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Abstract

In this thesis, three dimensional microwave cavities, more specifically
coaxial λ/4 resonators, are investigated. The resonators are fabricated
from three different metals: copper, aluminum and niobium. In order to
achieve high quality factors, various surface treatments including chemical
etching and annealing are applied. The particular resonator architecture,
combined with the superconductor niobium, yields internal quality factors
exceeding a billion (109) in a measurement environment of about 20 mK.

For the normal conducting copper cavities Qint ≥ 104, after the etching
and annealing surface treatment, is reached. The high purity aluminum
resonators achieve internal quality factors up to ∼ 107, where a slight de-
pendence on the cavity input power is detected. The niobium cavity shows
an internal quality factor of Qint ≈ 0.5 · 109 at the single photon level
and Qint ≈ 1.2 · 109 in the high drive power regime. This represents the
highest-Q coaxial quarterwave resonator yet reported and corresponds to
photon lifetimes in the range of 10− 24 ms. The increase of Qint, while in-
creasing either the temperature or the drive power, indicate that saturable
two-level-systems, residing in the cavity wall’s niobium oxide layer, are the
dominating loss mechanism.

Besides extracting the resonator’s quality factors with a scattering pa-
rameter reflection measurement in the frequency domain, an equivalent
measurement method in the time domain is examined. Therefore the cav-
ity reflected power is recorded, while applying a resonant drive pulse. The
loaded quality factor Ql is obtained from the cavity power decay. From
the distinct shape of the transient behaviour, conclusions on the coupling
regime can be drawn. Furthermore, an analytic expression for the reflected
power response is derived, including the case of a detuned cavity drive. A
fit of the cavity reflected power ring-up trace yields the resonator’s char-
acteristic parameters.
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1 Introduction

1 Introduction

Superconducting circuits are one of the most promising platforms for quantum
information processing [1]. Combining Josephson Junction based artificial atoms
with microwave cavities depicts a promising direction for quantum computation
and communication [2]. In the field of circuit quantum electrodynamics (cQED),
microwave resonators are an essential building block for qubit readout [3] and
qubit coupling [4].

Embedded in such systems, the qubit coherence time improved up to one
hundred microseconds [5], which enables high-fidelity gate operations and puts
the superconducting qubit approach near the error threshold required for fault-
tolerant quantum computing [6].

Microwave resonators are especially interesting for quantum state storage. A
transmon qubit embedded in a three dimensional microwave cavity, which is used
as a quantum memory, can lead to lifetimes and coherence times in the millisecond
range [7]. Therefore the qubit state is transferred into a non-classical photonic
state, which circumvents the lifetime limitations of the superconducting qubit.

By further enhancing the quality factor of microwave resonators, particularly
in the single photon drive strength regime, even higher photonic lifetimes can
be generated. At these low cavity input power levels, dissipation mechanisms
concerning a lossy dielectric layer on the cavity surface have to be faced [8].
Additionally, a finite surface resistance of the superconducting cavity, e.g. due to
material defects, can be a limiting factor. Using the strategy of either lowering
the resonator’s sensitivity to the loss mechanism or improving the condition of the
cavity surface, a comprehensive loss reduction is feasible. Extending the photonic
lifetime of coaxial λ/4 resonators represents the aim of this thesis.
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2 Microwave resonators

2 Microwave resonators

This chapter gives an introduction to the main concepts that characterise mi-
crowave resonators. The focus will be on resonators in reflection configuration,
as it is the scenario used in the experiment. A profound discussion on radiofre-
quency and microwave engineering can be found in [9]. A detailed analysis about
quality factors and loss mechanisms in microwave resonators is given in [10]. A
study on scattering matrix elements for microwave resonator networks in either
notch or refelction configuration is covered in [11–13].

2.1 Definition of quality factors and participation ratios

An important parameter characterising the losses of a resonator is the quality
factor. It is defined as

Q = ω0
Total energy stored

Total power dissipated = ω0

κ
(2.1)

with the resonance frequency ω0 and the energy decay rate κ [10]. Since many loss
mechanisms contribute to the total, or loaded quality factor Ql, a division into
external or coupling losses and internal losses proved useful. The coupling quality
factor Qc describes the resonator’s energy dissipation to an external circuit, which
is used for measuring the resonator. The internal quality factor involves the
resonator’s intrinsic losses, for instance due to a resistive conductor or a lossy
dielectric layer on the metal surface. The loaded quality factor is defined as the
reciprocal sum of internal and coupling quality factor

1
Ql

= 1
Qc

+ 1
Qint

(2.2)

Ql is limited by the dominating loss channel. Therefore three coupling regime
scenarios (see table 2.1), depending on the ratio of Qint and Qc, can be distin-
guished. A useful tool to investigate a resonator’s sensitivity to various intrinsic

Table 2.1: Overview of the different coupling regimes.

Qc > Qint under-coupled
Qc ≈ Qint critically coupled
Qc < Qint over-coupled
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2 Microwave resonators

loss mechanisms is to inspect its participation ratios [10], which are defined as

pn = Amount of energy sensitive to loss mechanism
Total energy stored (2.3)

Each loss mechanism brings along a participation ratio that depends strongly on
the resonator geometry. Calculating the participation ratios leads to an estima-
tion for the limits of a certain resonator design. The corresponding quality factors
are given by

Qn = 1
pn tan δn

(2.4)

The material property tan δn depicts the loss tangent, which is a parameter sens-
ing how lossy a certain mechanism acts.

2.2 Scattering parameter

Z0
C

L R C

Z

C

Figure 2.1: Schematic of the equivalent circuit of a resonator in the single
port reflection configuration. The resonator itself is modelled as a parallel LRC-
circuit, which is capacitively coupled (Cc) to an open ended transmission line with
the characteristic impedance Z0. The LRC-circuit and the coupling capacity Cc
are summarised to an input impedance Z.

The measurement of a resonator in reflection configuration can be modelled
with the equivalent circuit depicted in figure 2.1. An open-ended transmission line
with the characteristic impedance Z0 connects the resonator, which is represented
by a parallel LRC-circuit, to the outside world through a coupling capacitor Cc.
The resonator and its coupling capacitor can be combined to an input impedance
Z. Following [12], the input impedance seen by the transmission line near reso-
nance ∆ω � ω0 becomes

Z(ω) = Z0

(
Qc

Qint
+ j

∆ω
ω0

2Qc

)
(2.5)
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2 Microwave resonators

The change of impedance seen by an incoming signal Vin causes a reflection fol-
lowing

Vout = S11Vin (2.6)

where Vout describes the reflected signal and S11 the reflection scattering param-
eter

S11 = Z − Z0

Z + Z0
(2.7)

The resulting formula characterising a resonator in the single port reflection sce-
nario is

S11(ω) = 1− 2Ql/Qc

1 + 2jQl
∆ω
ω0

(2.8)

The scattering parameter S11 corresponds to a circle in the complex plane with
distinct characteristics in each coupling regime. The absolute square |S11(ω)|2

forms an inverse Lorentzian centered at ω0 with the full-width-half-maximum
κ = ω0/Ql. Further explication on the extraction of the resonator properties
from a S11 measurement are given in section 4.2.
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3 The coaxial λ/4 resonator

3 The coaxial λ/4 resonator

In this chapter the properties of the coaxial λ/4 resonator are investigated. The
advantages of the cavity geometry, the coupling to the cavity and its loss mech-
anisms are discussed. The concept of the high-Q coaxial quarterwave resonator
was developed by Reagor et al. [7]. The discussion is based on [10].

3.1 Features of the resonator design

The coaxial λ/4 resonator is designed to accomplish high quality factors. The key
element of the cavity geometry concept is to combine a circular waveguide with a
coaxial transmission line, which is short circuited at the bottom and terminated
in an open circuit at the top end. An illustration of the cavity design is given
in figure 3.1. The length l′ of the remaining stub defines the resonators reso-
nance condition. The fundamental resonance frequency is approximately given
by l′ ≈ λ/4, the next transmission line mode is expected to be at l′ ≈ 3λ/4. The
capacitive loading at the top of the stub changes the mode’s resonance frequency,
estimated by the stub’s length condition, to lower values. The big gap between
the fundamental and the higher modes ensures the exclusive excitation of the
fundamental mode in a measurement. The electric field is at its maximum at the
top of the stub, and decreases down to the bottom end. The outer conductor of
the coaxial transmission line merges above the stub into the circular waveguide
section, which is closed on top with a light tight seal. The waveguide transmits
modes above its cutoff frequency fc, but suppresses the transmission of modes
below fc exponentially. This circumstance is used, as the length of the stub and
further the resonance frequency is chosen to be below cutoff f0 � fc. The fields of
the fundamental resonator mode are exponentially attenuated in the waveguide
section. High internal quality factors are achieved, since the contact resistance is
substantially lower at the top of the circular waveguide.

The fields of the TEM modes of a coaxial transmission line are given in cylin-
drical coordinates by

~E = V0 · ρ̂
ρ · ln b/a e

−βz (3.1)

~H = V0 · φ̂
ρ · η ln b/a e

−βz (3.2)

with the line’s inner and outer conductor radii a and b, the propagation constant
β, the voltage amplitude V0 and the wave impedance η =

√
µ/ε [9]. The variables
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3 The coaxial λ/4 resonator
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Figure 3.1: Design of the high-Q coaxial λ/4 microwave resonator. The cavity
can be divided into three sections: the circular waveguide section of length L and
radius b, a coaxial transmission line of length λ/4 and inner and outer conductor
radii a and b, which is short circuited at the bottom and open circuited at the top
end of the stub, and the sideways coupling section. The coupling section involves
a coupling pin, with a distance ∆l between the end of the pin and the actual
resonator. The space in between represents another a circular waveguide. Fields
in circular waveguides below the cutoff frequency are attenuated as indicated in
the drawing.

µ and ε depict the permeability and permittivity of dielectric material in between
the conductors. The radii of the inner and outer conductor are primarly chosen
to be a = 2 mm and b = 5.25 mm, due to machining restrictions. After chang-
ing to the sinker electrical discharge machnining technique, the radii are altered
slightly to accomplish ratio a : b of 3 : 1, which minimizes the surface resistance
losses [14]. The height of the stub is chosen to be 8mm, which corresponds to a
calculated frequency of 9.369 GHz. The resonator mode’s electric field reaching
into the waveguide, as seen in the simulated field plot in figure 3.2, causes a shunt
capacitance and an effectively extended stub length, which results in an actual
lower resonance frequency. Finite element simulations, done with the software
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3 The coaxial λ/4 resonator

HFFS [15], predict a resonance frequency of 7.644 GHz for the first set of the
coaxial radii a and b and considering perfectly conducting cavity walls.

E

H E| |

Figure 3.2: Fundamental mode field plot of the coaxial quarterwave resonator
obtained from HFFS simulations. Shown is a vector plot of the magnetic field
~H and the electric field ~E in the area surrounding the stub. Furthermore the
magnitude of the electric field | ~E| of the whole resonator is shown, where the
decrease of the electric field energy along the waveguide section becomes visible.

