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Abstract
The main objective of this thesis is to measure the temperature of the mode of the readout
resonator coupled to the transmon qubits. A second objective is to benchmark the thermal
baths associated with the microwave lines wired to the quantum system (i.e. readout
resonator and qubits). In order to accomplish these tasks, the coherence properties of
the transmon qubits are monitored under different time domain experiments. In other
words, the qubits represent the “quantum sensors” used to measure the temperature of
the system.

The models used in order to describe the connection between the coherence properties
of the transmon qubits and the environment are the Linblad master equation (see chapter
3) and the Johnson-Nyquist noise propagation along the microwave lines (see chapter
4). The measured temperature of the readout resonator mode represents an upper limit
for the temperature of the resonator. The temperature measurements of the readout
resonator are consistent with the theoretical predictions in the two cooldowns. Indeed, for
the first cooldown the measured temperatures of the readout cavity are Tcav ≤ 81(1)mK
and Tcav < 76(1)mK while the predicted temperature is 67mK; for the second cooldown
the measured temperature is 73(1)mK while the predicted temperature is 63mK. The
model though strongly deviates in the prediction of the temperature of the qubits for both
of the cooldowns by more than 50mK. This points to an unknown “hot” reservoir were
coupled resonantly to the qubits. Further measurements should be performed in order to
verify the reason and the reproducibility of this phenomena.
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Chapter 1

Introduction

Over the past twenty years the field of superconducting quantum circuits has maturated
from a predominantly basic research endeavour to one that increasingly explores the
engineering of larger-scale superconducting quantum system [1]. A particular “large”
system of interest in the field of quantum information and computation is represented
by the quantum computer. One recent example for the central role of the Circuit QED
field on quantum information and computation and large scale systems is represented
by the demonstration of the so called “Quantum advantage” [2]. In this experiment a
processor made of 53 superconducting qubits has performed a computational task beyond
the capabilities of supercomputers.

The essential advances that have enabled the development of multiqubit systems
include improvements in the energy relaxation time T1 and coherence time T2 [3, 4], which
have risen by five orders of magnitude from the early results of Nakamura [5]. As T1

increases, T2 becomes increasingly sensitive to the presence of dephasing [6, 7, 8]. For
transmon qubits, one of the main channels of dephasing is represented by the residual
thermal population in the readout cavity [7]. This can be explained by the fact that
in the dispersive regime each photon populating the cavity shifts the qubit a frequency
shift by χ: stochastic fluctuations of the photon number in the cavity due to thermal
radiation lead to a dephasing thermal rate Γφth proportional to the average number of
thermal photons nth populating the cavity.

The main objective of this thesis is indeed to measure the mean number of photons
nth populating the readout cavity (i.e. the temperature of the mode coupled to the qubit).
In order to accomplish this task, the dephasing of the transmon qubits is measured with
time domain experiments. In other words, the qubits represent the “quantum sensors”
that are used in order to measure the temperature of the mode of the readout cavity
through their coherence properties.

The source of thermal noise is generally addressed by Johnson-Nyquist noise coming
from control and measurement microwave lines [9]. An attempt to benchmark the
reservoirs associated with the microwaves lines is made. In order to accomplish this task,
the temperature measurements are performed in two consecutive cooldowns, in which
the configurations of the microwave lines are kept fixed (i.e. the temperature of the
reservoirs remains the same) but different “couplers” between the quantum system and the
input line are inserted in order to change the coupling between the quantum system and
the reservoirs in the two different cooldowns. As a result of these measurements, a new
configuration of the microwave lines is proposed in order to provide a colder environment
for the quantum system.
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Chapter 2

Basic concepts

2.1 Quantum information
Computer Science and Information Science deals with the fundamentals of storing
information and processing information. Usually, those processes are carried out by
warm and macroscopic devices (classical computers) that obey to the laws of Classical
Mechanics. The information is stored in collections of bits, that represent a logical state
that can have two values, 0 or 1. The information processing is carried out with processors
who perform gate operation on the bit collections.

In a similar way, Quantum Information studies the mechanisms of storing and processing
the information with devices obeying the laws of Quantum Mechanics. The fundamental
unit of information is represented by a qubit (Quantum Bit), an ideal two level system,
whose logical state is described by the wavefunction |ψ〉. The quantum bit has the
possibility to represent the analog classical states ( |0〉, |1〉) but also all the infinite
possible superposition of them (|ψ〉 = a |0〉+ b |1〉). The information processing is carried
out with Quantum Gates, that can be realized as Hamiltonian terms which are switched
on for a time interval that govern the evolution of the quantum mechanical state.

The main requirements needed in order to achieve physical implementations of quantum
computation are nicely outlined in the so called “DiVincenzo criteria” (see [10]). In the
present thesis, just single qubit experiments are performed, thus a subset is only needed.
Following the same logic of the DiVincenzo criteria, the main ingredients required in order
to perform single qubit experiments will be outlined in the following sections.

2.1.1 The quantum bit
The quantum bit is the fundamental building block of quantum computation and quantum
information [11]. A qubit is simply a quantum two-level system like the two states of a
spin 1/2 particle, the ground and excited states of an atom, the vertical and horizontal
polarization of a single photon [10] or like the charge states of an electron in a double dot
potential [12]. According to the rules of Quantum Mechanics, the state of the qubit is
defined by the wavefunction of the two level system

|ψ〉 = a |0〉+ b |1〉
1 = a2 + b2

a , b ∈ C

3



4 2.1. Quantum information

which can be described as a two-dimensional complex vector space [11]. The states |0〉
and |1〉 are known as computational basis states, and form an orthonormal basis for this
vector space [11]. The density matrix that describes the qubit is simply

ρ =

(
|a2| a b∗

a ∗b |b2|

)
where the diagonal elements represent the probability of finding the qubit in the |0〉 or
|1〉 state, and the off diagonal elements (called coherences), represent the probabilty of
finding the qubit in a coherent superposition between the states.

Another convenient representation of the qubit state is through the vector
representation in spherical coordinates in the Bloch sphere (see fig. 2.1.1)

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉

where θ is the zenithal angle and φ is the azimuthal angle. The z axes is the quantization
axes of the system, where the north pole points to the |0〉 state and the south pole points
to the |1〉 state.

Figure 2.1.1: Bloch sphere representation of an arbitrary state |ψ〉 of a two level system.
The z axis, called longitudinal axis, represents the quantization axis of the system. The
projection of the state vector |ψ〉 along this axis (called polarization) can be found by
calculating the expectation value of the σz operator 〈ψ|σz |ψ〉. The x and y axes form the
transverse plane and the projection of the state vector along these axes can be found by
calculating respectively the expectation values of the σx and σy operators.

2.1.2 State manipulation
In order to perform quantum computation on a qubit a “universal” set of quantum gates
is needed. A quantum algorithm is typically specified [13] as a sequence of unitary
transformations U1, U2, U3,· · · , each acting on a small number of qubits [10].

The most straightforward transcription of this into a realization is to identify
Hamiltonians which generate these unitary transformations, viz. U1 = e−i/~

∫
H1t,

U2 = e−i/~
∫
H2t, U3 = e−i/~

∫
H3t, etc: then, the physical apparatus should be designed so
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that H1 can be turned on from time 0 to time t, then turned off and H2 turned on from
time t to time 2t, etc. [10].

In the context of single qubit experiments, this requirement means that we have to
be able to manipulate in a deterministic manner the state of the qubit from some initial
state ψi to a final state ψf by engineering a time evolution operator U(t − t0). This
time evolution operator can be engineered by adding a time dependent term in the qubit
Hamiltonian

H = H0 + V (t), (2.1.1)

ψI(t) = e
i
~H0t ψS(t), (2.1.2)

VI(t) = e
i
~H0t V (t) e−

i
~H0t, (2.1.3)

ψI(t) = UI(t− t0)ψI(t0), (2.1.4)

UI(t− t0) = T

{
exp

[
− i
~

∫ t

t0

VI(t) dt

]}
, (2.1.5)

where H0 represents the qubit Hamiltonian, V (t) is the time dependent interaction term,
ψI(t) represents the state of the qubit at a time t in the interaction picture, T is the time
ordering operator and UI(t− t0) is the time evolution operator in the interaction picture.

A useful representation of the action of the time evolution operator in the interaction
picture on the qubit state can be depicted in the Bloch sphere representation (see fig.
2.1.2).

Let’s imagine for example that the time dependent interaction term in eq. 2.1.3 has
the simple form VI(t) = 1

2
(θx(t)σx). The time evolution operator UI(t− t0) generated by

this Hamiltonian term is

UI(t− t0) = e
− i

~
∫ t
t0
VI(t)

, (2.1.6)

UI(t− t0) = e−
i

2~Θx|tt0σx , (2.1.7)
UI(t− t0) = Rx(Θx), (2.1.8)

Rx(Θx) =

(
cos Θx

2
−i sin Θx

2

i sin Θx
2

cos Θx
2

)
(2.1.9)

which results to be nothing else than the rotation operator along the x axis Rx(Θx).
It is easy then to imagine that a general time evolution operator UI(t− t0) composed

by a sequence of unitary transformations U1, U2, U3,· · · in the Bloch sphere representation
acts as a composition of rotation operators Rn̂1 (Θ1), Rn̂2 (Θ2), Rn̂3 (Θ3),· · · that moves
the state vector from one point to another in the Bloch sphere (see see fig. 2.1.2)

2.1.3 Qubit readout
One fundamental requirement for performing quantum computation tasks (and single
qubit experiments as well) is the ability to read the state of the qubit. For example, if the
density matrix of the qubit is

ρ =

(
|a2| a b∗

a ∗b |b2|

)
in an ideal experiment the qubit readout should give outcome “0” with probability |a2|
and outcome “1” with probability |b2|. In addition, if after the readout procedure the
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Figure 2.1.2: State manipulation representation on the Bloch sphere. The initial state
ψI(t0) is depicted as an orange vector, while the final state ψI(t) is depicted as a green
vector. The blue dots and the red dots represent two of the infinite paths that can lead to
this state manipulation, called single qubit gate. The trajectories of the state evolution
are uniquely determined by the engineered time evolution operators (UI(t− t0),UI(t− t0))
that can be described as compositions of Rn̂(θ) rotation operators.

qubit state is projected in the same state that has been read, the readout measurement is
called nondemolition measurement.

Given that there is a great variety of platforms suitable for quantum computation, it
is not surprising that multiple readout techniques exist. For example, for ion qubits, one
common form of readout consists of the measurement of the fluorescence of a bright state
(low lifetime) of the ion which is conditionally populated by an imaging laser in resonance
with the transition between the bright state and one of the two level of the qubit.

Another example is the light polarization measurement, performed by means of
polarized beam splitter and photodetectors on the single photons polarization qubits. In
our field of superconduncting qubits, the most common form of readout is the so called
dispersive readout (described in detail in section 2.2.6) in which the state of the qubit
can be measured from the state-dependent frequency shift of a cavity called readout
resonator.

2.2 Circuit QED
The interaction of atoms and optical photons inside cavities is described by the well known
field of Cavity QED. In the following sections we are going to describe the fundamentals
of the Circuit QED framework, in which superconducting qubits and microwave photons
interact in a microwave resonator.
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2.2.1 The LC circuit quantization
In order to understand the structure and dynamics of readout resonators and
superconducting qubit it is important to be familiar with quantum and classical properties
of the LC resonator.

LC circuits are the lumped element description of microwave resonators: they are
used in a variety of applications, including filters, oscillators, frequency meters and tuned
amplifiers [14]. In these systems energy oscillates between electrical energy in the capacitor
C and magnetic energy in the inductor L.

The instantaneous time-dependent energy E(t) in each element can be described in
terms of its current and voltage

E(t) =

∫ t

− inf

I (t′)V (t′) dt′

if we describe the generalized flux as

Φ(t) =

∫ t

− inf

V (t′) dt′

and we use the standard relations between voltage and current for inductance and
capacitance V = L dI

dt
, I = C dV

dt
, it is possible to recover the potential energy UL and the

kinetic energy PC as

UL =
1

2L
Φ2

PC =
1

2
CΦ̇2.

As usual, the dynamics of the system can be calculated through the Lagrangian, which is

L = PC − UL

L =
1

2
CΦ̇2 − 1

2L
Φ2.

In order to change from the Lagrangian formalism to the Hamilton formalism, we
have to apply the well known Legendre transformations. As a first step, we calculate the
momentum conjugate to the flux that in our case represents the charge on the capacitor

Q =
dL
dΦ̇

= CΦ̇.

The Hamiltonian of the system is described then by

H =
dL
dΦ̇

Φ̇− L

H =
Q2

2C
+

Φ2

2L

H =
1

2
CV 2 +

1

2
LI2.

In order to proceed further to the quantum description of the LC resonator, we need
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to promote the generalized coordinates Φ, Q to quantum mechanical operators. These
quantum mechanical operators obey the commutation relation[

Φ̂, Q̂
]

= i~.

Defining the reduced flux as φ̂ = 2πΦ̂/Φ0 and the reduced charge as n = Q/2e we can
rewrite the Hamiltonian as

H = 4EC n̂
2 +

1

2
ELφ̂

2 (2.2.1)

where EC = e2/2C is the charging energy, EL = (Φ0/2π)2 /L is the inductive energy and
Φ0 = h/(2e) is the superconducting magnetic flux quantum. The advantage of the new
formulation of the Hamiltonian is that the new quantum operators obey the canonical
commutation relation [φ, n] = i. From now on the quantum mechanical operators will be
written without the hat.

The Hamiltonian in equation 2.2.1 is quadratic and therefore represents a quantum
harmonic oscillator (see fig. 2.2.1). The first term represents the kinetic energy and the
second term represents the quadratic potential energy with respect to the phase φ of the
system. It is easy then to express the hamiltonian in the second quantization picture

n = nzpf i
(
a− a†

)
(2.2.2)

φ = φzpf i
(
a+ a†

)
(2.2.3)

H = ~ωr
(
a†a+

1

2

)
(2.2.4)

where a† and a are respectively the creation and annihilation operators, ωr =
√

8ECEL/~ =

1/
√
LC is the resonant frequency of the LC resonator, nzpf = [EL/(32EC)]1/4 is the zero

point fluctuation of the charge variable and φzpf = (2EC/EL)]1/4 is the zero point
fluctuation of the phase variable.

Figure 2.2.1: In the figure above, taken from [1], we can see the energy diagram for a
quantized LC circuit. The parabola potential with respect to the phase across the circuit
gives rise to the even energy spacing between the states typical of the harmonic oscillator.
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2.2.2 The transmon qubit
As we have seen in section 2.1.1, a qubit is described as a quantum two-level system, i.e.
a two dimensional Hilbert space. The necessary condition for the implementation of a
physical qubit from a general quantum system is the ability to isolate a subspace with
dimension 2 from the Hilbert space of that system.

As we can see from equation 2.2.4 and picture 2.2.1, the LC circuit is described by the
well known harmonic oscillator, which has an infinite Hilbert space. In order to create a
qubit out of the harmonic oscillator, it is necessary then to isolate the two lowest energy
levels (|0〉, |1〉) forming a computational subspace [1] with an energy separation ω01 which
is different than ω12 (see fig. 2.2.2). The reason behind that specification comes directly
from the fact that a classical (coherent) drive applied on resonance to the resonator
creates a coherent state in the resonator, i.e. moves the population of the qubit out of
the computational subspace. It is well known that the even spacing between the energy
levels comes from the fact that the harmonic oscillator is a linear element. In order to
brake this equidistant energy spacing it is necessary to add some some nonlinearity to
the system.

In the transmon qubit, the nonlinearity is provided by a Josephson Junction, that can
be depicted in a circuit layout as a nonlinear inductance Lj in parallel with a capacitance
Cj. The transmon qubit is engineered by shunting the Josephson junction (see fig. 2.2.2)
with a capacitance Cs. In order to derive the transmon qubit Hamiltonian, we have to
derive the new inductive energy UL of the Josephson Junction. We start out by introducing
the Josephson relations for voltage and current [1]

V =
~
2e

dφ

dt
, (2.2.5)

I = Ic sin (φ) , (2.2.6)

we then calculate the usual time dependent energy term

UL =

∫ t

− inf

I (t′)V (t′) dt′,

=

∫
~
2e
Ic sin (φ) dφ,

= − ~
2e
Ic cos (φ) ,

= −φ0

2π
Ic cos (φ) ,

= −Ej cos (φ) .

