℏÉZ

2

(

â(É)ei(kx−ωt) − â (É)e−i(kx−ωt)
)

(3.17)

Φ̂(x, t) =

∫

dÉ√
2Ã

√

ℏZ

2É

(

â(É)ei(kx−ωt) + â (É)e−i(kx−ωt)
)

, (3.18)

with the characteristic line impedance Z =
√

L/C.

3.1.1 Waveguide-Qubit Coupling

In this section, we develop the Hamiltonian description for a qubit coupled to an infinite
waveguide, a circuit illustrated in Fig. 3.2. The transmon qubit, which has a physical
size significantly smaller than the waveguide propagating modes, can be represented as a
lumped circuit element capacitively coupled to a single node in the circuit.

The discrete Lagrangian for this circuit can be expressed as described in references [47, 54]
as
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Figure 3.2: Circuit Diagram: Transmon Qubit Coupled to a Waveguide.
A lossless waveguide with flux nodes that are denoted as Φn = Φ(ndx, t). Trans-
mon qubit is capacitively coupled to the waveguide and is thus interacting with
propagating microwave modes.

L =
∑

n

Cdx

2
Φ̇n(t)2 − (Φn+1(t) − Φn(t))2

2Ldx
+

Cq

2
Φ̇q(t)2

+EJ

(

Φext cos

(

2eΦq

ℏ

))

+
Cc

2
(Φ̇0(t) − Φ̇q(t))2,

(3.19)

where we account for all the waveguide nodes Φn(t) = Φ(ndx, t). The flux node Φq contains
a qubit with flux-tunable EJ(Φext), located at the position of the waveguide x = 0. The
conjugate variable of the flux is, analogously to 3.10, the charge

Qq(t) =
∂L
∂Φ̇q

= CqΦ̇q(t) + Cc(Φ̇q(t) − Φ̇0(t)). (3.20)

The capacitance Cc facilitates coupling to the waveguide and also contributes to the
overall transmon capacitance, along with the junction capacitance Cq. Assuming that
the capacitance of the waveguide is much larger than the other capacitive contributions
(Cw k Cc, Cq), the qubit capacitances act as a small perturbation in the waveguide. The
canonical quantization of the waveguide charge q̂, flux Φ̂, and the qubit charge Q̂ and flux
Φ̂q yields the Hamiltonian

Ĥ =

∫ ∞

−∞

q̂(x, t)2

2C
+

1

2L

(

∂Φ̂(x, t)

∂x

)2

dx +
Q̂q(t)2

2(Cc + Cq

−EJ cos

(

2eΦ̂q

ℏ

)

+
Cc

C ′
q̂(0, t)Q̂q(t).

(3.21)

With the total capacitance given by C
′

= Cq + CcC, the capacitive coupling of the trans-
mon qubit to waveguide exhibits a “charge-like” interaction. Quantized charge q̂(x, t) =
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CV̂ (x, t) and flux Φ̂(x, t) have continuous forms [17], analogous to 3.17 and 3.18, expressed
with creation and annihilation operators as

V̂ (x, t) = iC

∫

dÉ√
2Ã

√

ℏÉZ

2

(

â(É)ei(kx−ωt) − â (É)e−i(kx−ωt)
)

(3.22)

Φ̂(x, t) =

∫

dÉ√
2Ã

√

ℏZ

2É

(

â(É)ei(kx−ωt) + â (É)e−i(kx−ωt)
)

. (3.23)

To describe energy in the system, we used inductances and capacitances associated with the
waveguide and the transmon qubit. While the Hamiltonian fully characterizes the system,
we used second quantization for a quantum mechanical perspective, expressing flux and
charge operators via creation and annihilation operators. This approach is particularly
useful for the transmon, when focusing on its two lowest energy states.

3.1.2 Master Equation Formalism

After deriving the interaction between a single transmon qubit and a waveguide, we can
extend this approach to multiple qubits [37, 47]. We start by rewriting the Hamiltonian
from equation 3.21 using second quantization, substituting equations 3.22 and 3.23. The
Hamiltonian describing the waveguide propagating modes reads

ĤEM =

∫ ∞

0
dÉℏÉ(â 

r(É)âr(É) + â 
l (É)âl(É)), (3.24)

where âr(l)(É) represents the right (left) waveguide propagating field modes with positive
(negative) wave vector k = ±2Ã/¼. The electromagnetic modes propagating through the

waveguide are described as right- and left-moving photons that are created by â 
r(l)(É) and

annihilated by âr(l)(É) at frequency É. We approximate the transmon qubits as two-level

systems, meaning it is sufficient to describe the jth qubit charge operator as the Ãx
j Pauli

matrix. We furthermore neglect direct capacitive coupling between qubits, leading to a
simplified Hamiltonian description

ĤQ = ℏ

N
∑

j=1

Éj Ã̂+
j Ã̂−

j . (3.25)

Here Ã̂+ is the Pauli raising operator and Ã̂− is the Pauli lowering operator. Considering
only the ground and excited states, qubit has a bare fundamental transition frequency É.
The coupling between the electrical dipole of qubits and the waveguide photons is expressed
in the interaction Hamiltonian

ĤI =
N
∑

j=1

iℏgj

∫ ∞

0
dÉ

√
É
[

â 
l (É)eiωxj/v − âl(É)e−iωxj/v

+â 
r(É)e−iωxj/v − âr(É)eiωxj/v

]

Ãx
j ,

(3.26)
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where xj is the position of the jth qubit, speed of light in the waveguide is denoted as v
and the qubit charge operator was approximated as Ãx

j = Ã+
j + Ã−

j . The dimensionless

coupling rate gj between the jth qubit and the waveguide is

gj =

√

√

√

√

√

√

e2C

2ℏÃv

(

C
′

j

Cc,j

)2

(

EJ

EC

)
1

4

(3.27)

The Hamiltonian, comprising the waveguide field part ĤEM , qubit part ĤQ and interaction
part ĤI , fully describes the system within the stated approximations. However, due to
the continuum of field modes in the waveguide, performing calculations is challenging.
Fortunately, we can insert the Hamiltonian into a master equation for the qubit density
operator Ä̂, which treats the degrees of freedom of the waveguide as a dissipative bath
coupled to the qubits [10, 26, 37, 39]. This approach only tracks the dynamics of the
qubits and their mutual interactions via the waveguide and can be expressed as

dÄ̂

dt
= −i





ĤQ

ℏ
+
∑

j

³j(t)Ã̂x
j +

∑

j,k

J̃j,kÃ̂+
k Ã̂−

j , Ä̂



+
∑

j,k

µj,k

(

Ã̂−
j Ä̂Ã̂+

k − 1

2
{Ã̂+

k Ã̂−
j , Ä̂}

)

.

(3.28)
Here, the first part of the equation in the square brackets can be considered the "coherent
part." The term ĤQ represents the qubit Hamiltonian as defined in equation 3.25. The
second term describes the coherent time-dependent drive ³(t) that the qubits experience
from the waveguide propagating photons. We assume photons traveling from left and
acting on qubits located at position xj = tjv as

³j(t) =
Ωj

2
sin(Éd(t + tj)), (3.29)

where Ωj is the drive amplitude with frequency Éd as experienced by the qubit at the
position j. The last term of eq. 3.28 describes the two-qubit exchange coupling J̃j,k, and
together with the rest of the master equation, which can be considered the "dissipative
part," it characterizes the waveguide-mediated interactions [37, 57, 60]. These interactions
occur as photons travel in the waveguide from the qubit at position j to the qubit at
position k. The coefficient µj,k represents the correlated decay between the qubits at these
two sites. Assuming resonant qubits and the time tj,k = |tj − tk| that photons take to
travel from j to k, the coefficients of waveguide mediated interactions are given by

J̃j,k = 2ÃgjgkÉj sin(Éjtj,k), (3.30)

µj,k = 4ÃgjgkÉj cos(Éjtj,k). (3.31)

The form of these coefficients implies that qubit spacing plays a crucial role in waveguide-
mediated interactions. For two qubits separated by an integer multiple of ¼/2, the corre-
lated decay µj,k is maximized and the coherent exchange interaction J̃j,k is absent. Con-
versely, when the qubits at positions j and k are spaced apart by an odd integer multiple
of ¼/4, the J̃j,k is maximized and the correlated decay µj,k is zero.
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To further simplify the problem, we can assume that ³(t) is the only coherent drive with
photons propagating from left to right. This assumption allows us to eliminate time de-
pendence of the Hamiltonian by transitioning to the rotating frame at the drive frequency.
The rotating wave approximation (RWA) removes the rapidly oscillating terms, resulting
in the Hamiltonian taking the form of

ĤRWA = ℏ

N
∑

j=1

∆j Ã̂+
j Ã̂−

j + ℏ

N
∑

j=1

(

Ωl,j

2
Ã̂+

j + h.c

)