The mode, that is most likely to set the resonators propagation into the waveg-
uide, is the circular TM01 mode. It is favourable for the resonator geometry, as
the electric and magnetic field distribution of the TEM cavity mode and the
TM01 waveguide mode share great similarities (see figure 3.3). Both modes show
magnetic field lines circling around the center and radially spread electric field
lines. From all the TM modes the resonator couples to, the TM01 mode is the one
with the lowest cutoff frequency. The propagation constant of the TM01 mode is
given by

β =
√
k2 − k2

c =
√
k2 −

(p01

b

)2
(3.3)

with the wavenumber k = 2π/λ and the cutoff wavenumber kc, the waveguide
radius b and the first root p01 = 2.405 of the Bessel function J0. The cutoff
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3 The coaxial λ/4 resonator

Figure 3.3: Electric (solid) and magnetic (dashed) field lines of the TEM mode
in a coaxial line compared to the TM01 mode and the TE11 mode in a circular
waveguide. From: [9, Chapter 3].

frequency of the circular waveguide is

fc = c

2πkc = 21.858 GHz (3.4)

Since the cavity’s resonance frequency is below cutoff, the propagation constant
of the evanescent waveguide mode becomes a damping constant

β = j

2.33 mm−1 (3.5)

The electric field energy of the resonator mode decreases as

UE ∝ e−2βz (3.6)

along the z axis. By picking a circular waveguide length L = 10/|β| ≈ 23 mm,
the energy of the cavity mode is attenuated by roughly e−20 ≈ 2 · 10−9. HFFS
simulations shown in figure 3.4, assuming the cavity walls as perfect conductors
and placing a port at the resonator’s top that allows the leakage of the remaining
resonator mode, confirm the exponential increase of the internal quality factor
due to an extended waveguide section. Furthermore the simulations predict, that
the resonator design with L ≈ 23 mm, disregarding other loss mechanisms, should
lead to internal quality factors of roughly 109.

Concerns that the TE11 mode (see figure 3.3), which includes a lower cutoff
frequency than the TM01 mode, could play a role in the waveguide coupling,
e.g. in case of an imperfect symmetry, are addressed by increasing the waveguide
length to L = 10/|β| ≈ 33 mm. This implies a field energy attenuating factor of
about e−20, calculated with the TE11 mode.

13



3 The coaxial λ/4 resonator

5 10 15 20 25
L (mm)

103

105

107

109

Q
in

t

Figure 3.4: Simulated Qint results demonstrate the exponential quality factor
increase of a coaxial quarterwave resonator, while extending the length L of the
waveguide section. As the cavity material is set to a perfect electric conductor,
other internal loss mechanisms are neglected.

3.2 Coupling to the cavity

The cavity coupling is realized via a lateral channel, as shown in figure 3.1. The
microwave signal enters the cavity via a copper coupling pin, which acts as a
prolonged inner conductor of a coaxial cable. The copper piece is plugged into
a SMA-connector and attached to the outer cavity wall. In this way the pin is
aligned centrally in the cylindrical coupling tunnel. The pin and the cylindrical
hole form a coaxial transmission line, which is continued by a circular waveguide
at the end of the pin. The diameter of the pin and the coupling tunnel are chosen
to achieve a characteristic impedance of 50Ω, which minimzes unintended signal
reflections. The characteristic impedance of a coaxial transmission line follows
[9]

Z0 = 1
2π

√
µ

ε
log D

d
(3.7)

As a consequence, the diameters are chosen to be D = 3.5 mm and d = 1.5 mm.
The TEM mode of the incoming signal is transferred at the end of the pin into
a propagating wave in the circular waveguide. The frequency of the incoming
signal is below the high waveguide’s cutoff frequency of about 35GHz due to
the small coupling tunnel diameter. Hence the signal towards the coupling pin
is attenuated exponentially. This happens in a similar manner as the resonator
waveguide coupling discussed previously. The distance between the end of the
coupling pin and the actual resonator ∆l determines the coupling quality factor.
A proportionality can be stated with

Qc ∝ e2β∆l (3.8)
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3 The coaxial λ/4 resonator

HFFS simulations confirm the exponential behaviour of Qc depending on the
distance ∆l. The simulated results for the coupling quality factor with regards to
a varying ∆l, shown in figure 3.5, act as a reference to adjust Qc in the experiment
to the desired value.

Raising the coupling section in the upwards z-direction has the same effect
on the coupling quality factor as shortening the pin. The center of the coupling
tunnel is located 1 mm above the top of the λ/4 stub.

0 2 4
l (mm)

105

107

109

Q
c

Figure 3.5: Simulated Qc results for an increasing distance ∆l between the end
of the coupling pin and the actual resonator.

3.3 Internal loss mechanisms

In this section the internal losses of the high-Q stub resonator are further inves-
tigated. Therefore the participation ratios are calculated [10].

3.3.1 Dielectric loss

A part of the electric energy of the resonator mode is stored in a lossy dielectric
layer on the surface of the cavity walls. The energy dissipation happens in the
oxide layer on top of the conducting metals. The dielectric participation ratio is
given by

pdiel = ε
∫

diel |E|2 dV
ε
∫

tot |E|2 dV
(3.9)

The ratio represents the electric energy stored in the dielectric divided by the
total electric energy stored in the resonator. With some considerations, one
can simplify equation 3.9. Only the perpendicular E-field components at the
surface layer have to be considered, since on a superconducting metal surface
the tangential electric field components disappear. Due to the continuity of the

15



3 The coaxial λ/4 resonator

electric field, the electric field in the surface layer has to match the electric field
in the resonator volume ~Evol under the condition

~Esurfεsurf = ~Evolεvol (3.10)

With the the oxide layer thickness tox and the relativ permettivity εr one can
approximate the dielectric participation ratio to

pdiel ≈
tox
∫

surf |Evol|2 dA
εr
∫

tot |Evol|2 dV
(3.11)

Evaluating the integrals with the fields from equation 3.1 leads to

pdiel ≈
tox 2(a+ b)
εr (b2 − a2) (3.12)

The total dielectric quality factor is given by

Qdiel = 1
tan δ pdiel

(3.13)

where tan δ corresponds to the dielectric loss tangent. With the radii a = 2mm
and b = 5.25mm the dielectric participation ratio results in pdiel ≈ 1.85 · 10−7.
The surface dielectric constant and layer thickness εr = 10 and tox = 3 nm are
taken from planar resonator measurements [16]. With an expected dielectric
loss tangent tan δ ≤ 10−3, one can estimate the total dielectric quality factor
Qdiel ≥ 109.

3.3.2 Conductor loss

Conductor loss is the main loss mechanism for microwave cavities made out of
normal metals. But also the quality factor of superconducting resonators can be
dominated by losses due to a finite surface resistance. The total magnetic quality
factor is given by [8]

Qmag = ωµ0δ

Rs

· 1
pmag

(3.14)

with the surface resistance Rs, the surface reactance Xs = ωµ0δ and the magnetic
participation ratio

pmag = δ
∫

surf |H|2 dA∫
tot |H|2 dV

(3.15)
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3 The coaxial λ/4 resonator

where δ depicts the resonator material’s skin depth. Evaluating the integrals for
the coaxial quarterwave resonator with the fields from equation 3.1 gives

pmag = δ

ln(b/a) · (
1
a

+ 1
b

) (3.16)

Minimizing 3.16 results in an ideal coaxial cunductor radius ratio b/a ≈ 3.59,
which deviates a bit from the 3 : 1 ratio stated in [14]. Inserting the radii a = 2mm
and b = 5.25mm, the magnetic participation ratio yields in pmag ≈ 715 · δ. For
a superconducting metal, δ is replaced by the penetration depth λ. Using the
penetration depth λ ≈ 50 nm of the superconducting aluminum [8], the magnetic
participation ratio becomes pmag ≈ 3.6 · 10−5. For a copper coaxial resonator,
with Xs/Rs = 1 and δ = 660 nm [9], the room temperature total magnetic
quality factor can be estimated by Qmag ≈ 2000. Considering a typical ratio
Xs/Rs ≈ 2 · 105, achieved with superconducting niobium cavities [16], the total
magnetic quality factor amounts to Qmag ≈ 5 · 109.
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4 Frequency domain measurements

4 Frequency domain measurements

4.1 Experimental setup

A sketch of the experimental setup is shown in figure 4.1. A vector network an-
alyzer operates as both, signal generating and analyzing device. The measured
scattering parameter is the ratio of the VNA’s input to output voltage. The
generated microwave probe signal leaves the VNA at port 1 and enters a dilution
refrigerator. Inside the cryostat, there are different cooling stages. The cavity
is mounted on a copper bracket at the base plate, where temperatures down to
20 mK are achievable. Coaxial cables act as transmission lines to transfer the
signal from the VNA to the resonator and back. To thermalize the input signal,
cryogenic attenuators of 20 dB at the 4 K stage and 30 dB at the base plate are
assembled. The combination of an Eccosorb and a DC to 12 GHz lowpass filter
help to reduce noise at higher frequencies. After passing a circulator, the input
signal approaches the cavity. The circulator is a three way device, that routes
the signal in one direction from one port to the other, with a bit of leakage in
the backward direction. This way the cavity reflected signal can be measured
through an output line. Although the cavity reflected signal leaves the cryostat
through another transmission line, it is practically a reflection measurement. The
resonator is housed in an additional mu-metal shield, which provides a further
protected environment from magnetic fields. The cavity output signal passes the
circulator and is led through two isolators. An isolator is a similar device as a cir-
culator, where one port is terminated with a 50 Ω load. The cavity reflected signal
is amplified by a low noise high electron mobility transistor (HEMT) amplifier
at the 4 K stage. This amplifier ensures a gain of 40 dB in the desired frequency
range. The Isolators, which are mounted before the HEMT stage, are typically
needed to prevent HEMT noise going back to the experiment. The output signal
is amplified once again at room temperature and then guided into the second
port of the VNA.

A picture of the experimental setup inside the cryostat is shown in appendix
A.