The new Hamiltonian is given by

H = 4Ecn
2 − Ej cos (φ) ,

where Ec = 2e2/CΣ , CΣ = Cs + Cj and Ej = φ0

2π
. The Hamiltonian above is analogous to

the Hamiltonian describing a particle with kinetic energy 4Ecn
2 in a periodic potential.

For the transmon qubit the inductive energy is much bigger than the charging energy (the
shunted capacitance Cs of fig. 2.2.2 lowers the charging energy Ec) and therefore one can
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expand the phase of the potential in the first terms

cos (φ) ' 1

2
φ2 − 1

24
φ4

which results in modified parabolic potential for the Hamiltonian

H = 4Ecn
2 − Ej

(
1

2
φ2 − 1

24
φ4

)
.

As we can see, the resulting Hamiltonian is equivalent to an anharmonic oscillator
with quartic perturbation (Duffing oscillator). If we proceed further using the second
quantization, the role of the anharmonicity in the system becomes even more clear:

H = ωqb a
†a+ α a†a†aa, (2.2.7)

ωqb =
(√

8EcEj − Ec
)
, (2.2.8)

α = −Ec, (2.2.9)

as we can see, the anharmonicity of the system is given by the charging energy Ec and is
a negative number, meaning that the energy spacing between the levels diminish with
higher energy. That means that a coherent drive with frequency ω01 in resonance with
the first two energy levels (|0〉,|1〉) would be out of resonance with the frequencies relative
to the other energy levels of the transmon qubit, i.e. ω12 = ω01 − α, ω23 = ω01 − 2α, etc.
Consequently, the first two levels of the transmon qubit (see fig. 2.2.2) can be isolated
from the system and therefore represent a closed computational subspace suitable for
computation.

Figure 2.2.2: In the figure above, taken from [1], we can see the circuit diagram of a
transmon qubit next to his energy diagram. The introduction of the Josephson junction
element, which substitute the linear inductance of the LC circuit, gives rise to a cosinus
like potential with respect to the phase across the circuit. This potential, for low energy
levels, sets off an energy diagram typical of the anharmonic oscillators. This feature, along
with a careful pulse shaping of the qubit drive, allows to create a closed computational
subspace between the ground and first excited state of the qubit.

As a final remark it is interesting to note that the ratio between Ej/Ec sets up the
magnitude of the charge dispersion and the anharmonicity both [15]. On one hand, since
the sensitivity to the charge noise depends on the charge dispersion of the qubit, increasing
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the ratio Ej/Ec means decreasing the sensitivity of the qubit to charge noise. On the
other hand, increasing the ratio means reducing the (relative) energy levels anharmonicity,
which limits the speed of qubit operations [15] (i.e. we have to use long pulses). Anyway,
the transmon exploits a remarkable fact: the charge dispersion reduces exponentially in
Ej/Ec, while the anharmonicity only decreases algebraically with a slow power law Ej/Ec
[15]. That means that for a transmon qubit the ratio is usually set to Ej/Ec ' 50, an
intermediate value between charge qubits and phase qubits.

2.2.3 Single qubit gates
As we have seen in section 2.1.2, in order to perform single qubit experiments, we have
to be able to manipulate the state of the qubit in a deterministic manner through the
qubit-drive interaction. This operation, called single qubit gate, can be seen as a rotation
of the state vector on the Bloch sphere (see eq. 2.1.8 and figure 2.1.2 ).

In section 2.1.2, we have described generally the drive as a time dependent Hamiltonian
term that interacts with the qubit. In the context of Circuit QED, this interaction term
is introduced by a microwave pulse such that

H = H0 + V (t) ,

H = −ωq
2
σz + gVd (t)σy,

where ωq is the frequency of the qubit, Vd (t) is the time-dependent voltage of the drive
pulse and g is the coupling constant between the microwave drive and the qubit.

Since the dynamics of the 2-level system is always measured in the rotating frame of
the drive, it is useful to move to the interaction picture

VI (t) = e
i
~H0t V (t) e−

i
~H0t,

= e−iωqtσz (g Vd (t)σy) e
iωqtσz .

Recalling the Baker–Campbell–Hausdorff formula

ex̂ ŷ e−x̂ = ŷ + [x̂, ŷ] +
1

2
[x̂, [x̂, ŷ]] + · · ·

ex̂ ŷ e−x̂ =
∞∑
m=0

1

m!
[x̂, ŷ]m ,

we can simplify the form of VI (t) further, which becomes

VI (t) = g Vd (t)
∞∑
m=0

1

m!
[−iωqtσz, σy]m

= g Vd (t) (σy cos (ωqt)− σx sin (ωqt)) .

Following closely the approach used in [1], we can describe the microwave pulse Vd (t)
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as

Vd (t) = V0v (t) ; v (t) = s(t) sin (ωdt+ ϕ) ,

Vd (t) = V0 s(t) (I sin (ωdt) +Q cos (ωdt)) ,

VI (t) = V0g s(t) (I sin (ωdt) +Q cos (ωdt)) (σy cos (ωqt)− σx sin (ωqt))

where V0 is the voltage amplitude, s(t) is the envelope of the pulse, I = cos(ϕ) is the
“in-phase” component of the pulse and Q = sin(ϕ) is the “out-of-phase” component of the
pulse. It is important to note that the choice of describing the phase of the drive through
its I/Q decomposition is closely related to the fact that we use IQ mixers for generating
the pulses (see section 5.1).

If the drive is resonant with the qubit (ωq = ωd) and we use the RWA we can simplify
further the interaction part of the Hamiltonian

VI (t) = −g
2
V0 s(t) (Iσx +Qσy) .

Recalling equation 2.1.6 we can built up the time evolution operator in the interaction
picture

UI (t− t0) = exp

([
i

2
g V0I

∫ t

t0

s(t)dt

]
σx

[
i

2
g V0Q

∫ t

t0

s(t)dt

]
σy

)
(2.2.10)

Θ (t) ≡ −g V0

∫ t

t0

s(t) dt = −Ω

∫ t

t0

s(t) dt, (2.2.11)

UI (t− t0) = exp

(
− i

2
Θ (t) (Iσx +Qσy)

)
, (2.2.12)

as we can see in equation 2.2.12 and figure 2.2.3, the time evolution operator UI (t− t0)
represent a rotation operator around the x axes Rx(cosφΘ (t)) in the case of I pulses and
around the y axes Ry(sinφΘ (t)) in the case of Q pulses.
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Figure 2.2.3: Rotation of a generic state vector (red vector) on the Bloch sphere
generated by a microwave pulse coupled transversally to the qubit. As we have seen in
eq. 2.2.12, the rotation of the state vector around the x (y) axes depends on the I ( Q )
component of the pulse, while the angle of rotation depends on the time integral of the
envelope of the pulse. Since the rotating frame is defined by the drive frequency ωd, an
additional rotation around the z axes can be set off by driving the qubit out of resonance,
which will cause the state vector to have a precession around the z axis with a frequency
δω.
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2.2.4 The readout resonator
As we have seen in section 2.2.1, the LC resonators can be described as Quantum Harmonic
Oscillators (see eq. 2.2.4) and in the Circuit QED framework they play an analogous role
to the optical cavities in the Cavity QED framework.

LC circuits are not the only way to realize microwave resonators. Another important
kind of resonator is represented by the Rectangular Waveguide Cavity Resonator. The
Waveguide resonators (see [14]) are nothing else than empty metallic boxes (see fig. 2.2.4).
By solving Maxwell equations in the box and by imposing boundary conditions on the
walls (i.e. tangent electric fields at the walls is zero) we can see that only modes with
specific frequencies are allowed to exist in the cavity with

fmnl =
c

2π

√(mπ
a

)2

+
(nπ
b

)2

+

(
lπ

d

)2

(2.2.13)

Ey = E0 sin
mπx

a
sin

lπz

d
cos

nπz

b
(2.2.14)

where fmnl is the frequency of the mode, a b d are the internal dimension of the cavity
and c is the speed of light in the waveguide.

In general, the mode of interest of the Waveguide Cavity is the fundamental mode
TE110 (see fig. 2.2.4 panel (b)) which is coupled to the transmon qubit through a dipole
interaction. It is important to note that since the field of the mode goes to zero on the walls,

Figure 2.2.4: Waveguide microwave cavity field distribution
(a) Schematic representation of a waveguide microwave cavity with internal dimensions
a, b, d. The red arrows represent the electric field for the fundamental mode TE110. (b)
Electric field magnitude for the fundamental mode TE110 of the cavity simulated with
the HFSS [16] solver. The double sinus dependence of the electric field gives rise to the
typical “sushi roll” intensity dependence of the field, from maximum intensity (red) on the
center to zero intensity on the walls.

the coupling of the mode to non-magnetic impurities on the walls is minimized. Moreover,
Waveguide Cavities made of superconducting materials (like aluminium) can reach very
high quality factor (Qint ' 106) due to the low internal losses at mK temperature, which
makes them ideal candidates for the role of readout resonators.
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2.2.5 Coupling qubit and resonator
In the previous sections (see section 2.2.2, section 2.2.4) we have described the main
ingredients of the Circuit QED framework: the transmon qubit and the readout resonator.
In analogy to the Cavity QED framework [17], the next step consists in coupling together
the two systems. Moreover, since the qubit-cavity system is an open quantum system, it
is important to consider the interaction between the qubit/cavity and the environment,
where the environment is usually described as a large number of harmonic oscillators.

In order to understand the physical properties of such a composite system (see fig.
2.2.5), we have to pay attention to three rates: the cavity-transmon coupling rate g, the
decay rate γ from the qubit to the environment, the coupling rate between the cavity
and the environment κ. The relative strength between those rates and the qubit cavity
detuning ∆ will determine the dynamics of the system [18])

Figure 2.2.5: In the figure above we can see the general scheme of the Cavity QED
architecture. The qubit is represented by the two level system in the green circle, and it
is coupled to the cavity mode with a coupling constant g and to the environment with a
coupling rate γ. The coupling rate of the cavity to the environment is κ. The relative
strength between g, γ, κ and the qubit-cavity detuning ∆ determines the dynamics of the
system.

The coupling rate g between the qubit and the microwave cavity is proportional to
the magnitude of the dipole moment of the transmon qubit and the electric field of the
cavity at the qubit position.

The coupling rate κ represents the rate at which the cavity and the environment can
exchange energy. The energy exchange can come from dissipation processes (e.g. energy
dissipation due to the finite resistivity of the cavity walls) or from the exchange of photons
through the microwave lines wired to the system in order to interact with it. In the case
of a “cold” environment, the coupling rate κ represents the rate at which the cavity looses
photons

〈n(t)〉 = n(0) e−κt,

κ = κi + κc,
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where 〈n(t)〉 is the mean number of photons in the cavity, κi is the loss rate relative
to internal losses (dissipation on the cavity walls) and κc is the loss rate through the
microwave lines.

The decay rate γ, often referred to “energy relaxation rate”, represents the rate at
which the qubit and the environment exchange energy. In a similar way with respect to
the cavity, the energy relaxation processes are connected to dissipation processes (e.g.
dissipation to the finite resistivity elements connected to the qubit) and to energy exchange,
meaning interaction with photons coming from the microwave lines wired to the system.
Using the language of quantum computation, γ represent the inevitable loss of quantum
information owing to coupling to undesired degrees of freedom [19].

2.2.6 Dispersive readout
As we have already discussed in section 2.1.3, the ability to perform fast and reliable (high
fidelity) readout of the qubit states is an important cornerstone of any quantum processor
[10]. In order to perform quantum measurement on our qubit, we use a technique called
dispersive readout, - the most common readout technique used today in the circuit QED
architecture [1]- in which the transmon qubit is coupled to the readout resonator through a
σz operator. As we have described in the previous section (see section 2.2.5) the dynamics
of the qubit-cavity system depends on the relative strength between g, γ, κ, ∆.

For example, if ∆ << g, the energy levels of the two system hybridize and a vacuum
Rabi splitting of frequency

√
ng/π opens up, where n = 1, 2, 3, · · · denotes the resonator

excitations [1]. This regime, called resonant strong regime, in which the excitation is
swapped coherently between the qubit and the resonator, is described by the well-known
Jaynes-Cummings Hamiltonian

HJC = ωr

(
a†a+

1

2

)
+
ωqb
2
σz + g

(
a σ+ + a†σ−

)
, (2.2.15)

where ωr is the cavity frequency, ωqb is the qubit frequency, g is the cavity-qubit coupling
rate, a (a†) is the annihilation (creation) operator acting on the cavity microwave photons
and σ+ (σ−)is the raising (lowering) operator acting on the qubit state.

On the other hand, if the qubit frequency is far detuned from the resonator such that
∆ >> g, κ, there is no longer a direct exchange of energy between the two systems. In
this case the dispersive approximation applies [1] and the Hamiltonian of the syestem can
be described by using second order perturbation in g/∆, taken in the limit of few photons
in the resonator [20, 21]:

Hdisp =
(
ωr +

χ

2
σz

)(
a†a+

1

2

)
+
ω̃qb
2
σz (2.2.16)

where χ/2 = g2/∆ is called dispersive shift and ω̃qb = ωqb + χ/2 is the Lamb shifted
frequency of the qubit. As we can see from the form of the Hamiltonian, the frequency of
the cavity acquires a qubit state-dependent frequency shift χ. Moreover, the interaction
term (χσza†a ) commutes with the qubit and the resonator terms: that means it is possible
to do a quantum-non demolition [22] (QND) measurement of the qubit state by measuring
the frequency shift of the resonator through a transmission (S21) measurement of the
resonator (see fig. 2.2.6).
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Figure 2.2.6: Transmission profile (S21) of the readout resonator in the dispersive regime
(see eq. 2.2.16) for the qubit in ground state (blue line) and excited state (red line). As
we can see, the information of the state of the qubit is encoded both in the amplitude
and the phase of the resonator, and can be extracted by probing the resonator with a
readout pulse.
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Chapter 3

Coherence and noise

The decoherence phenomenon controls the transition from the quantum world to the
classical one [23]. The interaction between a quantum system and its environment leads
to an energy transfer associated with a loss of quantum information with respect to a time
span T1 called relaxation time. Moreover, the interaction between the quantum system
and its environment induces a complex entanglement between both parties that selects
classical states for the system after a certain interaction time T2 called the coherence
time [24, 25]. In general, it is possible to regroup the decoherence phenomenon in two
main groups: depolarization and dephasing.

The depolarization processes involve an irreversible energy transfer between the qubit
and the environment [23] and correspond to the loss of information with respect to a
〈σz (t)〉 measurement. Dephasing processes regard the loss of information of the coherent
superposition of the qubit in the excited and ground state, these are caused by random
fluctuation of the qubit frequency due to interaction with the environment.

From a quantum computing point of view, this decoherence phenomenon is equivalent
to random errors affecting the qubit state during an operation and thus severely hinders
the implementation of a quantum computer [23]. It is clear then how important is to
adopt several measures - materials engineering, qubit design, electronic design, cryogenic
engineering . . . - in order to create high coherent qubits.

In the present chapter, the non-unitary evolution of the open quantum system
represented by the qubit and the environment (see section 3.1), resonator and environment
(see section 3.2) and qubit-resonator in dispersive regime and environment (see section
3.3) will be studied by solving the master equations of these open quantum systems in
the Linblad form.

3.1 Qubit and the environment
As we have already seen in section. 2.1.1, the quantum properties of a qubit can be fully
described by the qubit density matrix. When the qubit interacts with the environment, the
time evolution of density matrix can be calculated through the Von Neumann equations:

ρ̇tot = − i
~

[Htot, ρtot] , (3.1.1)

Htot = Hqb +Henv +Hint, (3.1.2)
ρtot = ρqb ⊗ ρenv. (3.1.3)

19
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Since we are only interested in the dynamics of the qubit, we can at this point perform a
partial trace over the environmental degrees of freedom in eq. 3.1.1 and thereby obtain a
master equation for the motion of the original qubit density matrix. The most general
trace-preserving and completely positive form of this evolution [26] is the Lindblad master
equation for the reduced density matrix ρqb = Trenv [ρtot]

ρ̇qb = − i
~

[Hqb, ρqb] +
∑
n

ΓnD[An]ρqb (3.1.4)

Where D[L]ρ =
(
2LρL† − L†Lρ− ρL†L

)
is the standard dissipation superoperator, An is

the operator with which the qubit interacts with the environment in Hint and Γn are the
corresponding rates.