+ ℏ

N
∑

j ̸=k

J̃j,kÃ̂+
j Ã̂−

k , (3.32)

with ∆j = Éj − Éd the detuning of the qubit drive. In this model, we have so far only
considered the qubit decay into the waveguide and have not accounted for other decay
channels, such as the non-radiative spontaneous decay rate µnr or the pure dephasing rate
of the qubit µφ. It should be noted that the “non-radiative” decay channel is a physically
radiative process accounting for all intrinsic relaxation rates, just not in the mode of
interest. We account for these decay channels by replacing the waveguide coupling rate
in the master equation with the effective decay rate Γ = µnr + µφ. While we account for
these decay channels, we operate in regime where the coupling to the waveguide is much
larger than all the decoherence channels µr k Γ, known as the strong coupling regime.
Incorporating all decay channels we can rewrite the master equation as

dÄ̂

dt
= − i

ℏ

[

ĤRWA, Ä̂
]

+
N
∑

j,k

µ′
j,k

(

Ã̂−
j Ä̂Ã̂+

k − 1

2
Ã̂+

k Ã̂−
j , Ä̂

)

+
N
∑

j=1

µφ,j

2

(

Ã̂z
j Ä̂Ã̂z

j − Ä̂
)

. (3.33)

This expression can be solved analytically in steady state ˙̂Ä = 0 and allows to express
the density matrix in terms of the drive amplitude and qubit decoherence rates. In the
experiment however, we measure the photons traveling through the waveguide, that can
be described with the input-output theory [37]. Photons propagating from left to right in
the waveguide can be described as [14, 19, 44]

âout = âin − i

√

µr

2
Ã̂−. (3.34)

The expectation value of the annihilation operator â is directly related to the drive ampli-
tude, which allows to define the complex waveguide transmission parameter S21 as ratio
between the input and output fields [37]

S21(É) =
ïâoutð
ïâinð = 1 − µr

2Γ

1 − iδω
Γ

1 + ( δω
Γ )2 + Ω2

(γr+γnr)Γ

, (3.35)

with the total qubit decoherence rate Γ consisting of waveguide radiative decay µr and
qubit intrinsic "non-radiative" decay µnr. We analyze the intrinsic qubit properties with
the circle-fit routine for developed originally for resonators coupled to a transmission line in
notch-configuration [32, 51]. With this procedure the impedance mismatches and the envi-
ronment are taken into account. We fit to the measurement data the complex transmission
parameter expressed in terms of the quality factors

S21(f) = aeiαe−2πifτ

[

1 − (Ql/Qc)e
iφ

1 + 2iQi(f/fr − 1)

]

. (3.36)
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Here the Ql describes the loaded, Qc the coupling and Qi the internal quality factor.
The resonance frequency of the transition is denoted fr and probe frequency f . The
fit considers also the effect of impedance mismatch in parameter ϕ and environment in
amplitude parameter a, phase shift ³ and electronic delay Ä . The quality factors are
related to the decoherence rates [11, 12] obtained from the eq. 3.35 as

Ql =
É01

2Γ
Qc =

É01

µr
Qi =

É01

2µnr
. (3.37)

3.2 Waveguide Mediated Interactions

In the theoretical derivations so far, we primarily considered the physics of a single qubit
coupled to the waveguide. Now, we aim to discuss waveguide-mediated interactions that
occur when multiple qubits couple to the photons propagating through the waveguide.
Specifically, we will examine how the phase acquired by a photon traveling between two
qubits plays a crucial role in the nature of the interaction between them. From the counter-
periodic behavior of eqs. 3.30 and 3.31, it is evident that by tuning either the physical
distance ¼ between the qubits, the photon velocity v or the qubit emission frequency Éq, we
can switch between different types of interactions between the qubits [37, 44]. We utilize
the flux-tunability of the Josephson junctions in a SQUID configuration to experimentally
tune the resonance frequency of the qubit, thus altering the effective emission wavelength
¼.

3.2.1 Correlated Dissipation

Figure 3.3: Two qubits at effective separation d = ¼ are tuned to resonance, which
leads to formation of new eigenstates. Eigenstate corresponing to the superra-
diant transition experiences broadening of the linewidth, while the subradiant
transition is absent from the transmission spectrum and cannot be driven.

If we consider the case of two resonant qubits, É1 = É2 = Éq, effectively spaced by a
distance d = ¼ with respect to the qubit frequency Éq, the correlated dissipation µj,k will
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be maximized while there will be no coherent exchange coupling J̃j,k between the qubits j, k.
We can further assume that there is no drive while temporarily ignoring all decoherence
channels unrelated to the waveguide. Under these conditions, the master equation will
depend only on the dissipators and will take the form [37]

dÄ̂

dt
=

∑

µ=B,D

ΓµD
[

Ã̂−
µ

]

Ä̂, (3.38)

where D
[

Ã̂−
µ

]

Ä̂ = Ã̂−
k Ä̂Ã̂+

k − {Ã̂−
k Ã̂+

k , Ä̂} describes the collective dissipator and indices B, D

correspond to the bright and dark states in the new basis. The bright state in this basis
will have an enhanced decay rate ΓB = 2Γ, which is twice the linewidth of a single qubit.
Conversely, the dark state will become completely decoupled from the waveguide, with no
intrinsic decay rate ΓD = 0.

This phenomenon can be understood by considering the symmetries of the setup. The two
qubits experience the same phase of the photon traveling through the waveguide at the
qubit frequency. Therefore, the waveguide can only induce transitions in the symmetric
state |Bð = |egð + |geð, which is the symmetric superposition of the ground and excited
states of the qubits. Additionally, the decay of the qubits in the symmetric state will
constructively interfere, enhancing the emission rate. In contrast, the decay rate of the
anti-symmetric state |Dð = |egð − |geð is opposite to the symmetry of the bright state
and will destructively interfere, thereby suppressing the emission rate and coupling to the
drive field. In Fig. 3.3 we solve the effective master equation for a system with two qubits
separated by distance ¼ in steady state using the Quantum Toolkit in Python (QuTip) [29].
From the simulation we obtain the lowering operator determining the scattering properties
of the drive tone, leading to the simulated resonance features. The two-qubit bright state
obtains twice the linewidth of a single-qubit transition, the dark state is not visible as it
is decoupled from the waveguide propagating photons.
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3.2.2 Coherent Exchange Coupling

Figure 3.4: Two qubits placed at an effective separation d = 3¼/4 tuned into
resonance do not show signs of super- or subradiant transitions. The exchange
of virtual photons results in the hybridization of new eigenstates, which are split
by the exchange coupling J . As a consequence, the resonance shape becomes
distorted.

Consider a scenario with the same setup as in the previous section. Now, we have two
resonant qubits effectively separated by a distance of d = 3λ

4 relative to the qubit frequency.
In this case, the correlated dissipation µj,k is absent and the coherent exchange coupling
J̃j,k is maximized. The interaction term from the Hamiltonian eq. 3.32 in the rotating
frame takes the form

ĤI/ℏ =
N
∑

j ̸=k

J̃j,kÃ̂−
j Ã̂+

k . (3.39)

In contrast to the case described in previous section, the individual qubits are still inde-
pendently emitting virtual photons with É ̸= Éq, that are then re-absorbed by each other.
This exchange of virtual photons leads to qubit-qubit interaction and the two qubits will
hybridize into new eigenstates, which are split in energy by ∆E = 2J̃j,k with |J | = µr/2.
This interaction resembles the Lamb shift observed when qubits are coupled to the same
shared electromagnetic field [37]. The same type of interaction occurs for qubits effectively
separated by any distance d = (2n + 1)¼/4, with n being an integer. The overall sign of
J̃j,k will be then positive for even n and negative for odd n. The absence of correlated
dissipation is then expected because each qubit is then at node with respect to each other.
The effective interaction strength of each qubit to a particular waveguide mode can be
expressed as J̃j,k = gjgk/¶, with gj,k the coupling strengths of each qubit and a frequency
detuning ¶ between the qubit and the waveguide frequency. We simulate the transmission
spectrum of two qubits separated by distance 3¼/4 in Fig. 3.4 using the QuTip Python
package [29]. The resonant feature of the two qubit case obtains distorted lineshape as
result of the coherent exchange coupling hybridizing the eigenstates.
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3.3 Direct Capacitive Coupling

Figure 3.5: Due to coherent exchange, two qubits at resonance form a bright
and dark state. Capacitive coupling of the transmon pads leads to splitting
of the newly established eigenstates. The bright state has twice the linewidth
compared to individual qubit and is detuned by the coherent exchange coupling
J̃ from the bare qubit frequency. The dark state is decoupled from the waveguide
transmission and not visible in the spectrum.