Microwave switch

Since a large number of available output lines is a rare event in the daily lab
business, the implementation of a microwave switch can maintain the good atmo-
sphere between research colleagues. Furthermore, cryostat cool-down and warm-
up cycles can be reduced. A switch mounted in between the cavity and the
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4 Frequency domain measurements

circulator allows the measurement of multiple cavities within a single cool-down
using one pair of input and output lines. The Radiall switch SP6T R573423600
distributes one common microwave input channel into six outputs. It has to be
modified to ensure oparability in a cryogenic environment, following [17]. Af-
ter the removal of the switch’s shield the printed circuit board is disassembled.
The remaining, fragile connectors to each channel’s coil are strengthened with the
epoxy glue Stycast. The modified switch is mounted on the base plate of the cryo-
stat. The current supply is established linking each coils connector to the fridge’s
DC lines, which are further connected to a current source. By applying a current
pulse of about 160µA for 10 ms to one channel’s coil, the induced magnetic field
shifts an actuator and establishes the microwave connection. A current pulse
with an inverted direction breaks the microwave connection. Every switch event
generates heat, since the coils are made of resistive copper. This displays a dis-
advantages of the use of a microwave switch, because most of the measurements
in the cryostat have to be paused after switching until the initial temperature is
reached. Depending on the strength of the current pulse, the cryostat heating
ranges from tens to a few hundreds of mK, where the corresponding re-cooling
can take up to few hours. The bigger inconvenience is the problem of static dis-
charges inside the input stage of the HEMTs, caused by a DC pulse forwarded
onto the microwave signal. Inner and outer DC blocks mounted before and after
the switch should prevent damage on the HEMTs and other measurement devices
while switching. Nevertheless, plugging out the VNA and the HEMT power sup-
ply before switching proofed to be beneficial, since a repair tends to be expensive
and time consuming.
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4 Frequency domain measurements
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Figure 4.1: Schematic of the experimental setup. The cavity’s performance is
evaluated by a scattering parameter measurement done with a vector network
analyzer. The VNA provides a microwave signal, which is forwarded through
port 1 into the cryostat via a coaxial cable. A 20 dB attenuation at the 4 K
plate and a 30 dB attenuation at the 20 mK base plate follow. After an eccosorb-
and a DC to 12 GHz lowpass filter, the input signal arrives down at the resonator
through a circulator. The cavity itself is mounted inside a magnetic shield. The
reflected signal passes the circulator, two isolators and gets amplified twice (yel-
low triangles). First, by a high-electron-mobility transistor (HEMT) at the 4 K
cooling stage and then by a room temperature amplifier after leaving the cryostat.
The isolated and amplified cavity output signal is led into port 2 of the VNA.
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4.2 Circle fit model for a resonator in reflection configu-
ration

The circle fit routine was implemented by the group members David Zöpfl and
Christian Schneider [18]. It was developed to extract the resonator parameters
from a scattering parameter measurement. The scattering parameter for a res-
onator in the single port reflection scenario follows

S11(ω) = 2Ql/Qc

1 + 2jQl
ω−ω0
ω0

− 1 (4.1)

Note that equation 4.1 slightly differs from equation 2.8 presented earlier. The
formula used for the circle fit describes an inverted circle in the complex plane
compared to the model specified in [12], which is an equivalent approach. The
absolute square of S11, forming an Lorentzian of width κ, is not affected by the
sign changes

|S11(ω)|2 = 1−
1− (2Ql−Qc)2

Q2
c

1 + 4Q2
l (ω−ω0

ω0
)2 (4.2)

The loaded quality factor Ql defines the width κ of the resonance, the dip depth
depends on the ratio of Qc and Qint. The phase Θ(ω) = arg(S11(ω)) follows

Θ(ω) = arctan
( 4Ql

ω−ω0
ω0

Qc − 2Ql + 4QcQ2
l (ω−ω0

ω0
)2

)
(4.3)

In the over-coupled regime (Ql = Qc and Qint →∞) equation 4.3 simplifies to

Θ(ω) = −2 arctan
(

2Ql
ω − ω0

ω0

)
(4.4)

which corresponds to a full 2π phase shift. In the same coupling limited regime,
the absolute square follows |S11(ω)|2 = 1, as the lack of intrinsic losses causes all
of the resonator’s energy to reflect back. Heading for the under-coupled regime
(Qint < Qc), the dip depth of the resonance decreases and the phase shift disap-
pears, but a discontinuity around ω0 remains. In the complex plane, S11(ω) forms
a circle of diameter 2Ql/Qc. The off resonant point is located at −1 on the real
axis. On resonance, the scattering parameter approaches S11 → 2Ql/Qc − 1. In
the cirtically coupled regime, the circle crosses the origin of the complex plane.

The circle fit routine utilizes the formula

Sfit11 (ω) = (aej(α−π)e−jωτ )S11(ω) (4.5)

21



4 Frequency domain measurements

which adds the measurement environment to the model. The paramters a and
α account for additional attenuation and phase shift. Furthermore the effect of
the cable delay τ , which increases linearly with the measurement frequency, is
included. The main steps of the fit routine are shown in figure 4.2, where the
circle fit is applied on measured S11 data of a superconducting aluminum coaxial
λ/4 resonator.

At first, the cable delay in the phase signal and the linear background in the
magnitude is extracted. A Lorentzian fit of |S11|2 results in inital Ql and ω0

values for the circle fit. An initial circle fit yields the attenuation constant a
and the additional phase shift α from the environment. As a result of the phase
fit, the circle’s off resonant point is obtained. After including all environmental
effects, the final normalized circle fit contains the resonator parameters Ql, Qc

and ω0. The internal quality factor Qint is calculated subsequently. The errors of
the resonator parameters are back propagated values from the fit error. Therefore
the Jacobian Matrix, which contains the partial derivative of the circle fit function
to each fit parameter, is combined with the fit residuals.

4.2.1 Average photon number calibration

The estimation of the average photon number 〈nph〉 circulating in the cavity on
resonance corresponding to the input drive power Pin is done following [19]. The
reflected power is given by

Prefl = Pin|S11|2 (4.6)

The power absorbed from the resonator is

Pabs = Pin − Prefl = 4QcQint

(Qc +Qint)2Pin (4.7)

Another definition of the absorbed power in the resonator is

Pabs = 〈nph〉~ω0
ω0

Qint
(4.8)

The combination of the equations above results in

〈nph〉 = 4
~ω2

0

Q2
l

Qc
Pin (4.9)

The interpretation of 〈nph〉 refers more to an upper limit, as it is difficult to
include all reflections in the measurement line. The total attenuation from the
signal generator down to the resonator, mounted on the base plate in the cryostat,
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was evaluated to 69dB.

Figure 4.2: Circle fit of the measured S11 parameter of a superconducting alu-
minum coaxial quarterwave resonator. In the top panel the S11 magnitude (left)
and phase (right) is shown. The measured data is marked blue, the fits are dis-
played in dashed red lines. In the lower left panel the initial circle fit on top of
the measured S11 data in the complex plane is shown. The subtraction of all
measurement environment effects results in a normalized circle (right), where the
off resonant point is marked with a red dot.
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4.3 Copper cavities

The coaxial quarterwave cavity design was first tested with three different purity
grades of copper. The advantage of a high-Q normal conducting cavity would
be the possibility to introduce magnetic fields, which is not possible with super-
conductors due to the Meissner effect [20, chapter 13], while maintaining long
photonic lifetimes. The challenging machining task of the stub on the ground
of the resonator was realised using a special drill bit, which features a hollow
tip. After lifting the drill from the bottom of the cavity, a stub of predefined di-
mensions remains. As described in section 3, the copper cavity’s inner and outer
diameter are a = 2 mm and b = 5.25 mm, the stub length is 8 mm. The copper
purity grades range from 2N over 4N5 to 6N, where the Ns stand for the nines
in the purity percentage. For example, 4N5 means 99, 995% pure. At room tem-
perature, VNA circlefit measurements of the copper resonators show an internal
quality factor ranging from approximately 1500 to 2500, depending on the purity
grade. This is in agreement with the estimation done in section 3.15, assuming
the main internal energy dissipation comes from conductor losses. To improve
the surface resistance of the inner cavity walls, which were directly exposed to
the machining process, the top layer (∼ 100µm) gets removed by etching. There-
fore metal impurities and defects introduced by the machining process should
be reduced. With annealing the resonators, another strategy on improving sur-
face characteristics is utilised. A picture of the different copper resonators after
varying processing steps is shown in figure 4.3.

Figure 4.3: Picture of the copper coaxial λ/4 resonators of different purity
grades after varying surface treatments. From left to right: annealed 2N and
etched and annealed 6N; etched 2N, etched 4N5 and untreated 4N5.
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4.3.1 Surface preparation

The copper cavity chemical etching is realised initially with ferric chloride (FeCl3),
which is an universal etchant for various metals like steel, aluminum, copper or
nickel. The chemical reaction follows [21]

FeCl3 + Cu→ FeCl2 + CuCl (4.10)

The ferric ions oxidize the copper, which results in the formation of cuprous
chloride (CuCl) and ferrous chloride FeCl2. The CuCl is further oxidized in the
etchant producing CuCl2

FeCl3 + CuCl→ FeCl2 + CuCl2 (4.11)

The generated CuCl2 reacts itself with the copper surface following

CuCl2 + Cu→ 2CuCl (4.12)

The etchant is generated by adding the iron salt FeCl3 + 6H2O to distilled water.
The etching temperature is chosen to be 25◦C with a concentration of the etch
solution of 2.5M [22], where the molarity M corresponds to the moles of the solute
per volume of the solution in liters. Therefore 200 ml of distilled water are mixed
with 135 g of FeCl3 + 6H2O in a glass container. The container is placed on a hot
plate inside a flow box. To keep a steady flow of the etchant, a magnetic stirrer
is added. The copper cavity is placed in the acid bath, where the temperature is
monitored with a thermometer. The 2N copper cavity showed a surface removal
of about 65µm after 35min. Etching the 6N copper cavity in the similar setup
lead to a surface removal of roughly 170−200µm. The amount of surface removal
is quantified by measuring the outside dimensions of the resonator with a caliper
rule before and after the etch treatment.

The complex chemcial reaction forming Fe2+, Cu2+ and Cu+ behaves like
two seperate etch meechanisms, with the main etchant FeCl3 and the byproduc-
tatchant CuCl2. This affects the etchrate and the surface roughness [21]. The
etching of the 6N copper cavity produced a poor surface quality, as depicted in
figure 4.4. Eventhough a higher concentration of the FeCl3 etch solution could
lead to an improved surface finish, the surface preparation is altered to the more
moderate copper etchant CuCl2 [23]. The chemical reaction of copper and cupric
chloride (CuCl2) is already given in equation 4.12, as it is the last step of the
FeCl3 etch process. The CuCl2 etching is conducted by adding 58.8 g of the green
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crystalline dihydrate salt CuCl2 + 2H2O to 150 ml of distilled water. This cor-
responds to a concentration of the etch solution of 2.3M. The temperature of
the etchant is set to 50◦C, which yielded a surface removal of 40µm from the 2N
copper cavity after 50min. The rather matt surface finish can be explained by a
CuCl passivation film on the metal surface [22, 23]. The CuCl layer is a product
of the reaction that slows down the etching process. Adding a small amount
(usally 1% of the solution volume) of hydrochloric acid (HCl) to the etchant,
should counteract the growth of a CuCl passivation film, as CuCl and HCl react
and produce CuCl2 [23]. The etching rate stayed roughly the same by addition
of HCl to the etch solution. 70min of etching the 4N5 copper cavity resulted in
50µm surface removal. Dipping the resonator in hydrochloric acid and further
rinsing it with distilled water, acetone and isopropanol after the etching process
reduced the CuCl layer on the surface.

Another strategy to improve the surface chracteristics of the copper resonators
is heat treatment. Annealing involves thermally activated processes that can lead
to a partial removal of material defects coming from plastic deformation [24]. The
copper cavity annealing was conducted at the institute of physical chemistry of
the University of Innsbruck. In two cycles, five copper cavities were annealed in
the presence of a reduced oxygen pressure due to controlled H2 gas flow. The
first set of cavities was annealed for 22h at a temperature of 960◦C, the second
set for 13h at 900◦C. The shiny surface of the annealed cavities, as seen in figure
4.3, indicates that the annealing process cleared the CuCl layer resulting from
the etching process.