As we have already described in the chapter’s introduction, the rates of loss of quantum
information for our qubit system are

Γ1 ≡
1

T1

, (3.1.5)

Γ2 ≡
1

T2

=
Γ1

2
+ Γφ, (3.1.6)

where Γ1 is the relaxation rate relative to depolarization processes (diagonal part of the
qubit density matrix) and Γ2 is the relaxation rate relative to the loss of the information of
the coherent superposition of the qubit (off-diagonal elements of the qubit density matrix,
called coherences).

As a final remark, it is important to underline the limits of applicability of the master
equation in the Linblad form. The following approximations are applied:

• Separability

• Born approximation

• Markov approximation

• Secular approximation.

Using superconducting Qubits, all the approximations hold quite well with the great
exception of the Markov approximation, for which we have to ensure that the system has
a short memory with respect to the timescale of the qubit. Looking at the environment as
a noise source, this requirement means that the noise from the environment which triggers
depolarization and decoherence processes has no correlations, i.e. is a white type of noise.
As a result, the markovian approximation holds for uncorrelated noises like thermal noise
but not for noise sources like magnetic noise and charge noise as they are tipically 1/f .

3.1.1 Depolarization (longitudinal relaxation)
In the chapter’s introduction we have seen that the energy exchange between the
environment and the qubit leads to a loss of information on the diagonal elements
of the density matrix at a rate Γ1. This process describes a “depolarization” of the qubit
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along the quantization axis. In this language, if we define the qubit polarization as

p = 〈σz〉
= Tr (ρ σz) ,

= ρ00 − ρ11,

a qubit with polarization p = 1 is entirely in the ground state |0〉 at the north pole of the
Bloch sphere (see fig. 3.1.1), p = −1 is entirely in the excited state |1〉 at the south pole
of the Bloch sphere and p = 0 is a completely depolarized mixed state at the center of
the Bloch sphere [1]. Since the z axis is the qubit quantization axis, the depolarization is
often called a longitudinal relaxation process.

By using the standard raising and lowering operators for the qubit state σ+ and σ−, the
annihilation and creation operators for the harmonic oscillators composing the reservoir b
and b† and the Pauli matrix σz, the Hamiltonian of the open quantum system associated
to this process can be described as

H = Hqb +Hbath +Hint,

Hqb =
ωqb
2
σz,

Henv =
∑
j

ωi

(
b†jbj +

1

2

)
,

Hint = g
(
σ+b+ b†σ−

)
,

where Hqb is the Hamiltonian of the qubit, Hbath is the Hamiltonian of the bath (taken
as a large number of harmonic oscillators) and Hint is the energy exchanging interaction
between the qubit and the reservoir in the RWA. The equations of motion of the density
matrix of the qubit can be found by solving the Lindblad master equation

d

dt
ρqb = − i

~
[Hqb, ρqb] +

1

2
Γ1↓D[σ−]ρqb +

1

2
Γ1↑D[σ+]ρqb, (3.1.7)

where D[σ−]ρqb = (2σ−ρqbσ
+ − σ+σ−ρqb − ρqbσ+σ−) is the collapse superoperator

representing the energy relaxation from the qubit to the environment at rate Γ1↓ and
D[σ+] = (σ+ρqbσ

− − σ−σ+ρqb − ρqbσ−σ+) is the collapse superoperator representing the
energy excitation from the environment to the qubit at rate Γ1↑ (see fig. 3.1.1).

For a two level system is easy to access to the analytical solution of the master equation.
If we define the general density matrix of a two level system as

ρ = ρ00 |0〉〈0|+ ρ11 |1〉〈1|+ ρ10 |1〉〈0|+ ρ01 |0〉〈1| ,

where ρ00 represents the probability of the qubit to be in the |0〉 state, ρ01 is the probability
of the qubit to be in the |0〉 〈1| state, etc. . . . and we take into account that Hqb =

ωqb
2
σz

and that σ− = |0〉〈1| and σ+) |1〉〈0| we can rewrite the master equation as

d

dt
ρqb =

−iωqb
2

(ρ10 |1〉〈0| − ρ01 |0〉〈1|) +
1

2
Γ1↓ (2ρ11 (|0〉〈0| − |1〉〈1|)− ρ10 |1〉〈0| − ρ01 |0〉〈1|) +

+
1

2
Γ1↑ (2ρ00 (|1〉〈1| − |0〉〈0|)− ρ01 |0〉〈1| − ρ10 |1〉〈0|) ,
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Figure 3.1.1: Longitudinal relaxation
Picture taken from [1]. Visualization of depolarization of the qubit due to the coupling
to transverse noise of the open system, i.e. noise coupled through σx, σy operators. The
depolarization process is always associated with an energy exchange between the qubit
and the environment: Γ1↑ represents the excitation of the qubit due to energy coming
from the environment while Γ1↓ represents the relaxation of the qubit due to energy
released into the environment.

which can be combined in 4 differential equations

ρ̇00 = −Γ1↑ρ00 + Γ1↓ρ11,

ρ̇10 =

(
−iωqb

2
− 1

2
(Γ1↑ + Γ1↓)

)
ρ10,

ρ̇01 =

(
+iωqb

2
− 1

2
(Γ1↑ + Γ1↓)

)
ρ01,

ρ̇11 = Γ1↑ρ00 − Γ1↓ρ11.

As we can see, the differential equations relative to the ground and excited state population
of the qubit are coupled together, whereas the coherences are independent.

We proceed then by solving the coupled differential equations for the diagonal elements
of the density matrix. The usual ansatz for this problem is(

ρ00

ρ11

)
(t) = Ax1 e

−λ1t +B x2 e
−λ2t,
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we look then for the solution of the set of eigenvalues (λ1, λ2) and eigenvectors (x1, x2)

det

(
−Γ1↑ − λ Γ1↓

Γ1↑ −Γ1↓ − λ

)
= 0,

λ (λ+ (Γ1↑ + Γ1↓)) = 0,

λ1 = 0,

λ2 = − (Γ1↑ + Γ1↓) ,

x1 =

(
Γ1↓/Γ1↑

1

)
,

x2 =

(
1
−1

)
.

The solution to the coupled differential equations are(
ρ00

ρ11

)
(t) = A

(
Γ1↓/Γ1↑

1

)
+B

(
1
−1

)
e−(Γ1↑+Γ1↓)t.

As usual, if we assume initial conditions for the density matrix at t = 0

ρ(0) =

(
α2 αβ∗

α∗β β2

)
(3.1.8)

1 = α2 + β2 (3.1.9)

we find that the constants A, B are

A =
Γ1↑

Γ1↑ + Γ1↓
,

B =
Γ1↑

Γ1↑ + Γ1↓
− β2.

It is interesting to note that the decay of all elements in the density matrix is always
associated with the sum of the rates Γ1↑ and Γ1↓. We can define then a new rate

Γ1 ≡
1

T1

= Γ1↑ + Γ1↓

associated with the overall depolarization process. Since the environment is typically
“cold” with respect to the qubit frequency, usually Γ1 is referred to the “relaxation rate”
and T1 is referred to “relaxation time”.

The equations of motion of the density matrix can then be written as

ρqb (t) =

 Γ1↓
Γ1↑+Γ1↓

+
(

Γ1↑
Γ1↑+Γ1↓

− β2
)
e−Γ1t α∗β e

−iωqb
2 e−

Γ1
2

αβ∗ e
iωqb

2 e−
Γ1
2

Γ1↑
Γ1↑+Γ1↓

+
(
β2 − Γ1↑

Γ1↑+Γ1↓

)
e−Γ1t

 (3.1.10)
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and in the long time limit (t >> 1/Γ1) we find the steady state solutions

ρqb =

(
Γ1↓

Γ1↑+Γ1↓
0

0
Γ1↑

Γ1↑+Γ1↓

)
(3.1.11)

3.1.1.1 Qubit and thermal bath with finite temperature

Up to now, nothing has been said about the values of the rates Γ1↑ and Γ1↓ associated with
the energy exchange between the environment and the qubit. As we can imagine, their
value depend both on the properties of the environment (phase dependent correlation
〈b(ω1)b(ω2)〉, intensity spectrum

〈
b†(ω)b(ω

〉
) and on the coupling rate between the qubit

and the environment (see [27]).
The case in which the reservoir is represented by a thermal bath is a well-known

problem in the context of open quantum system. Without going into the details of
the derivation (the interested readers can have a look in [27] and [28]) for a thermal
bath 〈b(ω1)b(ω2)〉 = 0 (i.e. thermal state does not carry any phase information) and〈
b†(ωqb)b(ωqb)

〉
= nth. Following [27] and [28] the qubit to environment dumping rate γ

and the depolarization rates Γ1↑ and Γ1↓ are

γ = g2ρ2
env(ωqb), (3.1.12)

Γ1↑ = γ nth, (3.1.13)
Γ1↓ = γ(nth + 1), (3.1.14)
Γ1 = γ(2nth + 1), (3.1.15)

where γ is calculated through the Fermi golden rule, ρenv(ωqb) is the density of states of
the thermal reservoir at the qubit frequency, nth is the mean number of photons of the
reservoir at the qubit frequency and g is the coupling rate between the qubit and the
bath.

Since the mean number of photons in a thermal bath follows a Bose Einstein statistics,
from equations 3.1.13 and 3.1.14 we can show that the excitation and relaxation rate
follow a detailed balance equation:

Γ1↑

Γ1↓
=

nth
(nth + 1)

, (3.1.16)

nth =
1

e
~ωq
kbT − 1

, (3.1.17)

Γ1↑ = Γ1↓e
− ~ωq
kbT . (3.1.18)

We have already seen the solutions of the equations of motion of the qubit density matrix
(see 3.1.10) relative to the qubit-environment depolarization process. In order to recover
the solution of the qubit density matrix dynamics in the case in which the environment is
represented by a thermal bath all we have to do is to insert the particular values of the
rates Γ1↑ and Γ1↓ in the solutions. It is particularly interesting to have a closer look at
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the steady state solutions (t >> 1/Γ1):

ρqb =

 1

1+e
−

~ωq
kbT

0

0 1

1+e
+

~ωq
kbT

 . (3.1.19)

From what we can see, the coherences of the density matrix go to zero while the populations
on the ground state and excited state of the qubit reach a steady state value equal to the
Boltzmann distribution for a two level system. In fact, we can see that

ρ11

ρ00

= e
− ~ωq
kbT .

At last, we calculate the value of the polarization expected for the qubit in the steady
state

〈σz〉 = ρ00 − ρ11,

=
Γ1↓ − Γ1↑

Γ1↑ + Γ1↓
,

=
e

+
~ωq
kbT − 1

e
+

~ωq
kbT + 1

,

= tanh

(
~ωq
2kbT

)
.

As we can see, the steady state carries information about the temperature of the bath.

3.1.1.2 Qubit and thermal bath at zero temperature

A particular case of the previous example is represented by a qubit connected with a
thermal bath at zero temperature. As a matter of fact, the mean number of photons of a
reservoir at tens of milli-kelvins (the base temperature of the Cryostats in Circuit QED)
at the qubit frequency (4-10 GHz) is usually a small number (nth ' 10−6), and in certain
cases can be approximated to zero.

The rates become then

γ = g2ρ2
env(ωqb),

Γ1↑ = 0,

Γ1↓ = γ,

Γ1 = γ.

The solution of the master equation simplifies to

ρ(t) =

(
1 + (α2 − 1)e−Γ1t αβ∗e

−iωqb
2 e−

Γ1
2
t

α∗βe
iωqb

2 e−
Γ1
2
t β2e−Γ1t

)
, (3.1.20)

and we can see that in the long time limit (t >> 1/Γ1) the qubit is found in the ground
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state

ρ =

(
1 0
0 0

)
.

3.1.2 Decoherence (transverse relaxation)
As we have seen in the introduction of the chapter, the decoherence processes are defined
as those processes for which the information encoded in the off-diagonal element of the
qubit density matrix (called “coherences”) are lost [27, 1].

Since the “coherences” of the qubit density matrix describe the phase of the qubit
state vector (see fig. 2.1.1), the decoherence processes can be seen as a loss of phase
information of the qubit state vector. Since the phase information is encoded in the
projection of the state vector onto the plane transverse to the qubit quantization axes,
the decoherence processes are often referred to transverse relaxation processes. We recall
that the transverse relaxation rate is defined as

Γ2 ≡
1

T2

3.1.2.1 Energy exchange contribution

The master equation relative to the energy exchange between the qubit and the environment
has been solved in section 3.1.1. We have seen in the equation of motion of the coherences
(see eq. 3.1.10 for the general case and eq. 3.1.20 for the zero temperature environment)
that transverse decay rate was equal to

Γ2 =
Γ1

2
.

In other words we can see that the coherence time T2 is upper bounded by the relaxation
time T1

T2 = 2T1.

3.1.2.2 Dephasing contribution

In the previous sections we have solved the master equation for the qubit coupled
transversally (i.e. through a σx, σy operator) to the bath. Now we are in about to
investigate what is the effect on the decoherence process with respect to a qubit coupled
longitudinally (i.e. through a σz operator) to the reservoir.

Before starting to solve the master equation, we can already gain some intuition on
the process through some heuristic consideration. It is easy to figure out that an element
coupled through a σz operator shifts the energy levels of the qubit. Moreover, in the
equation of motion of the coherences (see eq. 3.1.10) we have seen that the relative phase
of the superposition between ground and excited state oscillates at the qubit frequency
ωqb. Consequently, a stochastic process associated with a random energy shift of the
qubit would cause a random phase shift which would cause a loss of information on the
phase information of the qubit (see 3.1.2). This decoherence contribution is called pure
dephasing.
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Figure 3.1.2: Pure dephasing
The picture is taken from [1]. Visualization of the dephasing of the qubit due to the coupling
to longitudinal noise of the open system, i.e. Hamiltonian terms of the environment coupled
to the qubit through a σz operator. This noise causes the frequency of the qubit to fluctuate,
and it causes the Bloch vector to precess backward and forward in the rotating frame [1].

As usual, in order to get a quantitative answer on the dephasing contribution given by
the interaction of between the qubit and the environment we have to solve the Linblad
master equation. In the process of pure dephasing the qubit is coupled to the reservoir
through a σz operator, and the master equation is given by

d

dt
ρqb = − i

~
[H, ρqb] +

1

2

Γφ
2
D[σz]ρqb

where ρqb is the qubit density matrix, H is the qubit Hamiltonian, D[σz]ρ = 2σ†zρσz −
σ†zσzρ− ρσ†zσz is the dissipation superoperator and γφ is the dephasing rate. We proceed
to solving the differential equations

d

dt
ρqb =

−iωqb
2

(ρ10 |1〉〈0| − ρ01 |0〉〈1|) +

+
1

2

Γφ
2

(2 (ρ00 |0〉〈0|+ ρ11 |1〉〈1| − ρ01 |0〉〈1| − ρ10 |1〉〈0|)− 2ρ)

=
−iωqb

2
(ρ10 |1〉〈0| − ρ01 |0〉〈1|)− Γφ (ρ01 |0〉〈1| ρ10 |1〉〈0|) .
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Rewriting the equations above we get

ρ̇00 = 0,

ρ̇10 =

(
−iωqb

2
− Γφ

)
ρ10,

ρ̇01 =

(
+iωqb

2
− Γφ

)
ρ01,

ρ̇11 = 0.

As we can see, we end up with 4 uncoupled differential equations.
Using the same initial conditions of eq. 3.1.9 (and going to the rotating frame) we find

ρ(t) =

(
α2 αβ∗e−Γφt

α∗βe−Γφt β2

)
. (3.1.21)

As a result we can see from the time evolution of the density matrix that the interaction
of a qubit to the environment through a σz operator leads to a loss of information on the
coherences at a rate Γφ, called dephasing rate.

3.1.2.3 Dephasing and energy exchange

As we have anticipated before, in order to recover the transverse relaxation rate Γ2

we combine the energy-exchange contribution (see eq. 3.1.20) and the pure dephasing
contribution (see eq. 3.1.21) and we find

Γ2 =
Γ1

2
+ Γφ.

The mechanism of the transverse relaxation through the Bloch sphere representation can
be found in figure 3.1.3.