Consider a case where two qubits are positioned so closely with respect to the wavelength
of the microwave photons propagating through the waveguide, that from the perspective
of the photons they effectively occupy the same position. As result, the photon travel time
between these qubits becomes negligible. Based on the argument from equation 3.31 and
3.30, the correlated dissipation is then maximized, while coherent exchange coupling is ab-
sent. This interaction resembles the case of two qubits effectively separated by a distance ¼.
Furthermore, the close proximity of the metallic transmon pads results in capacitive cou-
pling, manifesting as coherent swapping of excitations between the pads at a rate Jj,k. The
strength of this coupling depends on both the proximity and orientation of the transmon
pads [16, 60]. The capacitive coupling between the qubits is similar to waveguide-mediated
exchange coupling J̃j,k, observed when two qubits are effectively separated by a distance
d = 3¼/4 and the ground and excited states of both qubits evolve into superposition. The
symmetric bright state |Bð = (|geð+ |egð)/

√
2 has in-phase oscillating dipole moments and

as consequence becomes double the linewidth (and waveguide coupling) in comparison to a
single qubit. The anti-symmetric dark state |Dð = (|geð − |egð)/

√
2 has out-of-phase oscil-

lating dipole moments, which interfere destructively and give rise to a waveguide-decoupled
state.

We simulate two capacitively coupled qubits located at the same position with respect
to the waveguide-propagating photons in Fig. 3.5. On resonance the splitting of the
eigenstates into bright state with twice the linewidth and decoupled dark state is directly
observable. The bright state gets detuned in frequency from the bare qubit resonance
frequency due to the exchange coupling J̃j,k.
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Figure 3.6: Experimental Setup with Four Qubits. In the experimental con-
figuration, two pairs of transmon qubits are positioned within the waveguide at
an effective distance of d = ¼/2. This arrangement optimizes the correlated de-
cay while within each pair, a coherent exchange is facilitated due to the capac-
itive coupling of the qubit pads. The qubits form a collective state comprising
of a global delocalized bright state |B4ð with decay rate of 4Γ and decoupled
global dark state |D4ð, as well as dark state |D1,2ð localized at each qubit pair.

3.4 Four Qubits in a Waveguide

In the complete experimental system consisting of two pairs of transmon qubits, we utilize
both direct capacitive coupling between the transmon pads within a pair and waveguide-
mediated correlated dissipation between the pairs due to the effective pair separation by
¼/2. This separation leads to interference of the local bright states, which decouple the
dislocalized global dark state |D3ð and the global bright state |B4ð. Each pair still has a
local dark state |D1,2ð, which is decoupled from the waveguide and therefore is not affected
by waveguide-mediated interactions.

All states within the state manifold of the full experimental system share a common ground
state |Gð. The dark states constitute a decoherence-free Hilbert subspace because they
remain decoupled from the waveguide and the noise, allowing them to relax into |Gð.
Their coherence is only limited by non-radiative decay µnr and internal qubit dephasing
µφ. These local and global dark states hold promise as a universal quantum computation
platform in waveguide QED [46], where the local dark states could serve as a computational
basis, while the bright state would be used for readout. By applying a 2Ã pulse to the
global dark state |D3ð from the ground state, we can introduce a phase shift, allowing the
implementation of a CPhase gate. We will discuss potential applications and future work
in the chapter 6.



CHAPTER 4

Experimental Platform

To perform experiments with superconducting circuits, we need to consider more than just
basic building blocks of quantum circuits and waveguide QED. The operations are taken in
the microwave regime and while many microwave components are commercially available,
the core elements of this experiment - transmon qubits and waveguides, are custom built
at the facilities of the university and tailored to specific needs of the experiment. In this
chapter, we will provide a brief overview of these elements, including aspects of the setup
for qubit control and driving.

In our experimental setup, precise measurements require a low-noise cryogenic environ-
ment. To achieve this, we built the waveguide within the mK (millikelvin) stage of a
dilution refrigerator, as depicted in Figure 4.1. The copper waveguide and Al/AlOx/Al
Josephson junctions need to be cooled below the critical temperature for superconduc-
tivity in order to achieve lossless transmission and ensure minimal energy dissipation of
the qubits. However, to achieve superconductivity and reach small levels of quasiparticle
excitations, we do not necessarily need to reach mK temperatures; for example, aluminum
has a critical temperature of 1.2 K. Generally, it is necessary to cool down the experiment
to such low temperatures to avoid thermally exciting the qubits [28]. As described in the
section 2.2.1 transmon qubits can be modeled as an anharmonic oscillator. The energy
level spacing is the largest between the ground state |gð and the first excited state |eð.
To prevent exciting this transition, we estimate the necessary cooling temperature based
on the condition that the energy level spacing ∼ ℏÉ must exceed the thermal excitation
energy of the environment ∼ kBT . For typical transmon transition frequencies, this leads
to temperatures around 30 − 20 mK below which the quantum system can be initialized
in the ground state [55]. The cryostat is thermally insulated by filling it with vacuum and
covering it with three layers of protection shields. In addition, the experiment is enclosed
in a µ-metal can to shield against external magnetic flux. For qubit control and readout
cryogenic wiring is installed, attenuated after each cooling state of the cryostat to mini-
mize the thermal noise photons leaking into experiment, discussed in more detail in section
4.4.

4.1 Rectangular Waveguide

In the field of cavity quantum electrodynamics (QED), researchers trap ions or atoms
in optical cavities to shield them from dissipation into the environment. In contrast, in
waveguide QED, the quantum emitters are directly coupled to the open environment -

35
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Figure 4.1: Dilution Refrigerator. Experiments must be cooled down to mi-
likelvin (mK) temperatures to avoid thermal excitation of the qubits and pro-
tected from magnetic flux noise. a) Dilution refrigerator with the shields open
and changes being implemented on the experiment, mounted at the lowest cool-
ing stage. Picture taken by David Jordan. b) Closed cryostat with an additional
µ-metal layer for better flux noise protection and microwave electronics in the
background used for readout and control of the experiment.

the waveguide itself. Rectangular waveguides are hollow tubes with open ends and su-
perconducting walls, allowing them to efficiently transmit microwaves with quality factors
of several 107 and very low attenuation constants [36]. The dimensions of the waveg-
uides are in order of the largest electromagnetic mode that can be transmitted, resulting
in waveguide-size dependent cut-off frequency. The most important design parameters of
waveguides are thus the width a and the height b of the waveguide, see Fig. 4.2. The finite
length c of a waveguide requires the use of adapters for the matching of impedance, since
the impedance of the waveguide Z ∼ 500 Ω and the coaxial lines connected to the input
and output of the waveguide have an impedance of Z ∼ 50 Ω. Imperfections in impedance
matching results in building of standing-waves inside the waveguide.

Each waveguide propagating mode has its specific polarisation and can be broadly cat-
egorized into either mode with no electric field component (TE) or no magnetic field
component (TM) in propagation direction. Waveguide modes with no electromagnetic
field component (TEM) can not be excited in our experiment, because they require a sec-
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a

b

c

Figure 4.2: WR90 Waveguide. Top and a cross section view of the WR90
waveguide made out of high purity copper. Schematic picture of a rectangular
waveguide (right). The different colors of the propagating field mode indicate a
change in phase of the field. The field lines represented by the arrows correspond
to the fundamental mode.

ond conductor. The TE modes in the waveguide have only a magnetic field component
Hz(x, y, z) = hz(x, y)e−iβz, where we have introduced the propagation constant

´ =
√

k2 − k2
c =

√

k2 −
(

mÃ

a

)2

−
(

nÃ

a

)2

, (4.1)

where m, n ∈ N0 and the cut-off wave number kc =
√

k2 − ´2. The TE mode has to fulfill
the reduced wave equation [38, 50]

(

∂2

∂x2
+

∂2

∂y2
+ k2

c

)

hz(x, y) = 0. (4.2)

Only a wave with wavevector k larger than the cut-off wave vector kc can propagate through
the waveguide. The smallest wave mode that can propagate through the waveguide is
referred to as the fundamental mode [38]. For the internal waveguide dimensions a > b,
the frequency of the fundamental mode can be expressed as

fc,10 =
1

2a
√

µϵ
, (4.3)

where µ represents the permeability and ϵ is the vacuum permittivity. In the case of a
rectangular waveguide with a > b, the fundamental cut-off frequency depends only on
the width a and the electromagnetic constants µ and ϵ. In our experiment we use a
WR90 waveguide with inner volume dimensions of 10.2 mm22.9 mm100 mm, which leads
to lowest cut-off frequency of fc,10 = 6.546 GHz. Next higher mode cut-off frequency is
fc,20 = 13.091 GHz for the TE20 mode, but due to design parameters of the transmons
used in our experiment we operate only in range 6 − 8GHz. Frequencies above the cut-off
propagate through the waveguide according to the propagation constant ´ =

√

k2 − k2
c ,



38 4.1 Rectangular Waveguide

Figure 4.3: Parameters of the WR90 waveguide. a) The characteristic group
velocity vg of microwave photons passing through the waveguide is approaching
the speed of light c = 3 · 108m/s for high frequencies. b) The characteristic
wavelength in the waveguide as function of frequency approaching 0 at the
waveguide cut-off. c) The phase velocity of the photons in the waveguide is
faster than the speed of light. d) The propagation constant ´ is showing a
non-linear dispersion around the fundamental cut-off frequency 6.5 GHz.

with a wave vector given by k = É
√

µϵ. When passing through a waveguide, the wavelength
of a plane wave propagating in vacuum ¼ = 2Ã/k needs adjustment to ¼ = 2Ã/´ due to
the constraints introduced by the waveguide. The propagation constant, including the
characteristic velocities and wavelengths are shown in Fig. 4.3.