Figure 4.4: 6N copper cavity after 1h FeCl etch treatment. The impact of the
inhomogeneous etching treatment can be seen in the rough and distorted surface.
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4.3.2 Results

The resulting internal quality factors from VNA measurements at about T =
20 mK of the copper cavities after different surface treatments are summarised
in table 4.1. Both, annealing and etching improved the quality factor of each
resonator. The impact of the purity grade on Qint becomes less important after
either or both surface treatments. The quality factor improvement after solely
annealing comes close to the benefit of both procedures. The cavities, which were
annealed at 960◦C for 22h show no significant improvement compared to the ones
annealed at 900◦C for 13h. No Qint input power dependence is observed. This
suggests that the copper cavities are still limited by conductive losses. HFFS
simulations including a finite conductivity of the cavity walls predict internal
quality factors ofQint ∼ 11−20·103 for electrical conductivities σ = 1−3·109 S/m.
For the typical room temperature value of the copper conductivity σ = 58·106 S/m
[9], simulations predict Qint = 2, 9 · 103. This leads to estimated values for the
residual resistance ratio

RRR = σ293K

σ20mK
(4.13)

ranging from ∼ 17− 52. Besides the rather poor obtained electric conductivities,
the low quality factors refer as well to the higher magnetic participation ratio
pmag compared to cylindrical cavities [8]. Rectangular waveguide cavities, as the
ones seen in [25], but made of 2N copper show higher internal quality factors of
about Qint ∼ 20− 30 · 103 without any surface treatment after machining.

This prompts the conclusion that the geometrical design of the coaxial λ/4
resonator is predestined to reach high quality factors only using superconducting
metals.

Table 4.1: Summary of the measured copper resonators internal quality factors
at T = 20 mK after various surface treatments.

Purity Qint · 103 Tann(C) tann(h) Surface removal (µm)
2N (99%) 3.5 / / /
2N 10 / / ∼105
2N 13 900 13 unetched
2N 17 960 22 ∼105
4N5 (99.995%) 13 960 22 unetched
4N5 15 900 13 ∼175
6N (99.9999%) 6 / / /
6N 10 / / ∼130
6N 16 900 13 ∼130
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4.4 Aluminum cavities

In the following sections the focus is set to superconducting coaxial quarterwave
resonators, in order to achieve high internal quality factors. Aluminum is a
convincing choice, as the widely used metal is cheap in purchase and easy to
process. Two sorts of aluminum, alloy 5083 (1N3) and high purity aluminum
(5N), are used to fabricate the coaxial resonators. At first the machining process
is kept identical with the one used for the copper cavities. After testing the
set of cavities with the familiar inner and outer diameter choices a = 2 mm and
b = 5.25 mm, the machining process is altered including a new drill producing
resonators of dimensions a = 2 mm and b = 6 mm. This step aims to achieve the
3 : 1 diameter ratio mentioned in section 3.1. Based on concerns of intense metal
surface defects and impurities, the manufacturing process is further modified from
drilling to sinker electrical discharge machining (SEDM). In addition the length
of the waveguide section is prolonged to L ≥ 33 mm. The length of the stub
is kept at 8 mm for all cavity design versions. A picture of a cut, high purity
aluminum coaxial resonator is shown in figure 4.5.

Figure 4.5: Picture of the etched high purity aluminum coaxial λ/4 resonator.
After the measurements were finished, a vertical cut was carried out to make the
inside of the cavity visible.

4.4.1 Surface preparation

To accomplish the optimum cavity performance a few hundred µm of the dam-
aged surface layer get removed by chemical etching. This is realised with the
commercially available phosphoric-nitric acid mix Aluminum etch by the com-
pany Alfa Aesar. A detailed description about the aluminum etch mechanism
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and additional etch-rate measurements can be found in [10]. The chemical reac-
tion equation follows [26]

7Al + 5HNO3 + 21H3PO4 → 7Al(H2PO4)3 + 13H2O + 2N2 + NO2 (4.14)

The nitric acid reacts with the aluminum, forming an aluminum oxide layer, which
is dissolved by the phosphoric acid. If one visualizes the aluminum surface as
peaks and valleys, the high viscosity of the etchant causes a flattening effect. Due
to less agitation in the valleys, the etch solution locally becomes saturated and the
reaction rate decreses. The etch rate is specified as 100 Å/s at a temperature of
50◦C. To maintain the resonator’s threads, which are for example used to mount
SMA-connectors, stainless steel screws are attached before the cavity is placed in
the acid bath. The etching procedure is carried out inside a flow box. To keep
the temperature of the etch solution and furthermore the etch rate constant, the
solution is preheated in a glass container on a hot plate and the temperature of
the etchant is monitored with a digital thermometer. To prevent a saturated etch
solution inside the cavity a magnetic stirrer is added to the glass container. Since
the reaction is exotherm, it proved useful to preheat the etchant to 45◦C and
then turn off the hot plate. As the reaction is exotherm, the temperature will
rise during the procedure. Cooling is realised by adding wet towels on the outer
surface of the glass container. In order to avoid a saturated etchant, the acid bath
is refreshed after two hours for another two hours. The total etching time of 4h
should remove a ∼ 150µm layer off the surface. Afterwards the cavity is rinsed
with distilled water, acetone and isopropanol inside an ultrasonic bath and blown
dry with nitrogen. The removal of the resonator’s surface layer is determined by
measuring the outside dimensions of the resonator with a caliper rule before and
after the etch treatment.

4.4.2 Results

The results of the measured quality factors of the superconducting aluminum
resonators are summarized in table 4.2. Aluminum alloy 6061-T6 resonators
yielded internal quality factors of about Qint = 0.3·106, either etched or unetched.
The intrinsic metal impurities seem to determine the conductive losses, as the
resonator’s quality factor is unaffected by the surface etching treatment.

The internal quality factor of the first etched high purity aluminum resonator
amounts to Qint = 1.5 · 106, which represents an improvement factor of roughly
2 caused by the etching process. A repeated quality factor measurement after 6

29



4 Frequency domain measurements

weeks mounted in the cold cryostat showed an identical result. A slight improve-
ment of the modified diameter ratio a : b = 3 : 1 can be detected in measurements
of the unetched cavities. After the etching treatment no remarkable difference
can be detected. An explanation for this behaviour is the altered diameter ratio
after the etching process.

The highest quality factor using the drill machining technique is achieved
with a high purity aluminum resonator of the initial dimensions. After a surface
removal of ∼ 200µm the internal quality factor resulted in Qint = 5.6 · 106.
Further 5h of etching yielded in Qint = 6.9 · 106. In this quality factor regime
a noticeable power dependency is detected, which indicates saturable two level
systems (TLS) [27], residing in an oxide layer on the metal surface. The unusual
quality factor improvement for surface removals beyond ∼ 220µm [8] lead to the
implementation of a different machining process.

The SEDM technique is expected to interfere less strong with the aluminum
surface layer. Furthermore the waveguide section of the resonator is prolonged
and the diameter ratio optimized to reach 3 : 1 after the etching process. The
result is a cavity with a power dependent internal quality factor ranging from
11.3 · 106 at low input power levels to 13 · 106 at high input power levels. A
plot of the obtained Qint values as a function of the VNA output power and the
estimated number of photons in the resonator is shown in figure 4.6.

Overall, the obtained internal quality factors are still an order of magnitude
lower than expected. Reagor et al. reported intrinsic Q-factors ranging from
7 · 107 at the single photon level and 2 · 108 at large circulating field strengths
with aluminum coaxial λ/4 resonators [7]. The faint trend of increasing Qint

suggests, that saturable two-level-systsem losses are not the main loss mechanism.
It seems likely that the limiting factor is either conductor loss due to a finite
surface resistance or a lossy dielectric layer on top of the metal surface. Further
fine tuning of the machining and surface preparation process could lead to an
improvement of the internal quality factors.
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Table 4.2: Measured Qint values of various aluminum coaxial quarterwave res-
onators at the cryostat’s base temperature of about 20 mK and VNA output
power levels ranging from −10 dBm to −90 dBm. The Qint errors coming from
the criclefit are not displayed, as they are in the range of 103− 104. A Qint power
dependence is detected for the resonators displayed in the last two rows of the
table, where the low and the high input power value is given.

Purity Qint · 106 Surface removal (µm) Modifications Machining
1N3 0.3 unetched / drilled
1N3 0.3 ∼300 / drilled
5N 0.7 unetched / drilled
5N 0.9 unetched a : b ≈ 3 : 1 drilled
5N 1.5 ∼160 / drilled
5N 1.6 ∼175 / drilled
5N 1.7 ∼180 a : b ≈ 3 : 1 drilled
5N 5.6 ∼200 / drilled
5N 6.4-6.9 ∼450 / drilled
5N 11.3 - 13 ∼150 a : b ≈ 3 : 1, L = 33 mm SEDM

Figure 4.6: Qint power dependence of the high purity aluminum coaxial quar-
terwave resonator. In the left plot the VNA output power is given in dBm, in
the right plot the cavity input power is converted into an average inner cavity
circulating photon number 〈nph〉.
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Warm-up measurements

Beside the power dependence, the temperature dependence of the etched high
purity aluminum coaxial resonator is investigated. Therefore the temperature of
the resonator environment is stepwise raised up to 1.2K, using the cryostat’s PID-
controlled heaters. The measured resonator parameters Qint and the resonance
frequency change ∆f0 are shown in figure 4.7 as a function of the temperature.
Approaching the critical temperature of aluminum Tc = 1.19K [20], the increasing
surface resistance leads to a fall of Qint and a shift in the resonance frequency
[8]. The two fluid model considers the superconducting state by the presence of
normal electrons of density nn and superconducting electrons ns. The sum of both
densities form the conduction electrons nc in the material. The normal electrons
interact with the microwave field, which results in a finite surface resistance Rs.
The surface resistance is solely affected by the normal electrons [28]

nn = nc · exp(− ∆
kBT

) (4.15)

where kB depicts the Boltzmann constant and ∆ the superconducting gap at
zero temperature. The internal quality factor temperature dependence is then
modelled by [29]

1
QRs

int
= A

T
· exp(− ∆

kBT
) + 1

Qother

(4.16)

The constant A covers the effective penetration depth, the normal state con-
ductivity, the probe frequency and a further material independent constant. By
adding an extra Qother, temperature independent losses are included. The model
is ed to match with the experimental data upon Tc/2. The internal quality factor
data is approximated with a fit following equation 4.16. The fit parameters are
A = 1.1(2) ·10−5 K and Qother = 1.43(4) ·107, indicating an overlying temperature
independent loss mechanism. As expected, the fit function is in good agreement
with the Qint data until reaching roughly Tc/2. The measurement at the high-
est temperature of 1.2 K yields Qint ≈ 104, which represents the breakdown of
superconductivity.
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Figure 4.7: Warm up measurements up to 1.2 K using the cryostat’s PID-
controlled heaters. The temperature dependence of Qint (left) and the resonance
frequency change ∆f0 of the etched, high purity aluminum resonator are shown.
Furthermore a fit function for the internal quality factor temperature dependence,
considering a two fluid model, is displayed (dashed red line). The VNA output
power is kept constant at −65 dBm for each measurement.
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4.5 Niobium cavity

Due to the high critical temperature Tc = 9.2K of niobium, it’s availability in
pure form and due to the thermal conductivity and machining characteristics it
is the most common material choice for superconducting radiofrequency (SRF)
accelerator cavities [30]. For this section, a coaxial quarterwave resonator is
fabricated from high purity 3N5 niobium. It is machined using the sinker electrical
discharge machining technique. The loss optimized resonator radii a = 2.2 mm
and b = 5.8 mm are chosen to reach a 3 : 1 ratio after a surface removal of
∼ 200µm. The waveguide section amounts to L = 36 mm and the λ/4 stub
is 8 mm. A picture of the niobium resonator is shown in figure 4.8. Typical

Figure 4.8: Picture of the high purity niobium coaxial quarterwave resonator,
after the BCP surface treatment.

niobium SRF cavities operate at a resonance frequency of f0 = 1.3 GHz and
reach internal quality factors of Qint > 1010 at a temperature of T = 1.5 K
and very high accelarating fields of several megavolts per meter [30]. These
parameters are chosen to maximize the acceleration of the charged particle during
the transit through the cavity. The high rf fields mount to Eacc > 20 MV/m,
which corresponds to an average cavity population of about n = 1025 photons
[31]. In comparison, aluminum coaxial quarterwave resonators used as quantum
memory, in the field of circuit quantum elecdrodynamics (cQED), achieve internal
quality factors of up to Qint = 7 ·107 at the average inner-cavity circulating power
corresponding to a single photon [7]. The higher resonance frequency ranging
typically from 4 − 12 GHz, the lower temperature of about 30 mK and the much
lower drive power make it more difficult for cQED cavities to deliver comparable
high quality factors. Still, with reducing the dielectric loss at the cavity walls, a
gain in Qint is feasible.