As a final step, we can write down the equation of motion for the density matrix taking
into account both energy-exchange and energy shifting mechanism. For a qubit coupled
to a bath at zero temperature combining eq. 3.1.20 and eq. 3.1.21 we find

ρ =

(
1 + (α2 − 1)e−Γ1t αβ∗e−

Γ1
2
te−Γφt

α∗βe−
Γ1
2
te−Γφt β2e−Γ1t

)
. (3.1.22)

More generally, the time evolution of the density matrix in eq. 3.1.22 describes the loss
of information about the qubit density matrix due to the interaction of the qubit to a
zero temperature environment through a transverse interaction (coupled through a σx
operator) and through a longitudinal interaction (coupled through a σz operator)
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Figure 3.1.3: Transverse relaxation
The picture is taken from [1]. Visualization of the decoherence process of the qubit
triggered by noise coupled either longitudinally (through σz operators, i.e. dephasing
mechanism) than transversally (trough σx and σy operators, i.e. depolarization
mechanism). According to the definition seen in eq. 3.1.6, the contribution of the
transverse noise to the transverse relaxation rate is Γ1/2, while the contribution of the
longitudinal noise to the transverse relaxation rate is Γφ.
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3.2 Resonator and the environment
The non-unitary evolution of a cavity coupled to a thermal reservoir is a well known
problem in quantum optics (see [27, 28]).

The Hamiltonian of the overall system (resonator and thermal bath) is described by

H = Hcav +Hbath +Hint

Hcav = ~ωc
(
a†a+

1

2

)
,

Hbath =
∑
j

~ωi
(
b†jbj +

1

2

)
,

Hint = ~gj
∑
j

(
a†bj + b†ja

)
,

where Hcav it the Hamiltonian of the cavity, Hbath is the Hamiltonian of the bath (taken
as a large number of harmonic oscillators) and Hint is the interaction Hamiltonian that
describes the energy exchange between the quantum system and the reservoir.

Using the same considerations as in section 3.1.1.1, we can write the master equation
of the cavity as

d

dt
ρcav = − i

~
[H, ρcav] +

1

2
κ(nth + 1)D[a]ρcav +

1

2
κnthD[a†]ρcav (3.2.1)

where κ = g2(ωc)ρ
2
bath is the cavity damping term, D[a]ρcav =(

2aρcava
† − a†aρcav − ρcava†a

)
is the dissipation superoperator representing the

energy relaxation from the resonator to the environment at rate κ(nth + 1) and
D[a†]ρcav =

(
2a†ρcava− a a†ρcav − ρcava a†

)
is the dissipation superoperator representing

the energy excitation from the environment to the qubit at rate κnth.
In order to solve the master equation, we have to express the resonator density matrix

in an appropriate basis (photon number representation, P representation, Q representation,
Wigner function representation) and solve the relative c-number differential equations.

In the present thesis, we are particularly interested in the time evolution and steady
state solution of the mean number of photons 〈n(t)〉. If we insert the relation between the
mean number of photons and the cavity density matrix

〈n(t)〉 = Tr
(
ρcav a

†a
)

(3.2.2)

into the master equation 3.2.1 and use the commutation algebra of the creation-annihilation
operators and the cyclic property of the trace it is possible to recover the time evolution
of the mean number of photons

〈n(t)〉 = n(0)e−κt + nth(1− e−κt). (3.2.3)

As we can see, the mean number of photons in the cavity 〈n(t)〉 decays from the initial
condition n(0) to the mean number of photon of the reservoir nth with a rate κ. Moreover,
solving the proper master equation 3.2.1 (see [27]) it is possible to find that the population
of the levels of the harmonic oscillator in the steady state follows a power law photon
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number distribution of thermal light

ρ =
∑
n

1

1 + nth

(
nth

1 + nth

)n
|n〉〈n| . (3.2.4)

The simulation of time evolution of the mean number of photons and the density
matrix in the Fock basis and in the Wigner function representation can be found in figure
3.2.1.

it is interesting to ask ourselves the question of what happens when the cavity is
coupled to multiple reservoir with mean number of photons njth through coupling rates κj .
If we write down the master equation

d

dt
ρcav = − i

~
[H, ρcav] +

∑
j

1

2
κj(n

j
th + 1)D[a]ρcav +

∑
j

1

2
κj n

j
thD[a†]ρcav,

one can note that by reorganizing the terms (see [29, 6])

κtot =
∑
j

κj, (3.2.5)

neff =

∑
j κjn

j
th

κtot
, (3.2.6)

we can recover the same form of the master equation for a single bath of equation 3.2.3

d

dt
ρcav = − i

~
[H, ρcav] +

1

2
κtot(neff + 1)D[a]ρcav +

1

2
κtot neff D[a†]ρcav. (3.2.7)

That means that every time that a resonator interacts with multiple baths (see fig. 3.2.2)
it is possible to describe this interaction as the interaction of the resonator with one
fictitious “effective” thermal bath with mean number of photons neff and coupling rate
ktot.
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Figure 3.2.1: QuTiP [26] simulation of a resonator coupled to a thermal bath
(a) Scheme of a one port lossless resonator coupled to the environment, represented by
a thermal bath with temperature T and mean number of photons nth. The coupling
constant of the resonator κ represents the relaxation rate of the field from the cavity to
the bath and vice versa. (b) Evolution of the mean number of photons of a cavity coupled
to a thermal bath. For long times (i.e. t >> 1/κ), as described in eq. 3.2.3, the system
reaches a steady state in which the mean number of photons in the cavity equals the
mean number of photons in the bath. (c) Photon number probability distribution of the
cavity in the long time limit t >> 1/κ. As we can see, the probability distribution follows
the Planck distribution for black body radiation (see eq. 3.2.4). (d) Wigner function
representation of the cavity density matrix in the long time limit. As we can see, the
phase space distribution represents a thermal state with 〈n〉 = nth.

.
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Figure 3.2.2: Scheme of a lossless resonator coupled to two thermal baths and the
simulation of the time evolution of the mean number of photons in the resonator. As
highlited in equation 3.2.7, the time evolution of a resonator coupled to two different baths
with different coupling constants κ1, κ2 and different temperatures T 1, T 2 is equivalent to
the evolution of a resonator coupled with a coupling constant κtot to a single bath with
an effective temperature T eff . The evolution of the mean number of photons shows that
in the long time limit t >> 1/κtot the resonator reaches the thermal equilibrium with an
“effective” thermal bath with neff number of photons.
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3.3 Qubit, resonator and the environment -
dephasing from thermal noise

In the previous sections we have studied the open quantum system composed of the
qubit or the resonator connected to the reservoir by longitudinal (σz) or transverse (σx)
interaction.

Here we will describe what happens when the open quantum system is composed of a
“isolated” qubit (i.e. not coupled directly to the environment) but coupled dispersively to
the cavity which exchanges energy with the environment.

The Hamilonian of this open system is described by

H = Hsys +Hbath +Hint,

Hsys = ~ωc a†a+
1

2

(
ωq +

χ

2
+ χa†a

)
σz,

Hbath =
∑
j

~ωj
(
b†jbj +

1

2

)
,

Hint =
∑
j

~ gj
(
a†bj + b†ja

)
,

where Hsys represents the Hamiltonian of the qubit and cavity coupled in the dispersive
regime, Hbath is the usual Hamiltonian of the thermal bath described as a large number of
harmonic oscillators and Hint represents the energy exchanging interaction between the
cavity and the thermal bath.

Since the cavity and the qubit in our architecture are coupled longitudinally (see
section 2.2.6), it is easy to figure out that an energy dissipating process in a cavity would
act as a pure dephasing mechanism to the qubit.

In order to find a quantitative answer, we have to solve the master equation, which for
the present case is

ρsys = ρqb ⊗ ρcav,

ρ̇sys = − i
~

[H, ρsys] +
1

2
κ(nth + 1)D[a]ρsys +

1

2
κnthD[a†]ρsys.

As we can see, in order to find the solution of the master equation we have to solve the
coupled differential equations of the density matrix ρsys which describes the qubit and the
resonator. It is possible to find an analytical solution by expressing the density matrix
via Wigner function representation (see [30]) or positive P function representation (see
[6]) and then solving the differential equations for the terms coupled to the off-diagonal
elements of the qubit density matrix.

From these calculations, the dephasing from thermal noise in the long time limit
1 >> 1/κ can be written as

Γthφ =
κ

2
Re

√(1 +
i χ

κ

)2

+

(
4i χ nth
κ

)
− 1

 . (3.3.1)

For nth << 1 we can expand Γthφ to first order in nth (see [7] and [8]) and find the
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approximate solution for the thermal induced dephasing

Γthφ '
nth κχ

2

κ2 + χ2
. (3.3.2)

As we can see, the thermal dephasing rate Γthφ depends on the mean number of photons in
the reservoir nth, the dispersive shift χ and the cavity damping rate κ.

The behavior of the thermal dephasing with respect to the mean number of photons
in the cavity is also shown through the simulation of the time evolution of 〈σx〉 in fig.
4.3.2. The parameter of the simulation are: ωqb/2π = 6.8GHz, ωcav/2π = 9.2GHz,
χ/2π = 3.6MHz and κ/2π = 1.1MHz.

Figure 3.3.1: Simulation of qubit dephasing with respect to different bath
temperatures
(a) Qubit dephasing in dependence of the mean number of photons nth of a thermal
bath coupled to the readout resonator. The coloured dots represent the dephasing rates
extracted by the decay of the 〈σx〉 operator carried out by simulation with QuTiP [26].
The red line represents the analytical formula of the dephasing in the low photon number
regime described in eq. 3.3.2. (b) Time evolution of 〈σx〉 in a rotating frame detuned
with respect to the qubit frequency of δω = 2.5MHz for different mean number of photons
in the thermal bath coupled to the resonator. We can see that the decay rate increases
linearly with respect to nth according to eq. 3.3.2.

As a final remark, we can also figure out what is the form of the thermal dephasing
rate when several thermal baths are connected to the readout resonator. In analogy to
what we have already seen in 3.2.7, the solution of the master equation (see [6]) leads to
the same equation for the thermal dephasing Γthφ seen in eq. 3.3.2 with the exception of
changing nth and κ with the new values neff and κtot (see eq. 3.2.6 and eq. 3.2.5).
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Chapter 4

Thermal noise and attenuators

The first question that we have to ask to ourselves is: why do we care about thermal
noise? Which difference do we see in the experiment if we couple our quantum system to
a “cold” or “hot” environment?

First of all, as we have seen in section 3.1.1.1 and section 3.2, in the qubit and
resonator both the steady state population of the levels depends on the temperature of
the environment, and follows a Boltzmann distribution for the qubit and a Bose-Einstein
for the resonator.

In other words, if the mean number of photons of the bath nth at the frequency of
the quantum system is not zero, the system doesn’t settle to the ground state and the
population of the system is distributed among the higher energy levels of the system.

The second effect is that an environment with high temperature is characterized with
a high loss of information, either through a dephasing channel or through a depolarization
channel (see chapter 3).

In the second instance it is important to recall (see section 2.2.6) that one of the
main channel of interaction between the Circuit QED architecture and the environment is
represented by the microwave lines attached to a system. As we can see from fig. 4.0.1,
in the present work of this thesis the microwave lines are divided in two main parts:
the input lines, from which the input signals used to interact to the Circuit QED are
transmitted and the output lines, from which the output signals are collected, amplified
and finally recorded.

In this chapter it is described how the theory developed about open quantum system
and thermal reservoirs (see chapter 3) will be applied to general Circuit QED systems. In
the first part the connection between the properties of the reservoir and the characteristics
of attenuation/isolation of the microwave lines will be discussed. Afterwards, the effect of
the thermal reservoir on the qubits and the cavities will be explained. Following that, the
strategies that can be adopted in order to lower the temperature of the reservoir will be
outlined.

37
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Figure 4.0.1: Schematic diagram describing the wiring of the experimental setup to the
Cryostat. As we can see, the microwave lines are divided in two lines: the input line and
the output line. The input lines are used to send microwave signals to control the Circuit
QED system. The output line is used to collect, amplify and record the microwave signals
coming from the Circuit QED system.



4.1. The role of attenuators in the input line 39

4.1 The role of attenuators in the input line
The experiments on qubits and cavities in the framework Circuit QED of are generally
performed at temperatures of a few tens of milli-kelvins. This represents a cold environment
with respect to the relevant frequency range of the transitions of the quantum system
(kbT << ~ω ∀ω ∈ [4 GHz, 12 GHz]).

However, the temperature of the plate with which the cavity/qubit system is in contact
does not represent the only bath our quantum system is coupled to. Indeed, the input
and output lines that we use to control and to readout our Circuit QED system represent
an additional reservoir which our quantum system is coupled to.

As an example, let’s think about an input line that couples the cavity at 20mK with
a 50 Ω resistor at room temperature (see left side of fig. 4.1.1). As we can imagine, if
the cavity is not coupled to any other reservoir, the mean number of photons inside the
cavity will be the same as the mean number of photons emitted by the resistor; in other
words, the temperature of the cavity will come into equilibrium with the temperature of
the resistor, which in the present example is room temperature!

More quantitatively, we can describe the voltage noise power spectral density emitted
by a resistor R at a temperature T as

SV V (ν,R, T ) = 4Rhν nth (T )

nth (T ) =
1

e
hν
kbT − 1

where nth (T ) is the mean photon number population according to the Bose - Einstein
distribution. nth (T ) is dimensionless and can be thought as photon flux spectral density,
i.e as number of photons per Hz frequency interval, per second [31].

This form of voltage noise PSD, which in the classical limit ~ω << KbT describes the
Johnson-Nyquist noise SV V (ν,R, T ) = 4KbTR is blackbody radiation propagating in a
one-dimensional cable [31, 32, 33].

The usual solution to that problem is to install a series of attenuators (see fig. 4.1.1)
on the different stages of the cryostat in order to attenuate the amount of thermal photons
that interact with our Circuit QED architecture. Of course, each attenuator is by itself a
dissipative object which (in the best case scenario) will have the same temperature as the
plate of the cryostat to which it is anchored. It will re-emit thermal photons according to
that temperature.

The effective voltage noise spectral density seen by the Circuit QED architecture
coming of such a cascade system (see [32] , [14]) can be described as

SV V (ν) =
∑
i

A(i) SV V (ν,R(i), T (i)) (4.1.1)

where SV V (ν,R(i), T (i)) is the voltage noise PSD emitted from the resistor R(i) in the ith
attenuator with temperature T (i), and A(i) accounts for the collective attenuation after
the corresponding thermal source and before reaching the quantum system (see [32]).

The resulting environment seen by the qubit can be described as a reservoir in which
the noise photon occupation number neffth (ω) and relative effective temperature T eff(ω)
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Figure 4.1.1: Thermal noise propagation in the cryostat.
(a) Schematic diagram of thermal noise propagation from room temperature to the
circuit QED architecture through the input line. As we can see, the input line creates
a thermal shortcut that causes the quantum system to be coupled with the blackbody
radiation originating at room temperature . (b) Schematic diagram of thermal noise
propagation through an input line interspersed with attenuators located at stages with
different temperature. Each attenuator decreases the amplitude of the blackbody radiation
coming from the previous stages while it re-emits blackbody radiation at the temperature
of his stage.

can be described as

neffth (ω) =
∑
i

A(i) nth
(
T (i)
)

(4.1.2)

T eff (ω) =
~ω

kb ln
(

1

neffth

+ 1
) (4.1.3)

It is important to note that this mixture of thermal noise from different thermal sources
gives rise to a reservoir in which the noise photon occupation number distribution is not
thermal anymore. This means that the effective temperature of the reservoir changes with
respect to the frequency.
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4.1.1 Thermal noise from the input line
In the experimental setup used in this thesis, the attenuation chain in the input line (see
fig. 6.1.1) presents 20 dB of attenuation on the 4K plate, 10 dB of attenuation on the
100 mK plate and 20 dB of attenuation at the base temperature. Equation 4.1.2 can be
written in an expanded form as

nin (ω) =
n0 (T300K)

A1A2A3

+
n1 (T4K)

A2A3

+
n2 (T100mK)

A3

+ n3 (T20mK) . (4.1.4)

From what we can see, thermal noise components with different temperatures (see panel

Figure 4.1.2: Blackbody radiation from the input line
(a) Mean photon number distribution for different thermal baths with respect to frequency.
As we can see, the mean photon number distribution is described by the Bose Einstein
distribution. (b) For a mean photon number distribution that follows the Bose Einstein
distribution (see panel a) there is no temperature dependence with respect to the frequency.
(c) The photons emitted from each stages (see panel a) are attenuated according to equation
4.1.4 and are plotted as dashed lines. The total mean number of photons distribution
nin(ω) is the sum of them (see eq 4.1.4) and is plotted as a green line. (d) Temperature
dependence of the mean number of photon distribution relative to panel c. As we can see,
since the photon distribution is not thermal, the effective temperature Teff of the input
bath acquires a frequency dependence.
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(b) of fig. 4.1.2) and therefore different frequency distributions of the mean number of
photons (in amplitude and cutoff, see panel (a) of fig. 4.1.2) are mixed together with
different weights, where the weights depend on the attenuation chain described above. It
is clear that the frequency distribution of the mean number of photons nin(ω) recovered
from eq. 4.1.4 describes the input bath coupled to the qubit which is not thermal (see
panel (c)) of fig. 4.1.2. This has the effect that the effective temperature of the input
bath Tin(ω) is frequency dependent ( see panel (d) of figure 4.1.2).
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4.1.2 Thermal noise from the output line
In the experimental setup used in this thesis, the attenuation from the thermal noise
coming from the output line (see fig. 6.1.1) is provided by two isolators at the base
temperature for a total of 40 dB of isolation. The main source of noise from the output is
considered to be the 4 K plate at which the HEMT is sitting on [32] along with a small
contribution of the 20mK radiation coming from the resistors of the 50 Ω loads of the
isolators. Equation 4.1.2 can be written as

nout (ω) =
n1 (T4K)

I3

+ n3 (T20mK) , (4.1.5)

I3 = 104 (4.1.6)

where the factor I3 is given by the 40 dB of isolation provided by the isolators at base
temperature.