4.1.1 Sideport Driving

In the previous chapter, we explored how two identical transmon qubits on resonance create
a manifold of collective states, consisting of a bright state |Bð and a dark state |Dð, due
to direct capacitive coupling 3.3 or waveguide-mediated interactions 3.2.1. The dark state
is an anti-symmetric superposition and has no waveguide coupling rate, meaning that it
cannot be coherently driven via the waveguide propagating photons. For this purpose,
we introduce a sideport for each pair of qubits in the setup. The sideport pin is placed
off-center on the z-axis of the pair 4.4, such that it creates a local microwave field gradient
across the qubit pair and is able to drive the anti-symmetric dark state. The field applied
through the sideport will be exponentially attenuated due to the orthogonal orientation
with respect to the propagation direction of the waveguide. Because of this fact we are able
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Figure 4.4: The Sideports. Each transmon qubit pair is equipped with a side-
port. The sideport creates a gradient field across the qubit pair, which allows for
driving of the asymmetrical sub-radiant transition. a) A picture of the sapphire
chip containing the qubit pair and a nearby sideport. Photo taken by David
Jordan. b) Illustrated picture of the waveguide with qubit pairs, sideport lines
and the propagating field. The field symmetry of the sideport driving field does
not coincide with the waveguide propagating mode and is exponentially atten-
uated. This allows for pairwise dark state driving.

to drive the qubit pairs independently with no observed cross-talk between the sideports.
The coupling of the sideport pin to the qubit is given by the distance and orientation of
the pin. Each pair has thus slightly different coupling as caused by the imperfections of the
experimental setup. We compensate for this by calibrating and sending different absolute
powers through the port. Figure 4.4 a) shows picture of a qubit chip and its respective
sideport taken through an open side of the waveguide.

4.2 Transmon Qubits

The transmon qubits have been designed specifically for needs of this project and custom
built in Quanten-Nano-Zentrum Tirol cleanroom facilities of University Innsbruck. The
fabrication of qubits uses modern photolithographic techniques adapted from the com-
plementary metal oxide semiconductor (CMOS) industry. Josephson junctions, the key
nonlinear element of superconducting qubits that makes the circuit anharmonic, have been
fabricated of aluminum with an aluminium-oxide barrier and covered in a sapphire wafer.
The fabrication was conducted by members of our research group and thus the precise fab-
rication steps will not be covered in this chapter. For detailed explanation of the fabrication
procedure we refer to [60].

4.2.1 Qubit Design Parameters

One significant advantage of superconducting qubits is their flexibility in designing a wide
range of Hamiltonian parameters. By combining various circuit elements and coupling
techniques, we can tailor an ’artificial atom’ to meet the specific requirements of a given
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Figure 4.5: Design of the Qubit Chip. Design of two transmon qubits on a
single sapphire chip, the green lines are chip edges that will be cut out of the
sapphire wafer. A zoom in to one of the qubits reveals the individual Josephson
junctions sitting in parallel forming a SQUID loop. Optical micrograph picture
of the junction after vaporization (right).

project. The qubits are designed to have a favorable transmon ratio Ej/Ec > 40 and
desired coupling strengths. The resonance frequency of the qubit must also be supported
by the microwave setup. We simulate the qubit using Ansys HFSS 1 to obtain these
values for a system without any decoherence effects. We draw the metallic transmon pads,
simulated as a perfect conductor, the sapphire chip and the vacuum 2 filling the waveguide,
and simulate the transmission parameter S21 of the qubit, as shown in Fig. 4.6. The
data obtained from the simulation are then fitted using a circle fit routine to determine
the resonance frequency. Assuming a junction inductance Lj ≈ 7 nH, we calculate the
Josephson energy Ej = 23.35 GHz and the charging energy Ec = 341 MHz, resulting in
a transmon ratio of Ej/Ec = 68. A single transmon qubit in this design would have a
linewidth of 54 MHz without any decoherence effects. A standard design of the transmons
used in this experiment is shown in Fig. 4.5.

Another critical factor in junction design is qubit aging. Even when the sample is pre-
dominantly kept in a vacuum environment, the oxide layer between the aluminum pads

1https://www.ansys.com/products/electronics/ansys-hfss
2All materials used from HFSS database.
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Figure 4.6: Qubit Simulations. a) Simulation of a transmon qubit pair embed-
ded in a sapphire chip. b) Simulated resonance feature of the qubit, fitted with
a circle fit.

gradually thickens over time, resulting in an increased resistance [49]. This effect saturates
at approximately a 10% rise in resistance as the sample is cycled in the cryostat.

4.3 Coil Setup

A significant limitation of our setup is the qubit cross-talk. The qubits are positioned so
closely to each other that independently addressing them during flux tuning becomes chal-
lenging. This issue is particularly pronounced within each qubit pair, although cross-talk
also occurs between the pairs. To address this issue, we have designed a coil setup based
on magnetic flux simulations. This arrangement includes two coils for each qubit pair,
symmetrically spaced relative to the qubit positions, allowing us to optimize individual
qubit control. When a current flows through each coil, it generates a characteristic dipole
magnetic field. The orientation of the qubit SQUID loops is such that they face the waveg-
uide transmission. Consequently, a qubit positioned directly beneath a coil experiences
magnetic field lines pointing downward but not through the SQUID loop. In contrast, the
neighboring SQUID loop in the pair is slightly off-center, resulting in magnetic field lines
that have a component passing through the SQUID loop. In this way we have aimed to
implement differential qubit flux tuning.
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Figure 4.7: Coil setup. Setup of four coils mounted on top of the rectangular
waveguide designed to tune the four qubits (left). Side view of the coil setup
(top right). Pictures taken by David Jordan. Magnetic flux simulation with
Magpylib (bottom right). For visualization two rectangular red loops resembling
the qubits were added to the plot. The field lines are solutions of Biot-Savard
law.

Furthermore, we utilize two distinct flux tuning regimes to control and optimize the col-
lective bright and dark states within each qubit pair. When both coils are ramped up with
the same polarity and identical current steps, their resulting magnetic flux fields overlap,
significantly affecting both qubits in the pair. We refer to this tuning regime as "common
mode" tuning and use it to adjust the effective emission frequency of the pair. On the
other hand, we can selectively ramp one coil in the pair against the other, creating a “dif-
ferential mode” tuning scenario. In this configuration, the magnetic fluxes from the coils
interact and only the flux difference at the qubit position influences the pair. We utilize
this regime to precisely adjust any detunings in individual qubit frequencies, bringing both
qubits within the pair into perfect resonance. While common tuning regime creates strong
magnetic flux, which is also influencing the distant qubit pair, the differential tuning regime
is only impacting the local pair due to its small differential field strength. Figure 4.7 shows
the coil arrangement on the top of the waveguide and a magnetic flux simulation for a
qubit pair in a common tuning regime. To optimize flux tuning, we conducted magnetic
flux simulations based on Biot-Savart law using the MagpyLib Python package 3. Due to

3MagpyLib Python package 2023, https://magpylib.readthedocs.io/en/stable/



4 Experimental Platform 43

Figure 4.8: Magnetic Field Simulation. Simulating magnetic field at the
position of each of the qubits, while sweeping through the position of a single
coil to achieve the largest flux difference between the qubits. The Y-axis is
perpendicular to the waveguide propagation direction, pointing across the qubit
pair. The X-axis is parallel to the waveguide transmission direction with qubit
SQUID loop facing the transmitting waves. The B-field is decreasing as the coil
moves further away from the position of the qubits.

physical size constraints in our setup, we systematically explored the positions of individ-
ual coils. For each position, we calculated the magnetic flux component flowing through
the SQUID loop of each qubit. Figure 4.8 illustrates the strength of magnetic flux when
a coil is moved perpendicular to the waveguide transmission direction (left) and along the
waveguide direction (right). It can be seen that for specific arrangement the coil creates
a flux difference at the qubit positions. We use the coil position creating the largest flux
difference and optimize in the same manner also the coil sizes. Once the best configura-
tion was established, we designed the coil bodies using Solidworks, depicted in Fig. 4.9 b)
and had the university workshop construct them from copper. Subsequently, we wound
a thin 50µm superconducting wire around each coil body, applying varnish and a layer
of cigarette paper after each winding to ensure protection and prevent shorting. The coil
winding process is depicted in Figure 4.9 a). We wound as many windings as possible to
create a strong magnetic flux while avoiding excessive current, which could lead to sample
heating.