The most common method to improve the niobium surface characteristics is
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buffered chemical polishing (see section 4.5.1).

Coupling pin adjustment

In prospect of obtaining an internal quality factor in the range of Qint ≈ 109, the
resonator’s coupling pin and subsequently the coupling quality factor has to be
adapted to achieve a sufficient S11 measurement. To receive a distinct S11 circle
in the complex plain and therefore a reliable circle fit, the coupling quality factor
has to be brought to approximately Qc ≈ 108. The diameter of the S11 circle in
the complex plain and the dip depth of the signal’s magnitude decrease with a
growing Qc compared to Ql. By performing room temperature S11 measurements
with a varying distance ∆l between the coupling pin and the actual resonator,
the exponential behaviour of Qc can be determined, as displayed in figure 4.9.
The results are in agreement with the simulated Qc dependence in figure 3.5. Due
to the low room temperature internal quality factor Qint ∼ 103 of the niobium
cavity, the resonance is hardly detectable for coupling quality factors exceeding
∼ 106. Utilizing a linear fit on a logarithmic scale, an estimation for the required
coupling pin distance ∆l is accomplished. As a result, ∆l has to be adjusted to
∼ 4.1 mm to achieve Qc = 1.2 ·108. This corresponds to a shortened coupling pin
of about ∼ 5 mm. One has to keep in mind that the coupling into the cryostat
and the thermal contraction of the coupling pin can lead to a further increase of
Qc. The measurements at base temperature reveal Qc = 2.4 · 108, which confirms
the above considerations.

0.0 0.5 1.0 1.5
l (mm)

104

105

Q
c

Figure 4.9: Niobium cavity room temperature Qc measurements (yellow) with
varying distance ∆l between the coupling pin and the actual resonator. Further-
more a linear fit in the logarithmic scale is performed (blue) to demonstrate the
exponential behaviour of Qc.
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4.5.1 Surface preparation

To optimize the niobium cavity surface characteristics, the well studied method
of of buffered chemical polishing is used [32–35]. The chemical etching solution
represents a mixture of hydrofluoric (HF), nitric (HNO3) and phosphoric (H3PO4)
acids. The main chemical reaction is given by [34]

6Nb + 10HNO3 → 3Nb2O5 + 10NO + 5H2O (4.17)

and
Nb2O5 + 10HF→ 2NbF5 + 5H2O (4.18)

In the first step, the nitric acid oxidizes the niobium surface. Then, the hydroflu-
oric acid reduces the Nb2O5 into NbF5, which represents a salt that gets dissolved
in water. The addition of phosphoric acid acts as a buffer, that slows down the
chemical reaction. The composition of the BCP mixture determines the etching
characteristics and is mainly chosen to be either 1 : 1 : 1 or 1 : 1 : 2, which
corresponds to the relative ratio of the components HF :HNO3 : H3PO4.

As the procedure includes hydrofluoric acid, the task of the niobium coaxial
λ/4 BCP surface preparation is handed to professionals at the university’s insti-
tute for inorganic chemistry. To remove the top layer, which was exposed to the
machining process, the resonator is placed into 555ml of an approximate 1 : 1 : 1
BCP mixture inside a teflon container. To maintain a controllable etching pro-
cess the container was surrounded by ice, as the etching rate strongly depends
on the temperature [35]. This results in a BCP mixture temperature of roughly
0 − 5◦C. After 1h, phosphoric acid is added gradually in order to switch to
the more moderate BCP composition of 1 : 1 : 2. A magnetic stirrer is present
during the whole process aiming for a steady flow of the BCP mixture. After
the total treatment time of 2h, the niobium resonator is taken out and rinsed
with deionised water and acetone. The total surface removal amounts to about
150µm, quantified with a caliper rule considering the outer cavity dimensions.

4.5.2 Results

The internal quality factors of the niobium coaxial quarterwave resonator, mea-
sured at different VNA output power levels, are shown in figure 4.10. The cavity’s
Qint ranges from roughly 0.5 · 109 at the single photon level to almost 1.2 · 109 at
high cavity input power levels. For VNA output power levels below ∼ −65dBm,
or average photon numbers below ∼ 106 respectively, Qint stays constant. Above
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that barrier, a rise in the internal quality factor is observed. The results, corre-
sponding to photon lifetimes of τint = 10−24 ms, demonstrate the highest internal
quality factor yet reported for coaxial λ/4 resonators. The power dependent as-
cent of Qint indicates, that the dominating loss mechanism is due to saturable
two-level-systems [27], residing in the oxide layer of the niobium cavity.

A comparable result was reported recently from A. Romanenko et al., regard-
ing niobium SRF cavities operating at 5 GHz and measured at T = 20 mK, that
achieved interal quality factors Qint ≥ 109 at an average cavity population of
about n ≈ 10 photons [36]. Their experiments with variant thickness of niobium
oxide layers on the inner cavity surface demonstrate, that two-level-system (TLS)
losses in the dielectric metal surface layer affect the internal quality factor. Ad-
ditionally, their investigation on the effect of a 340◦C vacuum heat treatment,
which modifies the Nb2O5 cavity surface layer, yields an internal Q increase of
roughly factor 3. Applying the vacuum heat treatment on the coaxial λ/4 res-
onator, could lead to further Qint improvement.

Figure 4.10: Qint power dependence of the niobium coaxial quarterwave res-
onator. In the left plot the VNA output power is given in dBm, in the right
plot the cavity input power is converted into an average inner cavity circulating
photon number 〈nph〉.

Repeating the measurement of the niobium cavity after months of ageing,
not preserved in a vacuum desiccator yields in a decreased Qint ranging from
2.6 − 3.8 · 108, indicating a less pronounced power dependence. The results are
shown in figure 4.11. A plausible explanation for the reduced internal quality
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factor is the growth of an oxide surface layer, during the air exposed period. As
a consequence, the enhanced dielectric loss of the resonator comes into effect.
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Figure 4.11: Qint power dependence of the aged niobium coaxial quarterwave
resonator as a function of the VNA output power.

Warm-up measurements

By raising the cryostat’s temperature, using PID-controlled heaters, the tempera-
ture dependence of the niobium cavity parameters Qint and ∆f0 are investigated.
In two measurement cycles, stepwise warming up the cavity environment to 1 K
or 4 K, the internal quality factor and the shift of the resonance frequency get
extracted. The VNA output power is set constant for each measurement to a
value below the barrier of −65 dBm, where the power dependency of the internal
quality factor becomes apparent. The circlefit obtained resonator parameters are
shown in figure 4.12 and 4.13.

Until approximately 1 K, an increase of Qint occurs, starting from 0.5 · 109

and further exceeding 109. The internal quality factor rise, similar to the one
seen in the power dependence (see 4.10), suggests TLS saturation due to thermal
excitation [29]. According to [37], the internal quality factor in the TLS limited
regime can be modelled by

1
QTLS

int
= k · tanh

(
hf0

2kBT

)
+ 1
Qother

(4.19)

with the combined loss parameter k, which includes the filling factor of the TLS
host medium and the TLS dependent loss tangent at zero temperature.

Looking at the data of the 4 K temperature range, the fall of Qint and a shift
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in the resonance frequency ∆f0 for temperatures above 1.4 K can be detected.
This effect can be explained by increasing conductive losses due to a growing
surface resistance. Considering the two fluid model, as explained in the aluminum
resonator warm up measurements of section 4.2, the Qint temperature dependence
follows equation 4.16. Since the breakdown of superconductivity occurs at the
critical temperature of Tc = 9.2 K, Qint reaches at 4K still a value in the range of
106. By combining the two tomperature dependent Qint models considering TLS
and conductive losses, as its done in [29], a fit function with the parameters A, k
and a combined Qother is derived

1
QTLS+Rs

int
= k · tanh

(
hf0

2kBT

)
+ A

T
exp

(
− ∆
kBT

)
+ 1
Qother

(4.20)

The fit result with the parameters A = 2.3(1) · 10−5 K, k = 1.9(9) · 10−9 and
Qother = 9.7(3) ·109 is shown in figure 4.12. The measured internal quality factors
follow the theoretical predictions. The slight deviation at higher temperatures
could originate from incomplete thermalisation.

Figure 4.12: First series of warm up measurements up to 4 K using the cryo-
stat’s PID-controlled heaters. The niobium resonator temperature dependence of
Qint (left) and the resonance frequency change ∆f0 (right) are displayed. Further-
more a fit function (dashed red line) for the internal quality factor temperature
dependence considering TLS and conductor losses is shown. The VNA output
power is set to −75 dBm for each measurement.

The second warm up measurement series focuses on temperatures up to 1K,
where the resonator is likely to be limited to TLS energy dissipation. The gain
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in Qint, while increasing the temperature, is shown in the top panel of figure
4.13, including a fit in the form of equation 4.19 regarding solely thermal TLS
saturation. The fit parameters are k = 1.62(3) · 10−9, and Qother = 4.4(4) · 109.
Compared to the TLS limited regime in the warm up measurement up to 4K,
the Qint values reach slightly higher values, which can explain the different fit
parameters for the combined loss parameter k. A reason could be a mild ageing
effect, as the 4K warm up cycle was performed weeks after the 1K warm up
measurement series. The roughly factor 2 difference of the fitted value for the
temperature independent loss mechanism Qother seems to be a consequence of
the disregarded conductive losses in the exclusive TLS fit model. To perform the
combined fit model, more measurement points in the higher temperature range
would be needed.