Figure 4.1.3: Blackbody radiation from output line
(a) In this panel we can see the mean number of photons distribution relative to the
output bath. According to eq. 4.1.5, the main sources of noise are given by the 4 K
plate and by the 20 mK, which are plotted as dashed lines in the graph. The total mean
number of photons distribution that describes the output bath nout(ω) is the sum of them
(see eq. 4.1.5) and is plotted as a yellow line. (b) Temperature dependence of the photon
distributions relative to panel a. The yellow line represents the temperature distribution
of the output thermal bath with respect to frequency.

The mean number of photons distribution of the output bath nout(ω) and the relative
effective temperature Tout(ω) are plotted respectively in panel (a) and (b) of fig. 4.1.3.
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In a similar way with respect to the previous section, we can see that the mean number of
photons distribution nout(ω) which describes the output bath coupled to the qubit is not
thermal (see panel (a) of fig. 4.1.3, with the effect that the effective temperature of the
output bath Tout(ω) is frequency dependent ( see panel (b) of figure 4.1.3)

4.1.3 Effective thermal noise for qubits and cavities
In the previous sections we have calculated the distribution for the mean number of
photons for the input and output bath. Moreover, in the previous chapter we have seen
how our quantum system (qubit, resonator, qubit and resonator in dispersive regime) is
affected by the presence of a thermal bath by solving the master equation of the open
quantum system.

We have also seen (see 3.2) that if the quantum system is coupled with multiple baths,
we can very conveniently use the same solution of the single bath problem, just defining
an effective thermal bath in which the coupling rates and the mean number of photons
are modified (see equations 3.2.5, 3.2.6).

In this section, we will provide an example of how to use the concept of the effective
thermal bath in order to calculate the qubit and resonator temperature if we have a qubit
(or resonator) connected to an input bath, an output bath and a bath connected to the
internal losses of the quantum system.

Applying eq.3.2.6 the mean number of photons impinging on the cavity is given by

neff (ωc) =
nin (ωc) · κin + nout (ωc) · κout + nloss (Tωc) · κloss

κin + κout + κloss
. (4.1.7)

As we have already seen, the effective number of photon is nothing else than a weighted
mean of the number of photons of the multiple baths calculated at the cavity frequency,
and the weights are represented by the decay rates of the cavity through the baths.

In the same way, we can calculate the mean number of photons relative to reservoir
coupled to the qubit

neff (ωqb) =
nin (ωqb) · γin + nout (ωqb) · γout + nloss (ωqb) · γloss

γin + γout + γloss
. (4.1.8)

In our specific case, the qubit is coupled to the input and output bath through the
readout resonator. The decay rates are represented then by the very well known Purcell
factor [34]:

γin =
g2

∆2
κin,

γout =
g2

∆2
κout.

As a reminder, the link between the effective number of photons at the qubit frequency
neff (ωqb) and the temperature of the qubit (for a 2 level system approximation) described
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through the populations of the level in the steady state (see 3.1.1) is

Teff =
~ωqb

kb ln (1/neff (ωqb) + 1)
(4.1.9)

ρ11

ρ00

= exp

{
− ~ωqb
kbTeff

}
(4.1.10)

ρ11 =
1

1 + exp
{

+
~ωqb
kbTeff

} (4.1.11)

while the link between the effective number of photons at the cavity frequency neff(ωc)
and the dephasing of the qubit (see 3.3.2) is

Γthφ '
neff (ωc)κtot χ

2

κ2 + χ2
(4.1.12)

4.2 The role of lossless filters in the line
As we have seen in the previous sections, the insertion of a chain of attenuators between
a thermal bath and the Circuit QED architecture modifies the temperature of the bath
seen by the quantum system.

On the contrary, the insertion of a chain of lossless microwave filters between the
Circuit QED architecture and the bath does not change the temperature of the bath, but
modifies the rate with which the quantum system interacts with the bath.

Let’s imagine for example one lossless cavity with frequency ωcav coupled with a rate
κold to a thermal bath with mean number of photons nbath. As we have already seen in
section 3.2, in the long time limit the mean number of photons in the resonator will be
equal to nbath, and the time evolution of the system will develop at a rate κold.

If we insert a reflective element between the cavity and the bath, the steady state
solution of the system will not change, but the rate at which the system will evolve into
the steady state will change as (see [35])

κnew = κold |S21 (ωcav)|2 (4.2.1)

where κnew is the new coupling rate of the system, κold is the coupling rate between system
and bath without the reflective element, |S21 (ωcav)| is the absolute value of the scattering
parameter that describes the power transmission between the Circuit QED architecture
and the bath, due to the insertion of the reflective element. As a result, the microwave
lossless filters can be used to modify the coupling of the quantum system to the bath, but
not to modify the temperature of the bath.
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4.3 Changing the temperature of the effective
thermal bath

The objective of this thesis is to characterize the thermal noise of the reservoir at the
cavity frequency, which is considered to be the major source of dephasing for the transmon
qubit. It is natural to think about which kind of strategies can be adopted in order
to minimize the magnitude of this source of noise. We have already seen in eq. 4.1.7
that the mean number of photons of the effective reservoir is the weighted mean of the
input bath, the output bath and the bath relative to the internal losses, whereas the
weights are represented by the couplings between the cavity and those baths. Moreover,
following the calculation of the input and output thermal baths (see eq. 4.1.4 and eq.
4.1.5) we have seen that the temperature of these reservoirs depend on the amount of
attenuation/isolation in the lines. Following these considerations, it is clear that in order
to minimize neff (ωc) two strategies can be adopted.

From one side, we can try to minimize the mean number of photons from the different
baths, for example by increasing the attenuation in the attenuation chain described in
the previous section. Unfortunately, implementing this type of solution is usually very
hard.The reason behind that is that the effectiveness of the attenuation chain depends
on the thermalization properties of the attenuators: if the attenuators are not able to
dump the hot microwave photons into the cold cryostat plate, they will inevitably warm
up and become a source of hot photons too. Actually, several articles pointed out that the
thermalization properties of the cryogenic attenuators are very poor at mK temperatures
[7] and that the temperature of those objects is strongly dependent on the amount of
power that they are required to attenuate [9] (for example, some commercial attenuators
heat up to ' 100mK by dissipating ' 10 nW of power). In order to work in that direction
it is very important to use special attenuators with remarkable attenuation properties.
Two great examples are represented by the “Hot electron heatsinks” microwave attenuators
(see [36] and [9]) and the cavity attenuators (see [7]). In the next subsection the general
characteristics of the cavity attenuators will be presented.

From the other side, we can try to minimize neff (ωc) by choosing carefully the coupling
between the cavity and the different baths. In fact, if we attach a very cold bath to the
cavity, and we maximize the coupling of the qubit to that bath, the mean number of
photons of the effective thermal bath would move towards the value of the cold bath.
Physically, that means that we would cool the cavity by giving to the cavity the chance to
“dump” the hot photons to a cold reservoir. In this thesis the second strategy is adopted
since the output bath seems to be much colder of the input bath. In order to fine tuning
the coupling between the quantum system and the input bath some lossless reflective
element are inserted between the quantum system and the input bath, according to eq.
4.2.1.

In the next subsection the engineering of such reflective elements (waveguide section,
composition of waveguide section and cavity attenuator) will be presented.

4.3.1 Cavity attenuators
As we have already described, the engineering of a source of attenuation able to thermalize
at mK temperature is an outgoing challenge in the field of Circuit QED.

The thermalization problem comes from the fact that the resistors in the attenuators
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dump the dissipated power to the cold cryostat plate through the electron-phonon
interaction and phonon-phonon transport [37] [38]. The problem is now that very few
phonons are present at millikelvin temperatures.

Using the same language of the previous chapter, at millikelvin temperatures the
commercial resistor are more and more decoupled to the “cold” environment represented
by the cryosat plate and more coupled with the “hot” reservoir represented by the previous
stages of the cryostat, with the effect of having a resistor hotter than the cryostat plate.

One solution to this problem is to find a source of dissipation which would present an
efficient coupling with the cold bath (i.e. the cryostat plate) at mK temperature. One
good attempt in this direction is represented by cavity attenuators [7]. Those object
are undercoupled (i.e. the major source of loss is represented by the internal losses) 3D
waveguide cavities made of metals with good thermalization characteristics, like copper or
brass. Actually, the power sent to those objects is dissipated into the cavity walls, and the
resulting heat is transported into the bulk metal means electrons in a Fermi degenerate
system, since electronic excitations are always present at low temperatures [7].

One example of a home-made cavity attenuator can be found in fig. 4.3.1. Taking a

Figure 4.3.1: (a) Pictures of a cavity attenuator made of brass with internal dimensions
a = 19.76mm, b = 0.24mm, L = 10mm. The “flat” profile of the cavity (b << L < a)
secures an high surface to volume ratio in order to maximize the resonator losses and turns
the cavity into a dissipative element. (b) Transmission profile of a cavity attenuator in
series with a 3D waveguide. We can see the cutoff drop of the 3D waveguide at ' 6.6GHz
as well as the cavity attenuator fundamental mode at ' 7.7GHz. As a result of the
dissipation, the peak appears to be wide, with a k/2π = 0.2GHz and a Qtot = 41. The
attenuation of −3.6 dB due to energy dissipation can be seen from the on-resonance power
transmission.
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look of fig. 4.3.1 it can be tricky to understand why the cavity attenuator behaves like a
cavity instead of a waveguide. Some insight of the working principle of cavity attenuators
can be found by analizying the concept of impedance in 3D waveguides. Following Pozar
[14] let us at first recall the well known formulas for the cutoff frequency νc and the
propagation constant β for 3D waveguides:

νc =
c

2π

√(mπ
a2

)2

+
(nπ
b2

)2

, (4.3.1)

β(ν) =
c

2π

√
ν2 − ν2

c , (4.3.2)

where a, b represent the internal dimensions of the waveguide (see fig 4.3.2), and m-n
represent integer numbers relative to the different propagating modes of the waveguide.

From these equations we can derive two more important parameters, the waveguide
impedance Zw and the impedance of the waveguide port Zwaveport as

Zw(ν) =
ηk

β(ν)
, (4.3.3)

Zwaveport(ν) ' Zw(ν)

ab
, (4.3.4)

where η is the impedance of the vacuum (' 377 Ω) and k is the wave vector relative to the
propagating mode of the waveguide. Taking a look at picture 4.3.2 we can figure out the
difference between a 3D waveguide and the cavity attenuator: since the cavity attenuator
has a smaller height with respect to the waveguide, the waveport impedances are very
different even if the waveguide impedance between the two objects have similar values.

Consequently the high impedance values of the ports of the cavity attenuators ensures
a impedance mismatch between the cavity attenuator and the input and output line, with
the effect of confining the field inside the object. In other words, the high impedance of
the ports has the same role of the semi-reflective mirrors of the optical cavities.

In order to prove if the intuition of the working principle of those objects is correct, a
lumped-element simulation combined with an HFSS simulation and a room temperature
measurement is performed (see fig 4.3.2). The agreement with the predicted results and
the lumped element model seems to confirm the intuition about the physical properties of
the system.

As final remarks on the cavity attenuators, we can say that those objects (fig 4.3.1)
have the advantage of being well thermalized dissipative objects, but have the main
drawback to have a limited bandwidth ( ' 200MHz).

Moreover, since the amount of attenuation of this object depends on the surface to
volume ratio, if we want to increase the attenuation we have to be able to produce cavities
with low heights (i.e. 0.1mm for ' 10 dB of attenuation) which is difficult in fabrication.

4.3.2 Broadband reflective cavity attenuators
As we have described in the previous section, cavity attenuators have the advantage to be
dissipative cold objects, but their limited bandwidth can cause some difficulties in their
implementation with complex architectures.
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Figure 4.3.2: Measurement and simulation of the cavity attenuator.
(a) Front picture of the 3D waveguide used in the setup of panel c. (b) Front picture of
cavity attenuator used in the setup of panel c. (c) Picture and lumped element model of
a cavity attenuator coupled to a 3D waveguide. The cavity attenuator and the waveguide
are represented as sections of transmission line with characteristic impedance Za, Zb
calculated through equation 4.3.3. The key idea of the model is to describe the coupling
of the cavity attenuator and the waveguide through the impedance mismatch of their
waveports impedances (see eq. 4.3.4), represented in the model as ideal transformers. (d)
Transmission profile (S21) of the setup described in panel c. The different curves represent
the measured data (blue curve), and the simulations carried out with HFSS [16] (yellow
line) and by using the telegrapher equations according to the lumped elements model of
panel c (red curve). The qualitative agreements between the curves points out that the
interpretation on the working principle of the cavity attenuator is appropriate.

Following what we have said in the previous section, the other method to modify
the effective temperature of the reservoir coupled to our quantum system is to lower the
coupling of the quantum system to the hotter bath. In the present thesis (see fig. 4.1.2
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and fig. 4.1.3) the hotter bath is believed to be the input bath, and the quantum system
is represented by the readout resonator.

In order to fine tuning the coupling of the readout resonator and the input bath, I have
engineered a lossless microwave filter (see eq. 4.2.1) by modifying the design of the cavity
attenuator. This object, which has the characteristics of being broadband and lossless, is
called Broadband Reflective Cavity Attenuator (BRCA, see fig. 4.3.3) and attenuates the
incoming signal by reflection instead of by dissipation.

Figure 4.3.3: Assembling the broadband reflective cavity attenuator (BRCA).
(a) Section of a WR90 waveguide used to assemble the BRCA. The purpose of the
waveguide section is to exponentially suppress the mode of the cavity attenuator that
results to be below the cutoff. (b) Cavity attenuator used to assemble the BRCA. The
purpose of the cavity attenuator is to attenuate by reflection the signal above the cutoff
thanks to the “tail” of the resonance. (c) Transmission profile of waveguide (dashed blue
line, measured data), cavity attenuator (dashed red line, simulated data) and BRCA
(yellow line, measured data). The overall transmission profile of the BRCA in the working
region (7GHz to 10GHz) results to be flat and has the desired amount of attenuation of
about ' −10 dB.

As we have already seen, the main advantage of this object is represented by his broad
bandwidth (' 200MHz in the cavity attenuator, ' 3GHz in the BRCA) but the drawback
is that since the attenuation is provided by reflection, no real dissipation occours, meaning
that the change of temperature of the effective thermal bath coupled to our quantum



4.3. Changing the temperature of the effective thermal bath 51

system depends on which bath (i.e. the “hot” reservoir or the “cold” reservoir) are we
acting in order to decrease the coupling. For instance, if we would apply this object to
the “cold” bath of our collection of multiple baths attached to the resonator, we would
have the effect of increasing the temperature of the effective thermal bath.
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Chapter 5

Experimental techniques

In this chapter we can find the description of the techniques used to measure and
manipulate the qubit and the readout resonator.

5.1 Pulse generation
We have already seen in section 2.1.2 and section 2.2.3 that in order to manipulate the
state of the qubit we use microwave pulses. The general scheme of the pulse generation
can be seen in fig. 5.1.1.