4.4 Cryogenic Wiring

The rectangular waveguide, serving both as a readout and sample holder, is fixed to the
bottom “base” plate of the Triton DU7 − 200 Cryofree dilution refrigerator, operating
at approximately 20 mK. The waveguide is in direct contact with the sample holder,
which ensures thermalization of the sample. The sapphire chips containing qubits are
attached to copper clamps that hold them in the center of the waveguide and thermalize
to the waveguide with the help of small screws that tighten them on the side. The qubit
control and readout is achieved by sending radio frequency (RF) signals and direct current
(DC) sources applying flux bias to frequency-tunable qubits. The control electronics are
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Figure 4.9: Coil Fabrication. a) Winding of a coil with a thin superconducting
50µm wire. On average 72 m of wire has been winded on each coil. b) Solidworks
drawing of the waveguide with the designed coil arrangement. The qubits are
positioned in the center of the waveguide. c) Mounting of coils on fabricated
copper bodies getting prepared to be mounted on top of the waveguide.

located at room temperature, so in addition to keeping the experiment thermalized, we
need to ensure that we protect it from the noise coming through the control drive lines and
output lines [21, 55]. For this purpose we use self-built microwave wiring including filters,
attenuators and isolators. The input lines are connected to refigerator stages with higher
temperature and will therefore introduce a thermal noise to the experiment. We attenuate
the signal after each stage to reduce leakage of thermal photons through the lines. The
main source of thermal noise through the output line is the high electron mobility transistor
(HEMT) amplifier. We do not want to attenuate the output signal, so for the output lines
we use cryogenic isolators, that allow transmission out of the experiment but strongly
attenuate in opposite direction.

Additionally to the protection from thermal noise, we use 4 − 8GHz bandpass filters Mi-
crotronics BPC50403-G084 on each driving line to attenuate the microwave noise. The last
microwave element, besides attenuation before the lines enter the can with experiment is a
home-built Eccosorb filter, which absorbs the high-frequency infrared noise, which would
lead to additional losses due to excitation of quasiparticles across the superconducting band
gap [21, 45].
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Figure 4.10: Schematic of the wiring. The schematic includes the Octave,
which is an integrated IQ-mixing circuit, the microwave electronics at room
temperature, drive and output lines with cryogenic attenuation, filters and am-
plifiers.

We tune the qubits in frequency by applying current from Keysight B2902A SMU and
Yokogawa GS200 DC sources through the coils mounted on top of the waveguide. Each DC
line is equipped with a room temperature Thorlabs EF110 lowpass filter. The experiment
is controlled either using continuous wave (CW) measurements with a vector network
analyzer (VNA) or using pulsed sequences from an arbitrary waveform generator (AWG).
As AWG we use Quantum Machines OPX+ platform, which includes an analog to digital
converter (ADC) and is extended by Quantum Machines Octave - an integrated IQ-mixing
circuit for up- and downconversion of the signal. Figure 4.10 shows a simplified schematic
overview of the cryogenic wiring for time domain measurements with AWG.
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CHAPTER 5

Characterisation of Multi-Qubit System in

Rectangular Waveguide

In this chapter, we outline the measurement methods [41] used to characterize the exper-
imental system. We begin by characterizing a pair of transmon qubits using continuous-
wave (CW) or long-pulse measurements. Subsequently, we investigate interactions be-
tween dark and bright states. Leveraging these interactions, we extract the population
of the decoherence-free dark state and perform coherent control using pulsed sequences
and time-domain measurements. Finally, we extend our analysis to the full experimental
system, which consists of four transmon qubits and present our findings.

Figure 5.1: Waveguide Transmission. a) The S21 measurement of the waveg-
uide transmission. Waveguide has a cut-off frequency at approximately 6.5 GHz
below which the transmission exponentially decays to the level of background
noise. A bright state transition of a qubit pair is visible at around 7.8 GHz as
a dip in the transmission spectrum. b) A schematic drawing of a waveguide
transmission measurement.

5.1 Waveguide QED with Two Transmon Qubits

Two identical qubits on resonance interact due to close vicinity of the metallic transmon
pads, leading to coherent exchange swapping of photons. The qubits get new collective
eigenstates comprising of a symmetric bright state and anti-symmetric dark state. In
following we characterize this state one-excitation manifold, beginning with flux tunability
and following with dependence on drive power and spectroscopy measurements. The qubits

47
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Figure 5.2: Flux maps. Single coil is tuned across range of 1mA and all other
coils are turned off. a) Coil 1 is positioned directly above qubit pair 1. Due
to the close proximity of the qubits on the chip and the strong coupling J̃j,k,
both qubits within the pair exhibit similar tuning behavior. This manifests as
the fast oscillating resonances. On the opposite side of the waveguide, another
qubit pair is affected by crosstalk, resulting in slower oscillating resonances. b)
Due to their symmetrical arrangement and close proximity, the flux map of Coil
2 closely resembles that of Coil 1. However Coil 2, positioned on one side of the
pair, tunes the nearer qubit slightly more than the other. The difference can be
seen when comparing the plot for coil 1 and coil 2 in the region around 0.4 mA,
where the individual qubits detune from one another. c) Arrangement analogue
to a) but for the qubit pair 2. This coil has slightly more turns than the others,
resulting in a stronger field and shorter oscillating periods. d) Analogue to b)
on the pair 2.

have been specifically designed to have a strong coupling rate J̃j,k in order to achieve
better driving. This, however, leads to qubit resonances becoming hybridized, making it
challenging to distinguish individual qubit resonances.

5.1.1 Flux Tuning

Qubits with Josephson junctions built in SQUID configuration can be made frequency
tunable by applying external magnetic flux, as can be seen from eq. 2.21. For availability
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reasons, we used two different yet comparable DC current sources, Keysight B2902A and
Yokogawa GS200 to drive current through the superconducting coils built on top of the
waveguide housing for flux-tuning. Adding an experimental parameter requires calibration;
thus we measure a flux map for each coil, while keeping the other coils inactive. In Fig.
5.2, we change the current flowing through a single coil from −0.5 mA to 0.5 mA, while
measuring the waveguide transmission parameter |S21|. Through these measurements, we
gain insight into the response of the qubit system in the presence of external magnetic flux.
Specifically, we determine the current settings for tuning qubit to a specific desired flux
spot, explore the tunability range of the qubits and analyze their oscillation periods.

The qubit pair positioned directly beneath the coil being swept experiences a strong mag-
netic flux. This effect manifests as fast-oscillating resonances on the flux maps, depicted
in figure 5.2. Conversely, the pair located on the opposite side of the waveguide encoun-
ters a much weaker field due to its greater distance from the coil and is visible as the
slow oscillating large resonances. As we increase the absolute value of the current applied
through the coil, the magnetic flux increases and consequently, the flux difference at the
qubit positions becomes larger. We observe the qubits within a local pair tuning apart as
the absolute current increases.

Common and Differential Coil Tuning

Besides applying flux bias with a single coil, we also utilize two distinct flux tuning regimes
to control and optimize the collective multi-qubit states. Two coils in symmetric arrange-
ment are mounted on top of the waveguide housing for each qubit pair. In common tuning
mode we apply current through both coils in the same polarity. We calibrate for imper-
fections and differences in the number of windings of each coil by counting the periods
in single coil flux map 5.2 and calculating the step in current accordingly. The magnetic
fields in common tuning mode overlap and tune both qubits in a pair with the shared
common field. Figure 5.3 a) shows a flux map measured in common tuning mode. The
fast-oscillating narrow resonances are the local pair located directly beneath the coil, ex-
periencing a strong field and responding to even small differences in the applied magnetic
flux. Due to cross-talk is the distant qubit pair from the opposite side of the waveguide
also visible. It shows up as the slower oscillating periods, because its experiencing a weaker
field as a consequence of its distance to the coils.