TLS possess an electric dipole moment, which couples to the electric field of
the resonator. The resonant interaction leads to change of the dielectric constant,
when the temperature is varied, which results in a small, anomalous frequency
shift [27] following

∆fTLS0 (T ) = f0
k

π
·
(

ReΨ
(

1
2 + 1

2πj
hf0

kBT

)
− log

(
1

2π
hf0

kBT

))
(4.21)

with the complex digamma function Ψ and the imaginary unit j. As the resonance
frequency change is in the range of a few Hz, the contribution of the resonator’s
stub thermal expansion, which leads to a decreasing resonance frequency while
warming up, is included to the model. To estimate the additional frequency
shifting effect the following approximation is done: the λ/4 stub’s linear thermal
expansion is given by

∆l′
l′

= α∆T (4.22)

with the linear thermal expansion coefficient α, the cavity’s stub length l′, it’s
length change l′ and the change in temperature ∆T . Assuming the variation of
the resonant wavelength is only affected by the stub’s expansion yields

∆λ0 = 4α∆T l′ (4.23)

and
∆f0 = c

λ0

∆λ0

λ0
(4.24)

for ∆λ � λ. Summarizing the considerations, the equation describing the total
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temperature dependent frequency shift is given by

∆f0(T ) = ∆fTLS0 (T )− f0 · 4l′∆T α
f0

c
(4.25)

The result of fitting equation 4.25 to the frequency shift data obtained from
the warm up measurements is displayed in the bottom panel of figure 4.13. It
is assumed that the stub’s length amounts to l′ = 8 mm at zero temperature.
Furthermore a constant offset is added to the fit formula. The fitted values for
the combined loss parameter and the linear thermal expansion coefficient are
k = 3.2(4) · 10−9 and α = 1.1(2) · 10−9 K−1. The higher value of the fitted
combined loss parameter k, compared to the k’s obtained from previous Qint

temperature analysis, can be explained with the contribution from off resonant
TLS excitations to the frequency shift [37]. Another explanation could be the
insufficiency of the linear approximation of the stub’s length thermal expansion.
A literature value of the niobium linear expansion coefficient α = 3 · 10−9 K−1 at
a higher temperature of T = 6 K is found in [38], which is in the same order of
magnitude as the fit obtained value.
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Figure 4.13: Second warm up measurement series up to 1 K of the niobium
cavity. The temperature dependent change of Qint (upper plot) and the variation
of the resonance frequency ∆f0 (bottom plot) is shown. The solid yellow lines
represent fit functions concerning thermal two level system excitation. For the
resonance frequency change the additional effect of the thermal expansion of the
resonator’s stub is added to the fit model. The VNA output power is set to
−100 dBm for each measurement, which corresponds to roughly ∼ 10 photons
circulating in the resonator.
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4.6 Summary

The high-Q coaxial λ/4 microwave resonator is fabricated from copper, aluminum
and niobium. The copper cavities reach the lowest internal quality factors, as the
magnetic participation ratio of the resonator design is not ideal for normal con-
ducting metals. Both, etching with cupric chloride and annealing in the presence
of reduced oxide pressure improved the cavity’s internal quality factor to values
in the range of ∼ 104.

The aluminum cavities show higher internal quality factors exceeding a mil-
lion, after a surface removal of more than 150µm. A change in the machining
method and modified cavity design parameters, including a higher waveguide sec-
tion and a loss optimized diameter ratio, leads to a quality factor ofQint = 1.3·107.
A slight Qint power dependence indicates the presence of saturable two-level-
systems on the cavity surface, but the main loss mechanism seems to be either
conductor loss due to a finite surface resistance or a lossy, non saturable dielec-
tric layer on top of the inner cavity walls. The warm up measurements until the
breakdown of superconductivity at 1.2 K show a shift of the resonance frequency
and a decrease of the internal quality factor due to an increasing surface resis-
tance. A fit considering the two fluid model agrees well with the Qint data until
Tc/2.

The niobium cavity achieves quality factors of Qint = 1.2·109 in the high input
power regime and Qint = 0.5 ·109 at the single photon level, after the BCP surface
treatment. The Qint increase with rising temperature until roughly 1 K and the
pronounced Qint power dependence indicate saturable two-level-systems (TLS) in
the niobium oxide layer as the limiting factor. A fit, considering the conductive
and the TLS losses, is in agreement with the data in the warm up temperature
range, which ends at 4 K. By investigating the resonance frequency shift in the
TLS loss dominated temperature range until 1 K, an additional frequency shift-
ing effect due to the resonator’s stub thermal expansion emerges. From a fit,
considering the TLS and the stub’s length induced shift of frequency, the thermal
linear expansion coefficient α = 1.1(2) · 10−9 K−1 is extracted.
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5 Time domain measurements

5.1 Introduction

In addition to evaluating the behaviour of a resonator in the frequency domain,
there is also the possibility to gain information about the cavity’s performance
by measuring in the time domain. This approach is prevalent in the field of
high-energy particle physics to obtain the internal quality factor Qint of super-
conducting radiofrequency (SRF) accelerator cavities. The knowledge of Qint

is mandatory to evaluate the benefits of different surface treatments or cavity
geometries. Typical niobium SRF cavities achieve internal quality factors of
Qint > 1010 [30]. Assuming to be in the critically coupled regime, the very sharp
resonance of ∆f = 0.26 Hz would turn a frequency domain measurement with
a network analyzer, aiming to extract Qint, into a challenging up to impossible
task.

In this chapter, the timedomain measurements of a niobium coaxial quarter-
wave resonator are discussed. A part of the data analysis is based on standard
SRF measurement techniques. A more detailed description can be found in [30],
chapter 8. A numerical fit routine is used to extract the loaded quality factor Ql

from the power decay of the cavity. The results are used to obtain the coupling
and internal quality factors and compared with previous frequency domain mea-
surements of the same cavity. Furthermore, a formula for the transient cavity
behaviour of the reflected power, including the possibility of a detuning in the
cavity input signal, is derived.

5.2 Overview, Setup and Example Measurement

5.2.1 Overview

The standard SRF measurement techniques concentrate on measuring the cavity
response to radio frequency (rf) fields. Therefore, the exponential decay of the
stored energy, after switching off the resonant rf source is recorded. The time
profile of the power P(t) leaking out of a cavity, after turning off the rf drive at
t = 0 follows

P (t) = P (0) · e−t/τ (5.1)

where τ describes the decay time constant. Knowing the cavity’s resonance fre-
quency f0, the loaded quality factor can be calculated with Ql = 2πf0τ .
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Once Ql is known, the next step is to obtain the coupling and the internal
quality factors Qc and Qint. For this purpose the transient behaviour of the cavity
is examined by acquiring the reflected power signal, while switching on the cavity
drive. One method is to obtain the coupling strength

β = Qint

Qc
(5.2)

by measuring the power levels Pf and Pr of the cavity response directly after
switching the resonant rf source on and after reaching steady state. The ratio of
these power levels leads to the coupling strength via

β =
1±

√
Pr/Pf

1∓
√
Pr/Pf

(5.3)

for the cavity being overcoupled β > 1 (upper sign) or undercoupled β < 1 (lower
sign). The coupling strength determines the strength of the interaction between
cavity and coupler. In the overcoupled case, the main loss channel is due to power
leaking out via the coupler. In the undercoupled case, the power dissipation in
the cavity walls is dominating. The shape of the cavity response to a resonant
rectangular drive pulse allows the distinction between the over- and undercoupled
case, as depicted in figure 5.1.

Knowing β and Ql, the internal quality factor follows

Qint = Ql (β + 1) (5.4)

By modelling the resonator with an equivalent circuit and using energy con-
servation relations on resonance, an equation for the reflected power

Pr(t) = Pf

{
1− 2β

1 + β

[
1− exp

(
− t

2τ

)]}2

(5.5)

describing solely the cavity ring up, can be derived [30]. For β > 1, the equi-
librium power level of Pr(t) is reached after passing the zero power line. Since
equation 5.5 is only valid on resonance, the task to find an expression, that allows
small detuning δ of the cavity drive, is completed with the useful tool of Laplace-
and inverse Laplace-transform (see section 5.7). The rather bulky equation 5.6,
describing the transient behaviour of the resonator with the drive switched on at
t = 0, is expressed in terms of Qint and Qc, instead of β and τ .
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Figure 5.1: Schematic cavity response to a resonant rectangular powerpulse Pf
in the under-, critically and overcoupled regime. Pr is the reflected power signal
and Vr the reflected wave amplitude. Adapted from [30], figure 8.5.

Pr(t) = Pf

4Qcδ2Q2
i f

2
0 (Qc +Qi)2

[
4Q2

cδ
2Q2

i + f 2
0 (Qc −Qi)2+

4Q2
i f

2
0 exp(−

2πf0(Qc +Qi)t
QcQi

) + 4Qif0exp(−
πf0(Qc +Qi)t

QcQi
)

·
(
f0(Qc −Qi) cos(2πδt)− 2QcδQi sin(2πδt)

)]
(5.6)

For zero detuning δ = 0, equation 5.6 corresponds to equation 5.5. The effect
of driving the cavity slightly off resonant is shown in figure 5.2. The minimum
in the reflected power of a cavity in the overcoupled regime (Qint > Qc) shortly
after switching on the cavity drive, does not meet the zero power line for δ > 0.

5.2.2 Setup

To measure the niobium coaxial quarterwave resonator in the time domain the
following device-setup is used: a rf-signal generator provides an input pulse at
the cavity’s resonance frequency, which is obtained from preceding VNA mea-
surements. To make sure to reach the steady state, the length of the pulse is
chosen to be roughly ten times the cavity lifetime τ . The resonators field build-
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Pr

tt

δ > 0δ = 0

Figure 5.2: Transient cavity behaviour after switching on a resonant (left) or
slightly detuned (right) rf drive. Pr describes the cavity’s reflected power, δ the
detuning between the rf drive and the resonance frequency. Except δ, all other
parameters are identical in both cases and β > 1.

up, while applying the pulse, and the cavity decay towards the pulse get recorded
with a spectrum analyzer. More precisely, the reflected power signal of the cavity
is measured in the time domain. The input signal generator and the spectrum
analyzer are connected to a function generator, which synchronizes both devices.
In this way, averaging of the data traces for each input power can be realised,
in order to improve the signal to noise ratio. The experimental setup inside the
cryostat is equal to the setup used prior to measure the niobium cavity in the
frequency domain (see section 4.1).

5.2.3 Example Measurements

Figure 5.3 displays the distinct shape of the cavity response to a resonant drive
pulse starting at t = 0 s and ending at t = 0.04 s for various drive powers. The
sampling rate and the number of samples of the spectrum analyzer are kept con-
stant for each measurement. The averaging factor ranges from 50, for the highest
input power, to 2000 for the lowest input power. The choice of measurement
parameters is made considering measurement duration and signal-to-noise-ratio.

In figure 5.4 a single, high power measurement of the cavity response to a
rf drive pulse is shown. Comparing the shape of the cavity response to figure
5.1 allows the assumption, that the resonator-transmission line system is in the
overcoupled regime (β > 1). The fact, that the minimum, shortly after switching
on the rf drive, is not arriving down at the noise floor, already indicates a small
detuning. This detail can be seen in the logarithmic plot of the reflected power
in figure 5.4.