Figure 5.1.1: Setup and spectrum of the qubit drive.
(a) Schematic diagram of the experimental apparatus used to produce the microwave
pulse for driving the qubit. (b) Frequency spectrum of the drive from the uncalibrated
IQ mixer. Usually, one of the sidebands of the microwave pulse is used to drive the qubit,
while the LO leakage and the other sideband are minimized through IQ mixer calibration
and additional filtering.

An Arbitrary Wave Generator (AWG) is used to produce a signal with a gaussian
envelope modulated with a low frequency component (ωAWG 'MHz). As we can see from

53
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panel b of figure 5.1.1, the upmixed signal presents three main frequency components: ωd
(LO leakage) , ωd+ωLO (parasitic sideband) and ωd−ωLO (qubit drive). The amplitude of
the LO leakage and the parasitic sideband can be minimized through the mixer calibration
procedures. The resulting signal, used to drive qubit transitions, is a gaussian microwave
pulse with frequency ωd = ωLO ± ωAWG.

It is important to note that since the envelope of the pulse is gaussian, the spectral
shape of the sidbebands produced in the upmixing process will be gaussian too. The
relation between the sigma of the gaussians in time and frequency domain is

σν =
1

2πσt
. (5.1.1)

Since the transmon qubit is a weakly harmonic oscillator we have to pay attention to the
FWHM of the pulse, in order to be sure to not have leakage errors (i.e. to drive some
population of the qubit into higher levels out of the computational subspace ).

In the present thesis we have used at minimum pulse lengths around Pl ' 100 ns with a
sigma of the pulse equal to σt = Pl/6. Using equation 5.1.1 we find σν ' 10MHz, meaning
that the transition between the e to f state (taking in to account the anharmonicity of
α ' 300MHz) is far away from the spectral components of the gaussian pulse. ( ' 30σν
distance.
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5.2 Heterodyne detection
The ability to read the state of the qubit is a fundamental ability required in order to
perform qubit experiments. As we have already seen in section 2.2.6, in the dispersive
regime the resonant frequency of the readout resonator is dependent on the state of
the qubit. Moreover, we have also seen that this frequency shift can be mapped trough
transmission (S21) measurement, in which the amplitude and phase of the resonator
contains information about the state of the qubit (see fig. 2.2.6).

The general scheme used in order to extract the qubit state information from the
transmission measurement of the readout resonator can be found in fig. 5.2.1.

Figure 5.2.1: Heterodyne detection of the readout signal
(a) Schematic diagram of the experimental apparatus used to demodulate the readout
signal. A readout pulse with frequency ωread is shined on the readout cavity. As we have
already seen in fig. 2.2.6, the readout signal acquires an amplitude/phase dependency
with respect to the qubit state. The signal is then downmixed with a 3 port mixer into a
low frequency pulse ωIF and sent to an analog to digital converter. (b) Digitized signal
in frequency and time domain. As we can see, the time domain trace of the downmixed
signal (blue line) exibits the characteristics charge/decay times of an LC resonator on top
of the ωIF microwave pulse. The frequency domain of the signal (orange line) shows a
high signal to noise ratio typical of the heterodyne detection.

As final remarks, is interesting to note two facts. First of all, for the sake of simplicity
just the amplitude information of the readout pulse is extracted in order to obtain the
information about the qubit state.
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In the second instance, it is interesting to note that since the readout pulse is detected
through a Heterodyne detection scheme (i.e. the readout pulse ωREAD is not downmixed
to a DC signal, but to a low frequency pulse ωIF ) the downmixed signal presents low noise
(with respect to the DC noise).As a matter of principle multiple readout resonators at
different frequency could be interrogated with a single pulse containing multiple frequency
components (see frequency multiplexing in [1]).

5.3 Qubit spectroscopy
The qubit spectroscopy measurements consist of applying microwave radiation at different
frequency to the qubit in order to investigate its internal energy structure. The main
parameter extracted through qubit spectroscopy is the frequency of the qubit ωge and the
anharmonicity α (see fig. 5.3.1).

|g〉

|e〉

|f〉

ωgf
2

ωgf
2

ωge

ωge − α

Figure 5.3.1: Schematic diagram of the first three energy levesl of the transmon qubit.
The first two energy levels (|g〉, |e〉) with energy difference ωge represent the computational
space of the qubit. The energy difference between the |e〉 and |f〉 level is equal to the
difference between the qubit frequency ωge and the anharmonicity α. ωgf/2 represents
the frequency of the two photon transition used to drive the qubit from the |g〉 state to
the |f〉 state.

Qubit spectroscopy is performed by sending a long saturation pulse (see fig 5.3.2)
to the qubit followed by a readout pulse in resonance with the readout resonator. The
sequence is repeated by changing the frequency of the saturation pulse: when the probe
pulse becomes resonant with the two photon transition ωgf/2 or single photon transition
ωge the qubit is excited. This then causes a shift of the readout resonator peak which
result in as a reduction of the transmission amplitude of the readout pulse.
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Figure 5.3.2: Qubit spectroscopy
(a) Pulse sequence used to perform spectroscopy on the qubit. The pulse sequence is
composed of a long saturation pulse with variable frequency ωs applied to the qubit (light
blue pulse) followed by a readout pulse with frequency ωR applied to the cavity (light pink
pulse). (b) Spectrum of the qubit. In this plot we can see the transitions with respect to
to the first three energy levels of the qubit (see fig. 5.3.1). The two photon transition
from |g〉 to |f〉 appears as a sharp peak at frequency ωp while the |g〉 to |e〉 transition
appears as the power broadened peak at frequency ωq.
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5.4 Cavity spectroscopy
As we have seen in figure 2.2.6, the readout presents different frequency profiles with
respect to the qubit state. In order to measure the dispersive shift χ (see section 2.2.6)
and the coupling rate κ (see section 2.2.4) we perform a cavity spectroscopy measurement.
The pulse sequence along with a cavity spectroscopy measurement can be found in fig-
5.4.1.

Figure 5.4.1: Cavity spectroscopy
In the figure above we can see the transmission profile of the readout resonator with
respect to the qubit in the ground state (blue line) or in the excited state (orange line)
along with the respective pulse sequences. The blue trace is recorded by sweeping the
frequency ωs of the readout pulse applied to the cavity (light pink pulse). The orange
trace is recorded by first exciting the qubit with a gaussian π pulse (light blue pulse) and
then by sweeping the frequency ωs of the readout pulse applied to the cavity (light pink
pulse).

5.5 Rabi measurement
We have already seen in section 2.1.2 that in order to manipulate the state of the qubit we
use microwave pulses. Moreover, in section 2.2.3 we have seen that this state manipulation
in the context of a single qubit experiment is described by a collection of single qubit
gates, which can be visualized on the Bloch sphere as a composition of rotation operators.

The dependence on the rotation angle θ of the state vector with respect to the amplitude
of the pulse A and the length of the pulse Pl is described through equation 2.2.11. The
purpose of the Rabi Measurement (see fig 5.5.1) is to calibrate the amplitude and length
of the pulses in order to be able to rotate the state vector of the qubit by a desired angle
(i.e. obtaining π/2 pulses, π pulses, . . . ).
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Figure 5.5.1: Rabi oscillations
(a) Pulse sequence used to Rabi drive the qubit. The sequence is composed of a
drive pulse (light blue pulse) with variable length (Time Rabi) and fixed amplitude
(Pulse amplitude=0.06mV) or variable amplitude (Power Rabi) and fixed length (Pulse
length=300 ns). The drive pulse has frequency ωge, and is followed by a readout pulse
(light pink pulse) applied to the cavity with frequency ωR. The shape of the envelope
of the drive pulse is chosen to be gaussian in order to minimize unwanted frequency
components due to the finite length of the pulse that could excite the qubit in higher
electronic levels out of the computational subspace. (b) Rabi oscillations induced by
sweeping the amplitude of the pulse (Power Rabi, red line) or by changing the length of
the pulse (Time Rabi, green line).
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5.6 T1 measurement
As we have seen in section 3.1.1, the process of depolarization induced by the energy
transfer between the qubit and the environment is quantified through the measurement of
the relaxation time T1.

The pulse sequence for the T1 measurement along with the experimental data can be
found in figure 5.6.1.

Figure 5.6.1: In the figure above we can see the longitudinal (T1) decay of the qubit
along with the respective pulse sequence. At first the qubit is driven into the excited state
by a gaussian π pulse (light blue pulse), then, after a waiting time τ , the state of the qubit
is read with a readout pulse (light pink pulse) with a frequency ωR in resonance with the
cavity peak relative to the qubit in the ground state. Since the energy of the thermal
bath is much smaller than the energy separation of the ground state and the excited state
of the qubit (kbT << ~ωqb), in the long time limit (i.e. τ >> 1/Γ1) the qubit decays into
the ground state (p = 1), which corresponds to the maximum amplitude of the readout
signal.

5.7 T2 measurement
We have seen in section 3.1.2, that the process of decoherence is characterized by a loss of
information about the off diagonal element of the density matrix, i.e. a loss of information
about 〈σx(t)〉. Moreover, we have seen that this loss is quantified through the measurement
of the coherence time T2.

The pulse sequence for the T2 measurement along with the experimental data can be
found in figure 5.8.1. As we can see, the pulse sequences for measuring T2 are composed
of a π/2 pulse at the beginning and at the end of the sequence after some waiting time in
which the state undergoes a free evolution.

The purpose of the first π/2 pulse is easy to justify: it creates the coherent superposition
between the ground and excited state of the qubit, which is an eigenstate of the σx operator.
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This is verified easily by the following equations

(θin, φin) = (0, 0) , (5.7.1)

(|g〉 , |e〉) =

(
0
1

)
,

(
1
0

)
, (5.7.2)

|ψin〉 = cos
θin
2
|g〉+ exp{iφin} sin

θin
2
|e〉 , (5.7.3)

|ψ(τ = 0)〉 = Ry(θ = π/2) |ψin〉 , (5.7.4)

|ψ(τ = 0)〉 =
1√
2

(|g〉+ |e〉) , (5.7.5)

ρ (τ = 0)) =
1

2

(
1 1
1 1

)
, (5.7.6)

where (|g〉, |e〉) represent the ground and excited state of the qubit, |ψin〉 is the state
vector of the qubit in steady state condition, (θ, φ) are the zenithal and azimuthal angle
for the state vector expressed in polar coordinates (see fig 2.1.1), τ is the free evolution
time of the qubit (i.e. the time between the first and the last π/2 pulses).

The time evolution of the density matrix under decoherence processes has been already
calculated in the general case (see equation 3.1.20). For the initial conditions expressed in
eq. 5.7.6, the time evolution of the density matrix is

ρ (τ) =
1

2

(
e−Γ1τ e−Γ2τ

e−Γ2τ e−Γ1τ

)
.

We are interested to measure the decay of the coherences of the density matrix, i.e. the
elements that decay with the transverse rate Γ2 ≡ 1/T2 . The most intuitive way would
be to measure the expectation value of 〈σx(τ)〉 :

〈σx(τ)〉 = Tr [ρσx]

= Tr

[
1

2

(
e−Γ1τ e−Γ2τ

e−Γ2τ e−Γ1τ

)(
0 1
1 0

)]
= Tr

[
1

2

( −Γ2τ e−Γ1τ

e−Γ1τ e−Γ2τ

)]
= e−Γ2τ

In the experiment, we are able to measure the eigenvalues of the qubit along the
quantization axis z, i.e. 〈σz(τ)〉. The purpose of the last π/2 pulse essentially is to
transform the qubit density matrix into the σx measurement basis. Essentially one can
measure the eigenvalues of σx by measuring the eigenvalues of σz. With a little calculation,
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we can see that

[|g〉]x = Ry (θ = π/2) |g〉 =
1√
2

(
1
1

)
[|e〉]x = Ry (θ = π/2) |e〉 =

1√
2

(
1
−1

)
[ρ]x = S−1

x→z [ρ]z Sx→z

S−1
x→z = Sx→z =

1√
2

(
1 1
1 −1

)
[ρ (τ)]x =

1

2

(
1 1
1 −1

)(
1/2 e−Γ2τ 1/2 e−Γ1τ

1/2 e−Γ1τ 1/2 e−Γ2τ

)(
1 1
1 −1

)
=

1

2

(
e−Γ1τ + e−Γ2τ 0

0 e−Γ1τ − e−Γ2τ

)
[〈σz (τ)〉]x = Tr [[ρ]x σz] =

1

2

(
e−Γ1τ − e−Γ1τ + 2e−Γ2τ

)
= e−Γ2τ

[〈σz (τ)〉]x ≡ 〈σx(τ)〉

where ([|g〉]x, [|e〉]x ) represent the ground and excited state of the qubit transformed in
the x basis by the π/2 pulse, Sx→z is the usual basis transformation matrix and [ρ (τ)]x is
the density matrix in the x basis.
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5.8 Techo measurement
In the previous chapter we have defined the transverse relaxation rate Γ2 as the decoherence
rate of the off diagonal elements of the density matrix. In section 3.1.2 we have calculated
the rate of this process for some quantum systems by solving the master equation in the
Linblad formalism.

As we have already described in the introduction of chapter 3.1 the solution of the
master equation in the Linblad formalism requires several approximations. The Markov
approximation, for example, requires that the environmental correlation functions decay
on a time scale fast compared to those of the system [26], i.e. the environmental noise
has to be described by white noise with high frequency cutoff [1]. The thermal noise, for
example, falls within the Markov approximation and as a result the coherence decay is
exponential as described in the previous chapters. On the other hand, one archetipal
form of noise that is always present in the Circuit QED architecture is represented by 1/f
noise, which is singular near ω = 0, has long coherence times and does not fall within the
Markov approximation.

In order to decouple the qubit from this source of noise we use the very well known
Hahn echo sequence in which a π pulse is inserted at midway with respect to the two π/2
pulses (see fig. 5.8.1). The additional pulse (see [8] for details) has the effect of frequency
filtering the noise at low frequency and therefore is very effective fot 1/f noise components.
The measurement of Techo along with the relative pulse sequence is described in fig 5.8.1.
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Figure 5.8.1: Transverse relaxation
(a) Decoherence measurement via Ramsey interferometry. At first the qubit is prepared
in a coherent state |ψ〉 = 1√

2
(|g〉+ |e〉) by applying a π/2 gaussian pulse (light blue pulse)

on the qubit. After a time τ , a second π/2 pulse is sent in order to transform the qubit
density matrix onto the σx measurement basis, where the qubit state is read with a readout
pulse (light pink pulse) applied to the cavity. In the long time limit (i.e. τ >> Γ2) the
qubit state decays into a complete depolarized state p = 0 corresponding to a readout
amplitude of ' 5.8mV. (b) Decoherence measurement using a Hahn echo experiment.
The qubit state is prepared and measured in the same way as the Ramsey experiment.
The difference is that a π pulse is applied at midway respect to the two π/2 pulses, which
makes the qubit less sensitive to dephasing noise at low frequencies. Consequently, the
relaxation time T2e measured with the Hahn echo pulse sequence is much higher than the
relaxation time T ∗2 measured with the Ramsey pulse sequence (T2e ' 47µs, T ∗2 ' 20µs)

.
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5.9 Qubit temperature measurement
As we have seen in section 3.1.1.1 the steady state of the qubit (i.e. the population of the
state |g〉 and |e〉 ) carries information about the qubit temperature which in turn reflects
the temperature of the effective bath at the qubit frequency.

One way to determine the excited state population of the qubit is through qubit
spectroscopy measurements (see 5.3) in which the ratio of the peak heights with respect
to the |g〉 to |e〉 transition and |e〉 to |f〉 transition reflects the ratio of population of the
relative states. However, this method does not take into account the variation of readout
efficiency with qubit state and it is therefore not quantitative without further corrections
[39].

Another measurement method which is independent of the readout efficiency is the
Rabi Population Measurement (RPM, see [39] [40]). The basic idea of RPM is to measure
two Rabi oscillations whose amplitude ratio corresponds directly to the ratio of initial
excited state (Pe) to ground state population (Pg).

The first assumption is that the population above the |e〉 state is negligible (that is
usually true for the range of temperature of the experiment, 40− 130mK), so Pe +Pg = 1.
An example of the pulse sequence along with a typical measurement is shown in fig 5.9.1.
Following the initial assumption we can see that

P |g〉 + P |e〉 = 1 (5.9.1)
P |f〉 = 0 (5.9.2)
Ae = A0 P |e〉 (5.9.3)
Ag = A0 P |g〉 (5.9.4)

Where P |g〉, P |e〉, P |f〉 represent the probability of the qubit to be in the |g〉, |e〉, |f〉 state.
For low temperatures the population P |f〉 is approximated to zero. Ae and Ag are the
Rabi amplitudes measured with the RPM technique, and A0 is a factor converting the
qubit state occupation probability to the readout voltage [40].