In common tuning mode, we can tune the collective bright state to a desired frequency.
Using the differential tuning mode, we manipulate the qubits by ramping the two coils in
opposite polarity. With differential tuning, we fine-tune the local qubit pair using only the
flux difference between the fields produced by the coils (see Figure 5.3 b). The differential
flux is small in amplitude, ensuring it does not influence the distant pair on the other
side of the waveguide, which appears as a vertical line in the measurement. After tuning
the pair in common mode to the desired frequency, we can mitigate small detunings in
individual qubit frequencies using differential mode. To assess the detuning in frequencies,
we measure the relaxation time T1 of the dark state, aiming to maximize it for a “perfectly
dark” dark state.
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Figure 5.3: Common and Differential Flux Tuning. a) Flux map utilizing
common coil tuning regime. Both coils on a pair are synchronously tuned with
the same current and same polarity. The local pair is visible as fast oscillating
narrow resonances, while the distant pair, affected by cross-talk, oscillates more
slowly due to a weaker magnetic field (the large slow tuning resonance). b) Flux
map measured utilizing the rejection tuning regime. Two coils within a pair are
tuned using the same current but with asynchronous polarity. As a result, the
pair is exclusively tuned based on the flux difference. Specifically, only the local
pair undergoes tuning in this regime, as the flux difference is insufficient to affect
the pair on the other side of the waveguide.The plot consists of two consecutive
measurements taken at different frequency ranges due to device limitations. The
variations in contrast are likely attributed to differences in calibration.

5.1.2 Power Saturation

When a microwave photon travels through the waveguide at resonance frequency of the
qubit, it becomes absorbed by the qubit and subsequently re-emitted in both forward and
backward directions, with a phase difference. In the forward direction, the re-emitted
photon interferes destructively with the propagating signal due to the phase difference.
As a result, we observe a reduction in the amplitude of the transmitted microwave signal,
manifesting as a Lorentzian dip in the transmission spectrum centered around resonance
frequency of the qubit. Conversely, in the backward direction, between the waveguide
input and the qubit position, the re-emitted photon interferes constructively. Performing
effectively as a perfect mirror for low drive powers at the qubit resonance frequency [4, 39].
The depth of the observed dip in the transmission spectrum depends on two key factors: the
amplitude of the signal propagating through the waveguide and the specific characteristics
of the qubit. The reduction in transmitted signal is decreased if the excited qubit dephases
before re-emitting the photon or if it radiates the excitation to a parasitic two-level system.
Additionally, when the incoming signal amplitude is so large that the qubit cannot re-
emit the photon before another one arrives, we observe power-dependent saturation of
the resonant dip, as illustrated in Figure 5.4. Along the power saturation effect it can
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Figure 5.4: Power Saturation. The probe power is increased as the probe
frequency is varied across the resonance frequency of the qubit pair. For a
statistical single photon probing power, the qubit pair absorbs and re-emitts
one photon at a time. As the probe power rises, a greater number of photons
travel through the waveguide. This leads to saturation of the qubit resonance,
where some photons remain unabsorbed due to the saturated 0 − 1 transition
and reach the end of the waveguide increasing the |S21| coefficient. At high
probe power, the qubit resonance completely disappears from the transmission
spectrum. (bottom right) Minima of the resonance features are extracted for
increasing probe powers, a single photon power that would be selected for the
measurement is indicated by red color.

be observed that the resonance feature is also power-broadened and shifted in frequency,
similar to AC-Stark shift, with increasing transmission amplitude.

5.1.3 Circle Fits

From the observations of qubit resonance features in waveguide transmission measure-
ments, we can extract the fundamental coupling strengths of the qubit. The waveguide
transmission parameter S21 is a complex number with information about both the ampli-
tude and phase of the signal scattered on the qubit transition. In a notch configuration,
the spectral shape of a resonator coupled to transmission line closely resembles that of a
qubit transition at low drive power γr k Ω. Thus we extract the qubit quality factors
Q with the help of the circle-fit notch routine [32, 51]. For the intended experiment, the
frequency corresponding to the qubit separation of λ/2 is in particular interest. Figure
5.5 shows the circle fits of a waveguide transmission measurement at this frequency, in
which we fit the equation 3.36 to the measurement data. From 5.5 we were able to extract
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the quality factors for a two-qubit bright state: Ql = 60, Qc = 62 and Qi = 2428 and
a linewidth of approximately 120 MHz at frequency of 7.36 GHz. This value is close to
expectations based on the design parameters of the qubit, where the linewidth of a single
qubit transition was simulated to be 54 MHz without decoherence. The resonance feature
is still likely hybridized, due to the strong coupling rate J̃j,k.

Figure 5.5: Circle Fit Routine Measurement of a single transmon pair plotted
in blue, red dashed line represents the fit. a) The transmission coefficient |S21|
at the resonance frequency of the qubit pair is more than 30dB smaller than
the probe power. The bright state resonance has a linewidth of 120 MHz. b)
The propagating signal experiences a phase shift of 180 ◦ after interacting with
the qubit pair. c) When applying a circle-fit routine to the complex scattering
parameters, we address the asymmetric lineshapes arising from interference with
standing waves in the microwave background.

5.1.4 Avoided Crossing

In this chapter, we have analyzed the control and characteristic properties of a two-qubit
bright state. Now, our focus shifts to utilizing the interaction between bright and dark
states to study and perform coherent operations on the waveguide-decoupled dark state.
To determine the interaction strength between these two states, we continuously tune
two transmons forming a pair in and out of resonance, while measuring the transmission
through the waveguide. If there was no coupling, that is, no interaction between the bright
and dark state, the two states would simply cross, intersecting at the point of zero-frequency
detuning. However, because of the direct capacitive coupling arising from the proximity
of metallic transmon pads, the qubit resonances do not cross. Instead, they approach
closely and diverge, maintaining a minimal separation. This phenomenon is known as
avoided crossing or anti-crossing [8, 52]. On resonance, excitations can coherently swap
between the two transmons, leading to hybridization of the transitions and formation of
new eigenstates. In the detuned case the branches represent individual qubit |0ð − |1ð
transitions. The frequency detuning at the point of minimal separation corresponds to
2J̃j,k, where J̃ represents the coupling rate between the states. We measure the avoided
crossing for both pairs of qubits, as depicted in Figure 5.6 and determine the coupling
strength between the bright state |Bð and the dark state |Dð to be J̃/2π ≈ 500 MHz.
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Figure 5.6: Avoided Crossing of Two Qubits. We tune the two qubits in a
pair in and out of resonance and observe the avoided crossing of the bright and
dark state, revealing the coupling strength J̃/2π ≈ 500 MHz for both transmon
pairs.

We take advantage of this interaction to read out the population of the waveguide-decoupled
dark states via performing waveguide transmission measurements monitoring the level of
the corresponding bright state.

5.1.5 Dark State Spectroscopy

After determining the bright state frequency and the transmission amplitude used for
readout, we proceed with dark state spectroscopy measurements to identify the resonance
frequency of the dark state and calibrate the power of the signal sent through the sideport.
In this measurement, we send a range of frequencies through the sideport, subsequently
measuring the waveguide transmission parameter S21 at the bright state frequency after
each sideport pulse. We specifically probe the dark state approximately 1 GHz below
the bright state frequency, leveraging our knowledge of the coupling between the two
states (as described in section 5.1.4). Figure 5.7 illustrates the dark state spectroscopy
measurement, along with the corresponding pulse sequence. The blue line represents dark
state spectroscopy at low sideport drive power. At the resonance frequency of the dark
state transition the readout level experiences a jump to approximately double the readout
level, indicating that the dark state has been excited. As we move to higher frequencies,
the readout amplitude returns to the previous level due to frequency detuning. At high
drive powers (red line), the dark state resonance experiences power broadening and a level
from a higher-excitation manifold appears in the spectroscopy, as the dark state transition
becomes saturated.
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Figure 5.7: Dark state spectroscopy. A range of frequencies are transmitted
through the sideport. Corresponding to each frequency, a readout pulse is sent
through the waveguide at bright state frequency. Level of the bright state is
increased when the signal transmitted through sideport matches the resonance
frequency of the dark state (left). At higher drive amplitude the resonance peak
undergoes power broadening and multi-photon peaks appear. (right) Diagram
of the level scheme with a pulse sequence used in the measurement, captured
by a oscilloscope. A Gaussian pulse is sent to excite the darkstate, followed by
a square readout pulse through the waveguide.

Anharmonicity of the Local Dark State

In this experiment we did not characterize the entire state manifold including the multi-
photon states, but considering insights from the previous version of the experiment [60],
there might be several higher-excitation states. While these higher excitation states do not
play a central role in the current experiment, it is important to consider them when deter-
mining pulse lengths and drive amplitudes. We have observed states of higher-excitation
manifold in the measurements when performing transmission measurements in the high-
power regime, as depicted in Fig. 5.8 b). To further investigate states that are close in
frequency to the dark state, we conducted a two-tone spectroscopy in which we measured
the waveguide transmission parameter with VNA at low-power levels. while applying a
microwave signal through the sideport using an external signal generator EXG at the dark
state frequency.