One can classify three stages, the resonator goes through in each measurement
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Figure 5.3: Datatraces of the reflected power signal for different cavity input
pulse power levels in logarithmic scale. Therefore, the rf drive output power was
modified from –5dBm (top trace) to -80dBm (bottom trace), where the signal
vanishes in the noise floor.

Figure 5.4: Raw data trace of the niobium coaxial quarterwave resonator mea-
sured in reflection in the time domain (blue) and a schematic drive pulse sequence
(red). The reflected power is plotted in logarithmic (left) and linear scale (right).
The rf drive output is set to −25 dBm.
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cycle, which are illustrated in figure 5.5. The Cavity ring-up starts when the
drive pulse is switched on. At this point the cavity is empty and starts to fill. A
part of the travelling signal enters the cavity, builds up the field in the resonant
mode and is reflected back with a phase shift. The other part of the signal gets
reflected directly at the coupler. The reverse travelling signal consists of the sum
of two out of phase signals. As the energy stored in the cavity rises, the cavity
emitted signal cancels an increasing part of the directly reflected signal. At the
dip in the reflected power, both signal parts have equal amplitudes. Then, the
cavity emitted signal starts to dominate over the directly reflected signal. As a
consequence, the total reverse travelling signal becomes π phase shifted (see time
profile of Vr in figure 5.1). Since the power measurement is phase insensitive,
the reflected power rises after the dip until an equilibrium is reached. In the so
called steady state the stored energy of the cavity is constant. When the drive
is abruptly turned off, the part of the signal, which gets reflected directly at the
coupler, disappears. Due to the absence of one part of the two competing signals,
a sudden jump in the reflected power emerges. This is followed by an exponential
fall of the reflected power, as the stored energy of the undriven cavity starts to
decay until it is empty.

ring up ss decay

Figure 5.5: Characterisation of three stages the cavity undergoes during each
pulse sequence: ring up, steady state (ss) and decay. The reflected power is
plotted in logarithmic scale. The rf drive output is set to −25 dBm.
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5.3 A closer look at the decay

The main idea evaluating the cavity decay data is to extract the lifetime of the
cavity and hence the loaded quality factor. After turning off the rf drive, the
total lost power Ptot is equivalent to the power leaking out the coupler Pe and
the power dissipated in the cavity walls Pc.

Ptot = Pc + Pe (5.7)

With the definition of the loaded quality factor

Ql = ω0U

Ptot
(5.8)

where ω0 is the angular resonance frequency and U is the stored energy of the
resonator, a differential equation for the decay can be set up.

dU

dt
= −Ptot = ω0U

Ql
(5.9)

A solution to this equation is

U(t) = U0 exp
(
−ω0t

Ql

)
(5.10)

where U0 defines the energy at t = 0. According to that, the expression for the
reverse travelling power is

P (t) = P0 exp
(
−ω0t

Ql

)
(5.11)

In terms of this result, a linear fit of the reflected power signal in the logarithmic
scale leads to the loaded quality factor. But this has to be used with caution,
since equation 5.11 is only valid as long as Qint and as a consequence Ql remains
constant during the decay. If Qint is power dependent and changes, while the
stored energy in the cavity decreases as the input drive is shut off, the power
decay cannot be described by a simple exponential anymore. One option to
circumvent this problem is to implement a numerical fit, where the decay data
is divided into sections. Instead of one loaded quality factor for the whole decay,
Ql is obtained for each section, following the change of Qint.
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5.4 Noise floor subtraction

A crucial point in the analysis of the reflected power data is the noise power
subtraction. The impact of the added noise floor gets visible especially in the
logarithmic scale, which is shown in figure 5.6, where the noise floor lifts the tail
of the power decay trace. This effect distorts the linear fit results at low power
levels to obtain the loaded quality factor. The level of the noise floor is obtained
by averaging over reflected power data without an input power applied. The
determination of the noise floor and the subtraction are made in the linear power
scale. This is done for every reflected power trace ahead of any further analysis.
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Figure 5.6: Comparison of a powerdecay trace at a cavity drive power of
−25 dBm in the logarithmic scale with (red) and without (blue) noise floor sub-
traction.

5.5 Numerical fit routine

The power decay data is fitted with a numerical fit model, since the decay char-
acteristic is not solely exponential and therefore cannot be fitted with a single
linear fit in the logarithmic scale. Each decay trace is split into minor slices and
for every slice a linear fit is performed. From the slope of each fit Ql is extracted
and connected to the slice’s mean power value. The full python code of the fit
routine is shown in appendix 1.

The first peak of the decay is scaled to the rf drive power output, in order to
make the outcome comparable to VNA measurements in the frequency domain.
The result is not only one single Ql value for each input drive pulse, but an
extended trace of Ql values depending on the decreasing power leaking out of
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the cavity after switching off the drive. This displays the big advantage of the
numerical decay fit, since the usual input power sweep method, to obtain a power
dependence of the quality factor, requires a measurement for each input power
value. The outcome of the numerical fit routine for each input drive pulse is
shown in figure 5.7. Additionally plotted are Ql values of the same cavity, but
obtained from VNA frequency domain measurements using the circlefit.

The first Ql values of the numerical fits at the high power end of each trace
are in agreement with the Ql values from the circlefit data. The Ql traces starting
below −60 dBm match with the reference Ql values, but contain high fluctuations
due to higher noise levels at low power. Following the traces starting above
−60 dBm, a gap between the reference circlefit Ql values and the numerical Ql fit
traces emerges. At the low power end of these traces, the numerical Ql values are
systematically above the reference Ql values. This reveals that after switching
off the drive, the stored energy in the cavity leaks out slower, which yields in
higher Ql values as expected from the circlefit data. This behaviour could be
explained with long-lived two level systems (TLS) on the cavity surface, which
are saturated, when the cavity is in steady state, but absorb energy leaking out
of the cavity after turning off the drive. Quasi particle recombination could as
well be responsible for the enhanced lifetime of the decaying resonator mode.

Another explanation would be a coupling strength dependent initial power
P0 in equation 5.11. In this regard, a more accurate expression for the power
decay is necessary. By Laplace-transforming the product of a rectangular function
with a cavity resonant oscillation and inverse Laplace-transforming the outcome
multiplied with a matching transfer function, an analytical formula for the cavity
ring up and decay can be found. This procedure is explained in detail in section
5.7. The anticipated result,

Pr(t) = Pf
4β2

(1 + β)2 exp
(
−ω0t

Ql

)
(5.12)

describes the reflected power of the cavity decay for the resonator beeing in the
steady state right before the drive switch-off at t = 0, with the cavity forwarded
drive power Pf . This is consistent with [30], where the same formula is derived
via energy conserving relations on resonance. An altering β, corresponding to the
falling power during the decay, could explain the upwards bent Ql traces. The
values of the decaying power in the numerical fit are scaled to the input drive at
the very beginning of the decay, where β is at it’s peak value. In other words,
the power levels, the numerical fitted Ql values are connected to, would need a β
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Figure 5.7: Power dependend Ql traces for different input pulse power levels as a
result of the numerical power decay fit compared to Ql data (red) extracted from
scatteringparameter measurements in the frequency domain using the Circlefit.
left plot: the Ql traces of all input pulse power levels are displayed. Each blue
dot represents a numerical fitted Ql value, depending on the powerlevel leaking
out the cavity. right plot: a selection of Ql traces for three input pulse power
levels, covering the entire input power range, is shown.

dependent rescaling. But in this case, where β values range from approximately
5 at high power to 2 at low power levels, it would be a minor effect in the
opposite direction. A decreased coupling strength leads to a lower prefactor in
the calculation of the power value, to which Ql is linked, and therfore to an even
larger distance between timedomain and VNA data.

The diverging Ql decay traces in the high power regime imply a weak spot of
the numerical fit routine. Nevertheless, the Ql values obtained from the highest
power slice of each trace at early times of the decay, where the variation of β is
insignificant, are shown in figure 5.8. The results agree well with the Ql power
dependence measured in the frequency domain, decreasing from Ql ∼ 2 · 108 at
high input fields to a constant plateau of Ql ∼ 1.7 ·108. At low input power levels
the uncertainty of the fitted decay constant grows due to higher measurement
noise, which can be observed in the rising errorbars of Ql. These results are
further used to extract the internal and coupling quality factors.
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< >~105

Figure 5.8: Extracted Ql values from the first slice of the numerical power decay
fit (blue) and from scattering parameter measurements in the frequency domain
using the circlefit (red).

5.6 Determining internal and coupling Q

An example demonstrating the link between measurements in the time and fre-
quency domain is shown in figure 5.9. In the frequency domain, the dip depth of
the normalized scattering parameter reflection coeffiecient on resonance is deter-
mined by

|S11| = | 2Ql/Qc − 1 | (5.13)

In the time domain measurement, the reflected power aims for a constant value
Pr, considering the resonant power pulse to be long enough. In a S11 measure-
ment, one acquires the ratio of cavity output to input signal, while sweeping the
frequency. Far off resonance, the travelling signal cannot enter the cavity and the
input signal gets fully reflected. Its equivalent in the time domain measurement is
the peak of the reflected power Pf , directly after switching on the drive. The ratio
of the resonant and off resonant |S11| magnitude resembles the reflected power
value ratio Pr to Pf . The only difference is that the scattering parameter mea-
surement gathers the ratio of voltage signals. This can be solved with squaring
or taking the square root respectively. The expression

Pr

Pf
= (2Ql/Qc − 1)2 (5.14)

concludes the precedent considerations. One can arrive at the very same result
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Figure 5.9: Comparison of the time domain power measurement (right) and
frequency domain scattering parameter measurement (left). Shown in yellow is
|S11| on and off resonance and its related reflected power levels of the steady state
and the immediate response of the resonator after switching on the drive.

by further investigating equation 5.5. The first peak of the reflected power during
the ring up is proportional to Pf . A constant plateau of the reflected power Pr is
reached with long enough (� τ) drive pulses.

Pr = Pf

(
1− 2β

1 + β

)2

= Pf

(
1− β
1 + β

)2

(5.15)

The outcome is identical with equation 5.14. The expression for the coupling
parameter β > 1 follows

β =
1 +

√
Pr/Pf

1−
√
Pr/Pf

(5.16)

The detection of the power levels Pr and Pf leads to a coupling parameter for
every drive power. With the relations between the known parameter Ql and β

Qint = Ql(β + 1) and Qc = Ql(β + 1)
β

(5.17)

the coupling and the internal quality factors can be calculated for each reflected
power trace. The results are shown in figure 5.10. The constant behaviour of
Qc ∼ 2.5 · 108 as well as the rising internal quality factor up to Qint ≥ 1.1 · 109

with higher input power levels can be confirmed. At low input power levels the
internal quality factor remains at a constant plateau of Qint ∼ 0.5 · 109, where
the enhanced measurement noise increases the uncertainty of the quality factors
obtained in the time domain.
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Figure 5.10: Coupling and internal quality factors at different drive power levels
obtained with Ql values from the power decay combined with the corresponding
coupling strength β. The latter is extracted by the ratio of the reflected power
response at the steady state and right after switching on the power drive. Fur-
thermore the circlefit data of VNA measurements (red) is shown.