P |e〉 =
Ae
A0

=
Ae

Ae + Ag

The excited state population is then used to calculate the temperature of the qubit
following a Boltzmann distribution of a two level system (see eq. 4.1.11).
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Figure 5.9.1: Rabi Population Measurement
(a) Schematic diagram of the Rabi Population Measurement (RPM) technique used for
measuring the Rabi amplitudes Ag and Ae. The Rabi amplitude Ae is measured by first
Rabi driving the |e〉 to |f〉 transition, then by swapping the populations between the |e〉
to |g〉 state with a π pulse and at last by performing qubit readout on the cavity peak
corresponding to the |g〉 state. The Rabi amplitude Ag is measured in the same manner
as Ae, with the exception that initially the populations between the |g〉 state and the |e〉
state are swapped with a π pulse. (b) Example of Ae and Ag measurement for a qubit
with a P |e〉 = 1.3 %, corresponding to a qubit temperature of about T = 66mK.
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5.10 Cavity temperature measurement
We have seen in section 3.2 that the mean number of photons in the readout resonator
reflects the temperature of the effective thermal bath at the resonator frequency. Moreover,
we know that the steady state of the resonator is described by a thermal state, with the
relative population of the levels described by the well known equation 3.2.4.

As a result, one way to determine the temperature of the cavity is through qubit
spectroscopy measurements (see 5.3) in which the height ratio of the photon number peaks
(each photon produces a qubit stark shift of χ, see eq. 2.2.16) is used to gather information
about the population of the photon number states of the readout resonator (see [20] [18]).
However, in order to perform this experiment it is necessary to be in the strong dispersive
regime ( where the Stark shift per photon is much larger than the decoherence rates [18]
χ >> γ, κ, 1/T ) whereas in this thesis the experiment is performed in the intermediate
dispersive regime (where κ ' χ, for which the optimal readout condition can be achieved
[41]).

Another way in which we can infer information about the temperature of the readout
resonator is through the measurement of the dephasing Γthφ induced by the thermal photon
in the resonator. Following the work of [8], an engineered thermal noise (see fig. 5.10.1) is
used to sweep the mean number of photons in the readout resonator nth = n0 +nadded while
for each point the qubit dephasing Γφ = 1/2T1 − 1/T2echo is measured with consecutive T1

(see section 5.6) and T2echo (see section 5.7) measurements. It is important to note that for
the decoherence measurement of the qubit we use the Hann echo sequence (see section 5.8)
which ensures a decoupling from 1/f noise sources and keeps the approximation Γφ ' Γthφ
reliable.

Since the relation of Γthφ and nth is linear (see fig. 3.3.1), by performing a linear
regression it is possible to extract the photon population n0 with respect to the temperature
of the mode of the readout resonator.
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Figure 5.10.1: White noise upmixing
(a) Schematic diagram of the experimental apparatus used to engineer artificial thermal
noise. A 270 MHz bandwidth white noise generated by a BK Precision 4063 Arbitrary
Waveform Generator is upmixed with a continuous microwave tone ωLO by means of a
one port terminated IQ mixer. The upmixed white noise is sent to the readout cavity
to form a thermal state with mean number of photons nth = n0 + nadded. (b) Spectral
profile of the engineered thermal noise measured at the spectrum analyzer. As we can
see, the artificial photon source exhibits a white noise behavior over a wide frequency
range, centered around the frequency ωLO used for the upmixing process. The frequency
of the local oscillator is detuned by 80MHz with respect to the cavity frequency in order
to avoid dephasing backaction from coherent photons in the readout resonator.



Chapter 6

Experimental setup

This chapter contains the general information on the experimental apparatus used for the
measurements performed in the two cooldowns. In the first section the general wiring
scheme of the experimental apparatus (see fig. 6.1.1) along with the theoretical predictions
of the mean number of photons and temperature (see fig. 6.1.2) are shown. The following
sections describe the key components used in the experimental apparatus: the transmon
qubit, the Readout resonator, the Input bath couplers.

6.1 From room temperature to 20 mK
The general scheme of the experimental setup for the measurements performed in the two
cooldowns is shown in fig. 6.1.1.

As we can see in both of the cases the structure of the input and output line is
maintained fixed but two different “input couplers” (see section 6.4) are used: an aluminium
section (WG 90 in panel a of fig. 6.1.1) or a BRCA (cavity attenuator + WG90 in panel
a of fig. 6.1.1).

Moreover, using equations eq. 4.1.4 and eq. 4.1.5 is possible to model the expected
temperature and mean number of photons relative to the input and output bath for the
wiring configuration of fig. 6.1.1. The predictions are plotted in figure 6.1.2.

We have seen in section 4.1.3 that the interaction between a quantum system -qubit or
resonator- with multiple baths can be described as an interaction between the quantum
system and one fictious effective thermal bath.

Moreover, we have seen that the mean number of photons and the temperature of the
effective thermal bath depends on the relative coupling between the quantum system and
the baths. In the approximation of low internal losses the only two baths that interact
with the quantum system are the input bath and the output bath.

Following eq. 4.1.7 and eq. 4.1.8, it is easy to convince ourselves that the temperature
and mean number of photons of the effective thermal bath will be bounded by the values
of the input and output bath, shown in panel c of fig. 6.1.2.
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Figure 6.1.1: Experimental apparatus
(a) Schematic diagram describing how the Circuit QED architecture (cavity and qubits) is
wired to the input and output line of the Cryostat. The input line consists of a DC block
at room temperatures, attenuators at different temperature stages, a high pass filter and
an Eccosorb [42] filter. In the first experiment the cavity is connected to the input with a
waveguide aluminium section through a hole (see fig. 6.3.1); in the second experiment a
cavity attenuator (see panel b of fig. 6.4.1) is added in series to the waveguide section
forming the BRCA (see section 4.3.2). On the output side, the cavity (see fig. 6.3.1)
is coupled through a low pass filter, two isolators of ' 20 dB of isolation each and the
amplification chain (the HEMT amplifier and the room temperature amplifiers). (b)
Pictures of the Circuit QED architecture used in the second cooldown. From left to right:
Waveguide coupler, cavity attenuator + waveguide section (BRCA), first half of the cavity,
qubits, second half of the cavity, sma connector.
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Figure 6.1.2: Input/output thermal bath
(a) Mean number of photons describing the input bath reservoir (see eq. 4.1.4) and the
output bath reservoir (see eq. 4.1.5) with respect to the setup described in fig. 6.1.1. (b)
Effective temperature of the input and output bath.
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6.2 transmon qubit

Figure 6.2.1: transmon qubit
(a) Microscope picture of the transmon qubit. (b) E-beam picture of the cross-type
junction.

The transmon qubit (see panel a of fig. 6.2.1) consists of two aluminium pads (which
have the double purpose of coupling the qubit to the resonator and to capacitively shunt
the Josephson Junction) connected through a Josephson junction.

The junction (see panel b of fig. 6.2.1) is a cross-type junction fabricated using
standard electron beam litography with double angle evaporation technique. The junction
consists of two films of aluminium layers with a thickness of 25 nm and 30 nm separated
by an AlOx barrier grown through thermal oxidation for 1 min/1 mbar static pressure of
100% oxygen.

The area of the junction along with the insulator thickness determines the critical
current of the Josephson junction, which in turn, determines the frequency of the qubit.
The important fabrication parameters of the transmon qubits used in the experiment are
shown in tab 7.1.1.

Junction area Oxidation time / Pressure Pad dimensions

qb1 240 nm X 160 nm 1min / 1mbar 500µm X 400µm
qb2 300 nm X 160 nm 1min / 1mbar 500µm X 400µm

Table 6.2.1: Collection of important fabrication parameters of the transmon qubit design.

6.3 Readout resonator
The readout resonator (see fig 6.3.1) consists of two halves of a waveguide aluminium
cavity. Between the interface of the two halves some slots are machined in order to host
the transmon qubits.
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Figure 6.3.1: Readout resonator
Aluminium waveguide cavity used as a readout resonator. The microwave radiation enters
the first half of the cavity from a hole (see panel a) and exits from the second half through
a pin in the sma connector (see panel b.) The coupling of the resonator to the input
line (κ1) and output line (κ2) are tuned respectively by changing the dimension of the
aperture and the length of the pin. The measurements of the coupling rates κ1, κ2 are
carried out by measuring the cavity in reflection through one of the ports while creating a
short on the other port (i.e. closing the hole with aluminium tape).

As we have seen in section 2.2.4 the important parameters for the readout resonator
are represented by the frequency ωc, the input coupling κ1, the output coupling κ2 and
the coupling relative to the internal loss κloss. In the readout resonator used in this thesis
κloss is approximated to zero. This approximation comes from the fact that the cavity is
made of aluminium, and aluminium presents extremely low losses at mK temperature.

The important fabrication parameters of the readout resonator used in the experiment
along with the depending physical variables to which they are linked are shown in tab.
6.3.1.

Cavity inner dimensions 22 mm X 22 mm X 10 mm ωc/2π 9.204GHz
Hole diameter 7.64mm κ1/2π 80 kHz

Pin gap -4.7mm κ2/2π 976 kHz

Table 6.3.1: In the table above we can see the important parameters for the cavity
design along with the physical variable to which they are linked. As we have already seen,
the cavity inner dimension are linked to the frequency of the fundamental mode ωc by eq.
2.2.13. The diameter of the aperture (see panel a of fig. 6.3.1) is directly proportional to
the input coupling rate κ1, while the pin gap (distance between the internal wall of the
cavity and the tip of the pin) determines the output coupling rate κ2.
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6.4 Input bath couplers
The lossless objects used to change the coupling between the readout resonator and the
input bath are a waveguide section (see panel a of fig. 6.4.1) and the BRCA (see section
4.3.2). The BRCA is composed of an aluminium waveguide section and a cavity attenuator
(panel a and b of fig 6.4.1). The Transmission profile of the waveguide section and the
BRCA can be found in panel c of fig. 6.4.1.

Figure 6.4.1: Input bath couplers
(a) Section of a WR90 aluminium waveguide used to couple directly the readout resonator
in the first cooldown and as a component of the BRCA in the second cooldown. The
dimensions a, b, d are described in tab. 6.4.1. (b) Home made cavity attenuator used
with the aluminium section of panel a in order to form the BRCA. The dimension of the
block can be found in tab. 6.4.1. (c) S21 Transmission profile of the waveguide section
(blue dashed line, measured values) the hidden mode of the cavity attenuator (red dashed
line, simulated values) and the BRCA (yellow solid line, measured values). The values of
|S21|2 at the frequencies of the cavity and qubits will modify the coupling between the
quantum objects and the input bath according to equation 4.2.1.

The waveguide section consists of a 1 cm section of aluminium WR 90 waveguide,
which couples to the cavity through the cavity hole (see panel a of figure 6.3.1). The



6.4. Input bath couplers 75

internal dimensions of the waveguide along with the power transmission at the important
frequencies can be found in tab. 6.4.1.

The BRCA consists of a cavity attenuator made of brass in series with an aluminium
section. The internal dimensions of the cavity attenuator along with the power transmission
of the BRCA at the important frequencies can be found in tab. 6.4.1.

( a, b, l ) S21(ωqb1/2π) S21(ωqb2/2π) S21(ωcav/2π)
Waveguide section (22.86 mm, 10.16 mm, 10 mm) −30.8 dB −1.6 dB −0.3 dB
Cavity attenuator (26 mm, 1.74 mm, 10 mm)

BRCA −39.8 dB −11.5 dB −10.4 dB

Table 6.4.1: In the table above we can see the important parameters for the input
couplers design along with the physical variable to which they are linked. The waveguide
section internal dimension determines both the cutoff frequency (see eq. 4.3.1) and the
amount of reflection below the cutoff (the “steepness” of the S21 profile in panel c of figure
6.4.1). The internal dimensions of the cavity attenuator determine the frequency of the
mode (see the hidden mode in panel c of figure 6.4.1) and the amount of reflection out of
resonance. The S21 profiles at qubit and cavity frequency of the input couplers (waveguide
section and BRCA) are used to calculate the modified coupling of the quantum system to
the input bath (see section 4.2).
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Chapter 7

Experimental results

This chapter summarizes the key measurements performed in two consecutive cooldowns
(respectively section 7.1 and section 7.2) in order to obtain the temperature values of the
qubits and the readout resonator (discussed in section 7.3).

The structure of the first two sections that constitute this chapter is indeed the same.
At first, a set of measurements are carried out on the Circuit QED architecture in order
to benchmark the system, then the temperature measurements on qubit and readout
resonator are performed.

The difference between the configurations of the first and second cooldown is represented
by the use of different lossless elements between the Circuit QED architecture and the
input bath (“input couplers”) which modifies the coupling between the quantum systems
and the input bath. It is important to recall that the coupling rates between the quantum
system and the thermal baths determine the temperature of the effective thermal bath at
which the quantum system thermalizes (see section 3.1, section 3.2 and section 4.1.3).

The third section is dedicated to the comparison between the temperature
measurements in the different configurations and the theoretical model.
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7.1 First cooldown: waveguide section as
input coupler

The main feature of the experimental apparatus in the first cooldown (see fig. 6.1.1) is
represented by the presence of a section of aluminium waveguide between the qubit-cavity
system and the input bath (see figure 6.4.1, point (a)).

This section is divided in two parts: subsection 7.1.1 deals with benchmarking of
qubit-cavity system while subsection 7.1.2 deals with the temperature measurements.

7.1.1 Characterization
The first set of measurements performed on the Circuit QED architecture are displayed in
fig. 7.1.1 and fig. 7.1.2. As we can see, a collection of techniques described in chapter 5 is
used in order to benchmark the qubit-cavity system.

Panels a of figs. 7.1.1-7.1.2 are associated witn the Qubit spectroscopy measurements.
As we have seen in section 5.3, from the spectroscopic peaks related to the one photon
transition ωge and two photons transition ωef/2 we can recover the qubit frequency ω/2π
and anharmonicity α. Table 7.1.1 summarizes the parameters of both the qubits. It is
interesting to note that the spectroscopy measurement relative to the |e〉 → |f〉 reveals a
double peak, which is a signature of a Two Level System (TLS) coupled resonantly to the
qubit at that frequency.

ω/2π (GHz) α (MHz) g/2π (MHz) χ/2π (MHz)
qb1 5.425918(2) 322.61(4) 183.37(7) 1.669(2)
qb2 6.842493(2) 287.07(9) 177.87(3) 3.732(2)

T1 (µs) T2 (µs) TE (µs) Tpurcell (µs)

qb1 47.7(6) 20.1(8) 35.2(8) 61.7(5)
qb2 20.9(3) 22.4(5) 25.3(6) 25.5(3)

ωc/2π (GHz) κ /2π(MHz)
Cav 9.196693(5) 1.09(1)

Table 7.1.1: In the table above we summarize the parameters of the qubits extracted
from the measurements shown respectively in fig. 7.1.1 and fig. 7.1.2.

Panels b of figs. 7.1.1-7.1.2 show the Cavity spectroscopy measurements. As we have
seen in section 5.4, from the distance between the peaks of the cavity for the qubit in
ground state |g〉 or in the excited state |e〉 we can obtain the value of the dispersive shift
χ and calculate the qubit-cavity coupling g. As expected, the values of the dispersive shift
for the different qubits varies following the different values of the detuning ∆ between the
qubit frequencies and the cavity frequency.

Panels c of figs. 7.1.1-7.1.2 are associated with the Power Rabi measurements. As we
have seen in section 5.5, from the generated Rabi oscillations is possible to calibrate the
pulses in order to rotate the state vector of the qubit of a desired angle. It is possible to
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see that the period of the oscillation with respect to the amplitude of the pulse is very
different from qb1 and qb2: that feature reflects the difference in coupling with respect to
the input line. This difference in coupling is given by the detuning difference of qb1 and
qb2 with respect to the readout cavity mode and by the decoupling effect of the waveguide
aluminium section, which is 100 times higher for qb1 with respect to qb2 (see tab. 6.4.1).