As the amplitude of the EXG signal increases we can observe saturation of the transition
|Gð − |D1,2ð and appearance of a hybridized higher-excitation state with anharmonicity of
approximately 120 MHz to the dark state, shown in figure 5.8 a). The shape of the resonant
feature of the higher-level state is distorted because at this flux bias point it was located
below the waveguide cutoff frequency.
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b)a)

Figure 5.8: Dark State Anharmonicity. a) Two tone spectroscopy. Waveguide
transmission is measured using VNA at low probe power, while simultaneously
the dark state is pumped with an external signal generator through the side-
port. When higher power is sent through the sideport, the dark state becomes
saturated and a higher-excitation state appears. b) A flux map of the dark
state at high transmission power without external signal generator. At high
transmission power, the dark state becomes likewise saturated, resulting in the
emergence of a higher-excitation state. This needs to be accounted for when
performing the measurements. A red dashed line indicating the position dark
state and blue dashed line the position of the anharmonic state.

5.1.6 Time Domain Characterization

Figure 5.9: Example of a Pulse
Sequence Taken by a Signal
Analyzer.

Spectroscopic measurements in the frequency do-
main, taken with small steps across a wide fre-
quency range are typically measured using a con-
tinuous wave or long pulses. They serve to charac-
terize the Hamiltonian parameters in a steady state
of the qubit. However, when aiming to investigate
the dynamics of the system and performing coherent
operations on the nanosecond scale, it becomes nec-
essary to use short pulses for the control sequence.
For this purpose, we switch from using a vector
network analyzer (VNA) to an arbitrary waveform
generator (AWG) and IQ mixing scheme (or Oc-
tave) to provide read-out and sideport driving. Fig-
ure 5.9 shows an example of a pulse sequence used
to perform measurements in time-domain, 600 ns
Gaussian-pulse used to excite the dark state tran-

sition (blue) and 100 ns square pulse used for readout measurement through the waveguide
(yellow).
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Figure 5.10: Schematic of the Experimental Setup with a Single Trans-
mon Pair. The transmon plates serve as the coupling capacitance leading to
coherent exchange coupling. Within the waveguide, only states that align with
the phase of the waveguide drive field are excited—this symmetry holds for the
capacitively coupled pair. In contrast, the sideport, due to its gradient across
the pair, can also excite the antisymmetric states.

Rabi Oscillations

The first experiment in time-resolved setup that we perform to tune up qubit pulses is
the power Rabi experiment. In this variant of the Rabi experiment we keep the length of
the drive pulse constant, ensuring that it has the same frequency width, but increase the
drive amplitude Ω. First, a qubit drive pulse is played through the sideport of a local pair,
followed by a waveguide transmission measurement for the readout. The drive pulse is
calibrated on the dark state spectroscopy measurements such that a pulse brings the qubit
to the excited state; in this case we bring the qubit state from the ground state |Gð to
the dark state |D1,2ð and access the bright state via the waveguide for readout of the dark
state population. Between measurements a long wait time is required, typically several
T1, to re-initialize the system back to the ground state. Figure 5.11 shows a power Rabi
measurement in a range of dark state drive frequencies. The figure includes a measurement
scheme and a linecut taken at the center frequency. When the drive pulse is detuned from
the resonance frequency of the dark state, it is unable to excite the dark state transition.
However, at high drive amplitudes it remains to be able to drive the transition, resulting
in the characteristic pattern.

Characteristic Qubit Decoherence Times

The characteristic qubit relaxation time T1 is measured by sending a π−pulse to the dark
state via the sideport, exciting the dark state transition and varying the delay time be-
fore the readout through the bright state. The best measurement of a single pair T1 is
shown in figure 5.12. Choosing the amplitude with highest dark state population in Fig.
5.11, increases the measurement contrast. The measurement is fitted with an exponential
decay

y1(t) = Ae−t/T1 (5.1)
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Figure 5.11: Power Rabi Measurement of a Single Qubit Pair. The anti-
symmetric component of the sideport drive can be used to drive Rabi oscilla-
tions, while simultaneously measuring the waveguide transmission through the
waveguide ports. With this measurement scheme we observe Rabi oscillations
between the ground state and the local dark state as the pulse amplitude in-
creases. When the frequency of the sideport drive is detuned from the dark state
resonance frequency, Rabi oscillations cannot be excited. However, at higher
drive amplitudes, they become observable. (right) A linecut through the dark
state resonance frequency at 7.173 GHz and a level scheme including the pulses.

to extract the time constant T1 ≈ 26µm. Compared to the bright state with linewidth
of ∼ 120 MHz and a lifetime in the order of nanoseconds, enconding the qubit into the
decoherence-free dark state leads to significant improvement in the relaxation time. We
characterize the dephasing time of the qubit with the Ramsey experiment. This requires
the same setup as for the relaxation time measurement, but a different pulse sequence,
as shown in figure 5.13. First the qubit is excited by applying a π/2- pulse through the
sideport to a superposition state 1/

√
2(|Gð+i |D1,2ð), that is an equal probabilistic mixture

of states, such that one can no longer confidently predict the state. Then after a varying
time delay t another π/2-pulse is sent to bring the qubit back to the ground state and
subsequently immediately performing a readout through the waveguide. We fit the data
by exponentially decaying sine function [41]

y2(t) = A + B sin(2π∆dt + φ) exp(t/T ∗

2 ), (5.2)

with detuning ∆d and phase offset φ to determine the dephasing time T ∗

2 ≈ 590 ns. We
introduce an additional phase shift to the second π/2- pulse to see more oscillations in the
measurement and achieve a better fit. We explain the comparably low value of the T ∗

2

lifetime due to limitations associated with magnetic flux-noise in the dilution refrigerator.
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Figure 5.12: The Qubit Relaxation Time T1. We apply a π-pulse, determined
from the Rabi oscillations, to excite the qubit to the excited state. After a varied
wait time, the readout is performed determining the bright state amplitude.

Figure 5.13: The Dephasing Time T ∗

2 of the Local Dark State. The de-
phasing time T ∗

2 can be determined by fitting the data acquired by the Ramsey
measurement scheme to exponentially decaying sine function eq. 5.2. A π/2 -
pulse is sent through the sideport exciting the dark state to the superposition,
followed by a varied wait time and subsequent π/2 - pulse to bring the qubit
back to the initial state. After each cycle a readout pulse is sent through the
waveguide. The parameter T ∗

2 has a fit error of 2.43 · 10−8. Schematic of the
pulse sequence is shown on the right.
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Figure 5.14: The Complete Experimental System with Four Transmon
Qubits. Sketch of the waveguide with two transmon pairs including a sideport
line to drive the local dark state respectively. A drawing of the level scheme
consisting of a local dark state |D1,2ð for each pair and a global delocalized dark
state |D3ð and global bright state |B4ð.

5.2 Waveguide QED with Four Transmon Qubits

To incorporate an experiment that leverages both direct qubit exchange coupling and
waveguide-mediated interactions, we employ two pairs of transmon qubits, as schematically
shown in Fig. 5.14. These pairs are effectively separated by a distance of λ/2 to maximize
correlated dissipation between them, meaning the local bright states |B1,2ð destructively
interfere decoupling the dislocalized global four-qubit dark state |D3ð and global bright
state |B4ð with a linewidth four times that of a single qubit transition (as depicted in
Fig. ??). The state manifold still includes the two qubit local dark states |D1,2ð localized
at the position of each pair. The only transition visible in the waveguide transmission
measurement is between ground state |Gð and |B4ð. Achieving this requires tuning all
qubits to resonance, which presents challenges due to qubit cross-talk. First, we tune the
qubits within a single pair to resonance. Subsequently, we utilize common and differential
tuning techniques to bring both pairs into resonance at the desired frequency corresponding
to a separation of d = λ/2. To determine this frequency, we need to consider the phase
φ = 2πd/λ, with the pair separation d = (46 ± 2) mm, that a photon acquires when
traveling from one transmon pair to the other [37, 60]. The phase is dependent on the
photon wavelength in the waveguide λ = 2πv/ω, where v describes the phase velocity and
ω the angular frequency. For a phase difference φ = π this corresponds to an effective
emission frequency ω

2π = (7.31 ± 0.06) GHz.

5.2.1 Rabi Oscillations on the Collective Dark State

The sideport that creates a gradient field across a pair of qubits is capable of driving
the dark state, which is inaccessible through the waveguide due to symmetry restrictions.
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Sending microwave pulses at the frequency of approximately 7.32 GHz, corresponding to the
effective pair separation of λ/2, through the sideport excites the transition between |Gð and
the dislocalized four-qubit dark state |D3ð, shown in Fig. 5.15. The global bright state |B4ð
is degenerate in energy with |D3ð, so we cannot use a frequency-selective drive to choose the
transition, but we can select the transition by introducing a phase difference between the
sideports [60]. Due to the π-shifted symmetry of the respective oscillating dipoles between
|D3ð and |B4ð, we can coherently scatter photons between the ground state and |B4ð to
read out the population of |D3ð via a waveguide transmission measurement. Figure 5.15
shows a power Rabi measurement between the ground state and |D3ð utilizing this readout
method. We used a constant-length Gaussian excitation pulse and maintained a phase
difference of φ = 0 between the sideports, as the observed oscillations arise from driving
with only one of the sideports. A single sideport can excite the global dark state, but leads
to a decreased contrast as the bright state |B4ð is also affected by the drive pulse. The
amplitude of the signal scattered on |B4ð after dark state excitation does not fully return
to the ground state level, potentially due to leakage from |D3ð into |B4ð. Nevertheless,
we successfully demonstrate coherent control of the collective four-qubit dark state and
further investigate the characteristic lifetimes associated with this transition.

5.2.2 Characteristic Decoherence Times of the Collective Dark State

We experimentally determine the relaxation time T1 of the global dark state |D3ð by
sending a Gaussian π-pulse through the sideport to excite the transition from |Gð to |D3ð.
We then vary the delay time before performing a readout via waveguide transmission,
measuring the level of global bright state |B4ð. The measurement results are shown in
Figure 5.16, where we fit an exponential decay (given by Equation 5.1) to the data to
extract the time constant, which yields T1 ≈ 0.7µm. The relaxation time of the global
dark state is significantly shorter than the T1 time associated with the local dark state in
a single transmon pair. However, it is important to compare the relaxation time with that
of the global bright state, which has double the linewidth of the bright state in a single
pair. Additionally, potential factors such as imperfect matching of the decoherence-free
frequency corresponding to the λ/2 pair separation or detuning of local transmon pairs
in frequency, despite our best efforts, may contribute to decrease in T1. Furthermore, the
measurement of a short dephasing time (see Figure 5.17) also hints at the impact of flux
noise as a potential limitation.

To analyze the susceptibility of the global dark state to environmental noise, we perform
a dephasing time T ∗

2 measurement using a Ramsey experiment, following the methodology
described in section 5.1.6. We initiate the experiment by sending a π/2-pulse through the
sideport, preparing the system in an equal probabilistic superposition state 1/

√
2(|Gð +

i |D3ð). After varying the wait time of the system being in the superposition, another
π/2-pulse is applied to bring the system back to the |Gð state. Subsequently, we perform
a waveguide transmission measurement of the global bright state |B4ð to read out the
dark state population. The measurement results, shown in Figure 5.17, are fitted using a
decaying sine function given by Equation 5.2. From the fit, we determine the parameter
T ∗

2 ≈ 390 ns. To achieve a better fit, we applied an artificial phase rotation to the second
π/2-pulse. Due to background flux fluctuations causing shifts in the resonance frequency,
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Figure 5.15: Power Rabi Measurement of a Global Four Qubit Dark
State. Sideports driving the antisymmetric global dark state |D3ð with the gra-
dient field they excite at the qubit location. The global dark state is degenerate
with the global bright state |B4ð, but it remains decoupled from the waveguide.
Consequently, after each dark state driving pulse, a waveguide transmission
pulse can be sent to read out the dark state population. A pulse schematic
of the measurement (top right) and a linecut from the Rabi map at the reso-
nance frequency of the global dark state at 7.325 GHz. In this measurement,
the global dark state is driven exclusively by one sideport, although it should
be feasible to drive it using both sideports simultaneously. When driven by a
single sideport, the contrast is reduced because the bright state is also affected
by the drive pulse.

we could not run the measurement for long time and with many averages, resulting in a
relatively noisy background level to which the measurement decays.

To further analyze noise susceptibility, we perform the Hahn-Echo sequence to determine
the T2-echo time. The measurement procedure closely resembles the previous case: we
initiate the system by applying a π/2-pulse, creating a superposition state. After an initial
excitation pulse, we allow the system to evolve freely. Then, we apply a π inversion pulse to
refocus any inhomogeneous dephasing. After another waiting interval, the final π/2-pulse is
sent through the sideport to return the system to its ground state. Immediately afterward,
we perform a readout on the bright state |B4ð using the waveguide. The resulting echo
signal reveals the coherence decay, providing insights into the relaxation properties of the
system. Figure 5.18 displays the measurement data, which we fit with an exponentially
decaying function 5.1 to extract the dephasing parameter T e

2 ≈ 1µm. The Hahn echo
T2 characterizes both the dephasing effects and other relaxation processes, unlike the T ∗

2

which can be referred to as "pure dephasing" [35]. Due to the refocusing π-pulse, we
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Time

Qubit drive

Readout

�-pulse

Delay time

Figure 5.16: The Relaxation Time T1 of the Global Dark State. The data
is fitted with and exponential decaying function to extract the T1 parameter. A
Gaussian π-pulse is sent through the sideport to excite the dark state transition
with subsequent readout measurement through the waveguide, schematically
sketched on the right.

Figure 5.17: The Dephasing Time of the Global Dark State. The dephas-
ing time T ∗

2 , can be extracted by fitting the data obtained from the Ramsey
measurement scheme to an exponentially decaying sine function described by
eq. 5.2. The T ∗

2 parameter has a fit error of 6.27 · 10−9.
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Figure 5.18: Dephasing Hahn Echo Time of the Global Dark State. A
π/2-pulse is sent via the sideport to bring the state to a superposition state,
followed by refocusing π-pulse while the system is evolving freely. Another π/2-
pulse brings the system back to the ground state and waveguide transmission
measurement reveals the dark state population. The fitted parameter T e

2 has a
fit error of 5.98 · 10−8.

expect the Echo dephasing time to be longer than T ∗

2 . The maximal contrast in this
measurement is reduced compared to Figure 5.17. We attribute this decrease to frequency
hopping of the state caused by external magnetic field fluctuations, which impacts the drive
amplitudes corresponding to π- and π/2-pulses. The entire measurement process spanned
approximately an hour.
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CHAPTER 6

Conclusions and Outlook

Implementing a four-transmon experiment is the first step in advancing waveguide QED as
a platform to investigate many-body interactions in 3D. In this thesis I have characterized
an experimental system consisting of a four transmon qubits strongly coupled to an open
environment - the waveguide. Waveguide mediates interactions between the qubits and
can be used to read out the qubit internal degrees of freedom coupled to the waveguide
propagating modes. Direct capacitive coupling between two resonant transmons gives rise
to manifold of collective states, with a strongly waveguide-coupled bright state |B1,2ð and
completely decoupled dark state |D1,2ð, which has decoherence rate only limited by non-
radiative decay. For the local dark state, we have measured the best relaxation time of
26µm, which demonstrates effective protection against the decay into the waveguide. A
complete experimental system with four transmon qubits possesses a dark state localized at
the position of each qubit pair and two global dislocalized states in one-excitation manifold -
the global dark state and global bright state. After developing and optimizing a flux-tuning
scheme, we demonstrated the common- and differential tuning modes, using which we have
brought both transmon pairs into resonance and used waveguide-mediated interactions to
decouple a dislocalized dark state |D3ð and global bright state |B4ð. By sending excitations
through the sideport we achieve a coherent control of the anti-symmetric dark state and
read out its population via waveguide transmission measurements of the global bright
state.

This experiment is a follow-up experiment of [60], where we have used an adiabatic elim-
ination scheme realized by waveguide coupling γr that is so strong, that we eliminate
population leakage from |D3ð to the higher-excitation state |B14ð [53]. In the next steps,
we need to establish a better control of the multi-qubit dark state utilizing both sideports
simultaneously and optimizing the phase difference between the sideport drives. With bet-
ter control and with strong waveguide coupling we aim to realize dark-state two-qubit gates
by creating a chain of four qubits [46]. The computational subspace would be spanned by
the two local dark states and applying a 2π-pulse from the ground state to the global dark
state |D3ð would introduce a conditional phase shift, enabling the implementation of a
CPhase gate. In the future, multi-qubit dark states in waveguide QED could become a
promising platform for studying the dynamics of quantum many-body interactions [2, 25],
investigating many-body localization in disordered arrays [20, 43] or even as a platform for
quantum simulations of open systems taking advantage of the strong waveguide coupling
and decoherence-free subspaces given by the dark states [46]. Taking the two-excitation
manifold into account to transfer the information to itinerant waveguide photons opens
the door to creation of qubit cluster states [7] coupled to the propagating modes in the
waveguide, to study the entanglement between photons at different frequencies. A copla-
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nar 2D waveguide chip design is being currently implemented in our research group, for
easier scalability of the qubit chain, setting another building block to development of this
exciting quantum computing approach.
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