Panels d of figs. 7.1.1-7.1.2 show the T1 measurements. As we have seen in section
5.6, the measurement of the relaxation time T1 gives information about the qubit
depolarization mechanism and about the noise coupled transversally to the qubit. It
is important to note that the “low” values of T1 (good transmon qubits can have T1 on
the order of ' 100µs) are determined mostly by the Purcell decay to the output line.
Actually, comparing T1 and Tpurcell in table 7.1.1 we can see that the Purcell contribution
to the energy relaxation time represents 77% of the total for qb1 and the 81% for qb2.

Panels e of figs. 7.1.1-7.1.2 are related to the T2 measurements. As we have seen in
section 5.7, the measurement of the relaxation time T2 gives information about the qubit
decoherence mechanism induced by the low frequency noise (DC to tens of KHz) coupled
longitudinally to the qubit. It is interesting to note that the T2 measurement of the qb1
presents a revival in the decay trace, which is a typical signature of a TLS coupled to the
qubit.

Panels f of figs. 7.1.1-7.1.2 are associated with the Techo measurements. As we have
seen in section 5.8, the measurement of the relaxation time Techo gives information about
the decoherence process carried out by noise coupled longitudinally to the qubit at higher
frequencies with respect to the T2 measurement (100 kHz to several MHz). As we can see,
as a results of the dynamical decoupling techniques, the values of the coherence measured
improved substantially in both of the qubits.
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Figure 7.1.1: Qubit 1 characterization
(a) Qubit spectroscopy. (b) Cavity spectroscopy. (c) Pulse calibration. (d) T1

measurement. (e) T2 measurement. (f) Techo measurement.

Figure 7.1.2: Qubit 2 characterization
(a) Qubit spectroscopy. (b) Cavity spectroscopy. (c) Pulse calibration. (d) T1

measurement. (e) T2 measurement. (f) Techo measurement.
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7.1.2 Temperature measurements
The qubits temperature measurements and the cavity temperature measurements are
shown in fig. 7.1.3 and fig. 7.1.4.

Panels a and b of fig. 7.1.3 show the Rabi Population Measurement (RPM) of qubit
1 and qubit 2. As we have seen in section 5.9, from the amplitude ratio of the Rabi
oscillation induced from the |e〉 ↔ |f〉 transition (green points) to the |g〉 ↔ |e〉 transition
(blue points) it is possible to address the steady state population of the qubit in the
excited state. The steady state solutions of the qubits in the excited state ρ11 (t >> 1/T1)
and the relative qubits temperatures Teff (ωqb) are displayed in tab. 7.1.2.

Figure 7.1.3: Qubits temperature measurements
(a) Rabi population measurement performed on qubit 1. (b) Rabi population measurement
performed on qubit 2.

ρ11 (t >> 1/T1) Teff (ωqb)

qb1 7.2 (3) % 102 (2)mK
qb2 4.5 (2) % 108 (1)mK

nth (t >> 1/κ) Teff (ωcav)

Cav (qb1) 0.0044(1) 81(1)
Cav (qb2) 0.0030(1) 76(1)

Table 7.1.2: In the table above we can see the results of the temperature measurements
shown respectively in fig. 7.1.3 and fig. 7.1.4. It is important to note that the values
of temperature of the cavity Teff(ωcav) and the mean number of photons in the cavity
nth have to be intended as upper limits. This feature comes from the fact that these
quantities are evaluated from the qubit dephasing in the approximation of Γφ ' Γthφ
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The measurements of the cavity temperature are shown in fig. 7.1.4. As we have seen
in section 5.10, through the injection of engineered thermal photons (panels a and c) and
consecutive qubits dephasing measurements (panels b and d) it is possible to recover the
mean number of photons in the steady state that populates the readout resonator. It is
interesting to note how the dephasing behavior of the qubits with respect to the added
photons follows the simulations shown in fig. 4.3.2.

From a quantitative point of view, we can see in tab. 7.1.2 that the mean number of
photons in the readout resonator for the steady state nth (t >> 1/κ) measured through
qubit 1 does not agree in the range of error with the values measured through qubit 2 (
and as a consequence the temperatures too).

One possible explanation about this discrepancy is that the errors in the mean number
of photons and temperature are underestimated. Indeed, the temperature of the cavity
measured through the qubit 1 have been taken 2 days before the temperature of the cavity
recorded through qubit 2, and slow variation of the experiment parameters could have
affected the measurements. In any case, it is important to remember that even if these
values are different out of the range of error, they are anyway consistent because the
cavity temperature values measured through qubit dephasing have always to be intended
as upper limits (see [36, 9]). This can be explained from the fact that the qubit dephasing
present always an unknown offset (i.e. Γφ = Γthφ + Γothers).
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Figure 7.1.4: Cavity temperature measurement
(a) Dephasing rate Γφ of qubit 1 with respect to the injected noise nadd at cavity frequency.
The intercept of the line represents the mean number of photons relative to the temperature
of the cavity. (b) Techo measurements of qubit 1 performed at different injected number
of photons nadd. (c, d) Dephasing rate Γφ and relative Techo measurements performed
with qubit 2 .
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7.2 Second cooldown: BRCA on input
The main feature of the experimental apparatus in the second cooldown (see fig. 6.1.1)
is represented by the presence of the Broadband Reflective Cavity attenuator (BRCA)
between the qubit-cavity system and the input bath. We recall here that the BRCA
is nothing else than a home made cavity attenuator in series with a section of a 3D
aluminium waveguide (see figure 6.4.1, panel a and b).

In the same way as the previous section, the experimental results of to the second
cooldown are divided in two parts: subsection 7.2.1 deals with the benchmarking of the
qubits-cavity system while subsection 7.2.2 deals with the temperature measurements.

7.2.1 Characterization
As usual, the first step of the second cooldown experiments is a set of measurements
performed in order to characterize the qubit-cavity system, which are displayed in fig.
7.2.1. The first thing that we can note is that the measurements for qubit 1 are not present,
as it has been shortened during the warm-up/ cool-down procedures. The parameters for
the qubit 2 -cavity system extracted through the measurements shown in fig. 7.2.1 are
displayed in tab. 7.2.1.

It is interesting to discuss how the qubit 2 parameters changed between the second
cooldown and the first cooldown (respectively tab. 7.2.1 and tab. 7.1.1 ). First of all, the
frequency of the qubit ω decreased by about 11 MHz, which is expected from the usual
aging of the Josephson Junctions. The anharmonicity α remained the same within the
range of error while the dispersive shift χ slightly changes due to the change of frequency
of the qubit. The qubit-cavity coupling calculated results to be changed slightly out of
the range of error (' 6σ). The relaxation times T1, T2 and Techo experienced a general
decreasing with respect to the former values. For T1 and Techo those differences are almost
in the range of error, while for T2 the variation change is about the 30 % of the former
value.

ω/2π (GHz) α (MHz) g/2π (MHz) χ/2π (MHz)
qb2 6.831202(5) 287.03(2) 178.18(5) 3.684(3)

T1 (µs) T2 (µs) TE (µs) Tpurcell (µs)

qb2 18.6(3) 14.8(6) 23.8(5) 27.0(3)

ω/2π (GHz) κ /2π(MHz)
Cav 9.203666(3) 1.05(1)

Table 7.2.1: In the table above we can see results of the characterization measurement
of qubit 2 shown in fig. 7.2.1
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Figure 7.2.1: Qubit 2 characterization- second cooldown
(a) Qubit spectroscopy. (b) Cavity spectroscopy. (c) Pulse calibration. (d) T1

measurement. (e) T2 measurement. (f) Techo measurement.
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7.2.2 Temperature measurements
The cavity temperature measurements and the qubit 2 temperature measurements are
shown respectively in panel (a) and (b) of fig. 7.2.2 and panel (c) of fig. 7.2.2.

The steady state solutions of the qubits in the excited state ρ11 (t >> 1/T1) , the
qubit 2 temperature Teff(ωqb), the mean number of photons in the readout resonator
for the steady state nth (t >> 1/κ) and the relative cavity temperature Teff (ωcav) are
summarized in tab. 7.1.2.

Figure 7.2.2: Temperature measurement- Qubit 2 and cavity-
(a) Dephasing rate Γφ of qubit 2 with respect to the injected noise nadd at the cavity
frequency. The intercept of the line represents the mean number of photons relative to
the temperature of the cavity. (b) Techo measurements of qubit 2 performed at different
injected number of photons nadd. (c) Rabi population measurement performed on qubit 2.
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ρ11 (t >> 1/T1) Teff (ωqb)

qb2 4.6 (1) % 108 (1)mK
nth (t >> 1/κ) Teff (ωcav)

Cav 0.0024(3) 73(1)

Table 7.2.2: In the table above we can see the results of the temperature measurements
shown in fig. 7.2.2

7.3 Temperature: theoretical model and
results

The temperature measurements performed in previous sections are plotted along with the
theoretical predictions in fig. 7.3.1. The solid lines represent the expected temperature
distribution of the reservoirs relative to the input line and output line. As we have already
seen in chapter 4, the properties of those baths can be recovered from the voltage noise
spectral density propagation through the lines (see eq. 4.1.4 and eq. 4.1.5).

The green points represent the theoretical predictions for the qubits and cavity
temperature for the first cooldown (dots) and second cooldown (squares). These values
have been calculated with eq. 4.1.7 and 4.1.8 in the approximation of low internal losses
(κloss, γloss ' 0). The values of the input coupling κin used in the equations above are
modified from the first to the second cooldown due to the transmission properties of the
“input couplers” (i.e. the waveguide section and the BRCA) following eq. 4.2.1. The grey
and black dots represent the temperature measurements performed respectively in the
first and in the second cooldown.

As we can see, the qubit temperature measured through the RPM technique seems to
differ drastically from the theoretical predictions. Indeed, since the qubits were coupled
to the environment through the readout resonator, and since the readout resonator was
massively overcoupled to the output line, the qubits were expected to thermalize to the
temperature of the output bath.

The temperature measurements of the cavity through the qubit dephasing seems to be
described reasonably well in the model. As we can see, the temperature measurements
of the cavity in the first cooldown is Tcav < 81mK and Tcav < 76mK (grey points at '
9.1 GHz), which are consistent (taking into account that these values are upper limits)
with the theoretical prediction (square green point) of 67mK. Moreover, it is interesting
to note that after having decoupled further the quantum system from the input bath
through the use of the BRCA, the theoretical value of the effective thermal bath has been
moved to a value ' 4 mK lower, in agreement with the measurement performed on the
second cooldown (black point).

From a general point of view, there are many reasons why the Circuit QED system
may turn out hotter than expected: thermalization problems in the attenuators and
isolators, underestimation of room temperature noise through the HEMT, backaction from
the HEMT, underestimation of the noise coming from the internal losses of the cavity.
Nevertheless, the fact that the theoretical model agrees with the cavity temperature but
not to the qubits temperature points out that the qubits probably couple to additional
“hot” reservoirs through their internal loss channels.
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Figure 7.3.1: Theoretical model and experimental results
In the picture above we can see the comparison between the theoretical model that
describes the temperature of the qubit and cavity and the measurements performed in
the two cooldowns. The orange line and blue lines represent the expected temperature
of the input and output baths calculated with eq. 4.1.4 and eq. 4.1.5. The green points
represent the theoretical values of temperatures for the qubits and the cavity (see eq. 4.1.7
and eq. 4.1.8) in the approximation of no internal losses. The grey dots and the black
dots represent the experimental results shown in section 7.1.2 and section7.2.2.



Chapter 8

Conclusions and outlook

The main objective of this thesis was to characterize the thermal noise which couples to
both the qubit and the cavity in our Circuit QED architecture. In order to accomplish this
task, the quantum properties of the qubit as the steady state population or the dephasing
are measured.

Chapter 3 and chapter 4 describe the interaction between the qubit (or cavity) and
multiple baths in terms of an interaction between the quantum system and a fictitious
single “effective” thermal bath. Moreover, it was shown how the temperature T eff and
mean noise photon occupation number neffth of the effective thermal baths depend on the
relative coupling rates between the quantum system and the thermal baths composing
the effective thermal bath.

These features have been investigated through the introduction of different lossless
reflective elements (the waveguide section and the BRCA) which modify the coupling of
the Circuit QED system to the input bath and the consecutives measurements of the
qubits and cavity temperatures.

The comparison between the measured temperatures and the theoretical predictions
has been discussed in section 7.3. We have seen that the theoretical model strongly
deviates in the prediction of the measured qubit temperatures, while it is consistent with
the measured cavity temperatures. This suggests the interpretation that the qubits could
have been coupled to additional “hot” reservoirs.

8.1 Improving the experimental apparatus
Future steps that have to be taken to decrease the temperature of the effective thermal
bath that couples to the qubits and the readout resonator are described in the following.
As we have already seen in section 4.3, there are two main approaches that can be used in
order to change the temperature of the effective thermal bath:

• change the mean number of photons nith relative to the i baths

• change the relative couplings rates κi between the quantum system and the baths.

As a matter of principle, the first approach can be implemented by increasing the
attenuation of every link between the environment and the Circuit QED system.
Nevertheless, it is well known that this solution is in general not effective, because
of the poor thermalization properties of the attenuators [7] at base temperature. In fact,
if the attenuators are not able to dump the hot microwave photons into the cold cryostat
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plate, they will inevitably warm up and become a source of hot photons too. Moreover,
the temperature of the commercial attenuators is strongly dependent on the amount of
power that they are required to dissipate [9] (for example, some commercial attenuators
heat up to ' 100mK by dissipating ' 10 nW of power). In order to work in that direction
it is very important to use special attenuators with remarkable attenuation properties,
as the “Hot electron heatsinks” microwave attenuators (see [36] and [9]) and the cavity
attenuators (see [7]).

The second approach can be performed by choosing carefully the coupling between the
Circuit QED and the different baths. In fact, if we attach a very cold bath to the quantum
system and we maximize the coupling of the qubit to that bath, the mean number of
photons of the effective thermal bath would move towards the value of the cold bath.
Physically, that means that we would cool the cavity by giving to the cavity the chance
to “dump” the hot photons to a cold reservoir. One possible experimental apparatus
configuration that could reduce the thermal effects on the quantum system using both
principles is shown in figure 8.1.1 . As we can see, on the output line the first approach is
used: one isolator is added with the effect of lowering the contribution of thermal noise
from the output line by about ' 20mK.

The work on the input line is based on the second approach. As we can see, in front
of the input port of the quantum system a directional coupler is placed. The directional
coupler is a lossless object which provides different couplings between its four ports. It
forms by itself an “effective” input bath for the quantum system, composed by the input
line, the trash line and the 50Ω load. The idea in order to create a “cold” effective input
bath, is to increase the coupling between the quantum system and the colder reservoir
attached to the directional coupler. In the wiring proposal shown in fig. 8.1.1 the cold
reservoir is represented by the 50Ω load. It is important to stress that this object has
to be well thermalized in order to create a “cold” effective input bath: this load would
represent a heat sink in which the hot photons coming from the quantum system can be
dumped in.

The advantage that comes from the present attenuation scheme on the input line with
respect to the old one (see 6.1.1) is that, for equal thermalization properties, in the new
scheme the load at the base temperature plate is expected to be colder than the attenuator
at the base temperature plate in the previous setup. This hypothesis comes from the fact
that the power that the load would have to dissipate would be mainly the power of the
drive reflected by the cavity, that is much less of the power that an attenuator would have
to dissipate in the previous (see fig. 6.1.1) configuration.

For example, let’s imagine to send 10 nW of power to the quantum system from an
input line in which the last attenuator at base plate attenuates 20 dB. Let’s assume also
that the quantum system reflects 90 % of the power sent. It is clear that

Pqubit = 10 nW

Pin = 1µW

Pref = 9 nW

Pdiss = Pin − Pin/100 + Pref − Pref/100

' 981 nW

with the result that the attenuator at 20 mK has to dissipate 981 nW of power. In the
proposed configuration, the input line has an isolation of 20 dB to the quantum system
and of 40 dB to the load. For the same power condition of the drive applied to the
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Figure 8.1.1: New wiring proposal
(a) Wiring configuration suggested for minimize thermal noise from input and output line.
(b) Comparison between the best case scenario input and output bath temperatures for
the actual wiring configuration (dashed lines) and the suggested configuration (solid lines)
of panel a.

quantum system, we would see

Pqubit = 10 nW

Pin = 1µW

P load
in = 0.1 nW

P load
ref = 9 nW

Pdiss = P load
in − P load

in /100 + P load
ref − P load

ref /100

' 9 nW

As we can see, the amount of power that the load would have to dissipate in this
configuration is much less, which release the thermalization problem.
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