5.7 Laplace transform intermezzo

The Laplace transform is a powerful tool to analyse linear dynamical systems.
This section gives a short introduction to the Laplace transform and its appli-
cations. It is based on [39], appendix A. Furthermore the transient and decay
behaviour of a resonator in the reflection are investigated using the Laplace and
the inverse Laplace transform formalism.

The Laplace transform is an integral transform closely related to the Fourier
transform. It is restricted to functions of time f(t), which vanish for times t < 0.
For such functions, the Laplace transform L{f(t)} is defined as

L{f(t)} = F (s) =
∫ ∞

0
f(t)e−st dt (5.18)

with the complex number frequency parameter s = σ+ jω . The inverse Laplace
transform back in to the time domain is defined as

L−1{F (s)} = f(t) = 1
2πj

σ0+j∞∫
σ0−j∞

F (s)est ds (5.19)
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The convolution and derivative properties of the Laplace transform are given by

L{f1(t) ∗ f2(t)} = F1(s) · F2(s) (5.20)

L{df(t)
dt
} = s · F (s)− f(0+) (5.21)

Equation 5.21 reveals the utility of the Laplace formalism. A differential equation
in the time domain gets Laplace-transformed to an algebraic equation. After
solving the algeabric equation, the inverse Laplace transform leads to the solution
in the time domain. Another handy property is displayed in equation 5.20, which
shows that a convolution in the time domain translates as a multiplication in the
(complex) frequency domain.

In the case of a resonator in reflection configuration, the scattering parameter
S11 resembles its transfer function

h(ω) = Vout(ω)
Vin(ω) = 2Ql/Qc

1 + 2jQl
ω−ω0
ω0

− 1 (5.22)

For the stored energy in the cavity to be zero at t = 0, the transfer function can
be rewritten with the complex parameter jω → s to

h(s) = 2Ql/Qc

1 + 2Qls
ω0
− 2jQl

− 1 = 2/(1 + β−1)
1− 2jQl + 2Qls/ω0

− 1 (5.23)

This is a preparatory step to make use of equation 5.20, where a convolution gets
transformed into a multiplication. The resonant signal pulse in the time domain
starting at t = a and ending at t = e is modelled with

Vin(t) = Vf ·Θ(t− a) ·Θ(−t+ e)
(

cos (ω0t) + j sin (ω0t)
)

(5.24)

assuming e ≥ a ≥ 0. Θ(t) depicts the Heaviside step function, Vf the voltage
amplitude. The next step is to Laplace transform Vin(t) and multiply it with
the transfer function h(s). The following inverse Laplace transform of the latter
product leads to an expression for the output signal Vout(t) in the time domain.

Vout(t) = L−1{L{Vin(t)} · h(s)} (5.25)

The actual solving of the Laplace integrals is done with the software Mathematica
[40]. The full code can be found in listings 2, appendix C. The result for the
reflected power signal of the cavity response to a resonant drive pulse starting at
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t = a and ending at t = e is

Pr(t) = |Vout(t)|2 =


Pf

e
−ω◦t
Ql

(
(β − 1)e

ω◦t
2Ql − 2βe

ω◦a
2Ql

)2

(β + 1)2 if a 6 t < e

Pf
4β2e

−ω◦t
Ql
(
e
ω◦a
2Ql − e

ω◦e
2Ql
)2

(β + 1)2 if t > e

(5.26)

where Pf = |Vf |2 depicts the input signal power. The reflected power’s steady
state P ss

r is obtained by evaluating equation 5.26 considering only the ring up in
the limit of t→∞ with the drive switched on at a = 0

P ss
r = Pf

(β − 1)2

(β + 1)2 (5.27)

The immediate peak at the switch on is derived from the ring up term in the
limit of t→ a

P ∗r = Pf (5.28)

Further investigating the power decay term in 5.26 leads to the reflected power
peak P d

r at the start of the decay. Arguing that the cavity reached the steady
state before the switch off, the relation between the switch on and off times e� a

justifies the simplification

(
e
ω◦a
2Ql − e

ω◦e
2Ql
)2
≈ e

ω◦e
Ql (5.29)

With this consideration, the ring down term of equation 5.26 in the limit of t→ e

becomes
P d

r = Pf
4β2

(β + 1)2 (5.30)

The findings of the cavity’s transient and decay behaviour, responding to a reso-
nant drive pulse, using the Laplace transform formalism are consistent with the
results of H. Padamsee et al. [30]. By introducing a small detuning δ to the
input signal and considering only the transient behaviour with the cavity drive
switched on at t = 0, equation 5.24 is modified to

Vin(t) = Vf Θ(t)
(

cos (2π(f0 + δ) t) + j sin (2π(f0 + δ) t)
)

(5.31)

The solution of the ring up for the the reflected power signal including a detuned
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cavity drive is then given by

Pr(t) = Pf

(β + 1)4 (4δ2l2 + f 2
0 )
[
4β2(β + 1)2f 2

0 e
− 2πf◦t

Ql

+
(
β2 − 1

)2
f 2

0 + 4(β + 1)4δ2Q2
l−

4β(β + 1)2f0e
−πf◦t

Ql
(
2(β + 1)δQl sin(2πδt) + (β − 1)f0 cos(2πδt)

)]
(5.32)

The Mathematica script leading to this expression is presented in listings 3, ap-
pendix C.

5.8 The rewards of understanding the ring up

In this section the reflected power behaviour in the time domain after switching
on the drive power is examined with the analytical fit functions derived in the
previous section. Each ring up trace, corresponding to a different input drive
power, is fitted with equation 5.5, assuming a resonant cavity drive. Two ring up
traces, one in the high and one in the low input power regime, are displayed in
figure 5.11. The effect of disregarding a detuned cavity drive can be detected in
the logarithmic plots, as the fit function minimum aims for the zero power line.
After that, each trace is approximated with equation 5.6, considering a detuned
cavity drive. The fitted reflected power ring up traces, for two different cavity
drive output levels are shown in figure 5.14. The logarithmic power scale reveals
an improvement of the fitted curves, as the fit functions take into account the rf
drive detuning.

The results of both fit options are shown in figure 5.12 and 5.13. The extracted
quality factors show similar behaviour for both, the resonant and the detuned ring
up fit options. Compared to the circlefit data measured in the frequency domain,
Ql, Qint and even Qc get overestimated for high input power levels. This is a
rather surprising result, as Qc should stay constant, because the coupling pin
is unaltered during the ring up. The internal quality factor Qint is expected
to vary during the filling of the cavity, as the saturation of two-level-systems
proceeds with an increasing inner cavity energy. On the contrary, the ring up fit
functions assume a constant Qint during the transient response. In that sense, the
deviation of the fit extracted quality factors is explicable. The rise of the Qc levels
at high input power can be explained by the correlation of the fit parameters.
Lowering Qint has the same effect on the ring up curve as a rise in the coupling
quality factor Qc. The overestimation of Qc partially compensates the Qint power
dependence. At low power levels, where the power dependence of Qint decreases,

59



5 Time domain measurements

both fit options match with the circlefit data. A slight superior behaviour of the
ring up fit including drive detuning can be detected .

The quality of a fit can be demonstrated by looking at its residuals

ri = Y data
i − Y fit

i (5.33)

where the distance between the data points Y data
i and the fit function Y fit

i is
calculated. At high power levels, the residuals, plotted over time show a pattern
in both fit options, indicating a variation of Qint during the ring up. At low
power, the pattern vanishes as the internal quality factor stays constant. The
variation of noise levels in the low input power residuals plot comes from a mod-
ified measurement sensitivity of the spectrum analyzer at different input power
levels.

For the execution of the resonant ring up fit, the common least square method
is used, where the sum of the squared residuals is minimized. In the case of
the detuned ring up fit, the least square fitting method tends to disregard the
detuning. Due to this reason, a weighted least squares fit is implemented. To
make the fit take into account the nonzero minimum of the ring up curve, which
is responsible for the extent of the detuning, the weighted sum of squares

∑
i

(
Y data
i − Y fit

i

Y data
i

)2

(5.34)

is minimized as part of the fit at high power levels. At low power levels instead
of the weighting, a lower boundary for the fit parameter δ is introduced. It is set
to δmin = 0.1 Hz, which corresponds to the lowest fitted value for δ.
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Figure 5.11: The time domain cavity reflected power ring up traces in the linear
(upper panel) and logarithmic scale (middle panel) for two different drive output
power levels of −5 dBm (left) and −55 dBm (right). Furthermore the fit functions
(red lines), considering a resonant drive pulse are shown. In the lower panel, a
plot of the corresponding fit residuals is displayed.

61



5 Time domain measurements

Figure 5.12: Extracted quality factors as a function of the cavity drive output
power from analysing the transient behaviour of the reflected power signal with
an analytic fit function that assumes a resonant drive pulse. Further shown are
quality factors from frequency domain measurements.
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Figure 5.13: Quality factor results as a function of the cavity drive output power
of the transient reflected power response considering an analytical fit function that
permits a detuned input signal compared to frequency domain measurements.
The extracted quality factors are similar to the prior obtained results from the
resonant ring up fit. Furthermore, the fit results for the cavity input signal
detuning δ (lower right) are displayed. If the fit at a certain input power level
converged but δ remained at the lower boundary level, the detuning is marked
blue.
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Figure 5.14: Cavity reflected power ring up traces in the logarithmic scale for
two different drive output power levels of −5 dBm (left) and −55 dBm (right).
Additionally, the fit functions, including a rf drive detuning, are plotted (red
lines). In the lower panel, a plot of the corresponding fit residuals is shown.

5.9 Time domain analysis of the aged niobium cavity

The time domain measurement series of the niobium coaxial cavity is repeated
after months of ageing not preserved in a vacuum desiccator. The purpose of this
measurement series is to confirm the issue of a growing dielectric layer on the inner
cavity walls, leading to bigger internal losses and a decreased Qint. Moreover, the
experiment repetition is made with the intention of approving the analytical ring
up fit formula 5.6 and the numerical fit routine from section 5.5, in the case of a
less power dependent quality factor.

The cavity reflected power trace responding to a (almost) resonant drive pulse
is shown in figure 5.16. The shape of the curve with the more equalized peak
heights and the lowered steady state value already reveals the reduced coupling
strength β. See figure 5.1 for the impact of a changed coupling strength on the
reflected power curve and, for comparison, a reflected power trace of the previous
measurement series in figure 5.4.

After subtracting the noise floor, as shown in section 5.4, the numerical fit
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routine is applied. The Ql data, obtained from the decay’s slope in each power
slice, is depicted in figure 5.15. In contrast to previous results (see figure 5.7),
the high input power Ql traces of the aged niobium cavity agree well with the fre-
quency domain reference measurements. It seems that a resonator, with a weak
power dependent loaded quality factor, can be analyzed well with the numerical
fit method. Given the right circumstances, one can resolve the power dependence
of Ql over the whole measurement range within a single pulsed reflected power
measurement. In this particular case, a 50 dB attenuator prevents the continua-
tion of the Ql traces to lower power values, since the decay traces vanish in the
spectrum analyzer’s inherent noise.

Figure 5.15: Loaded quality factorQl traces for three different input pulse power
levels extracted from a numerical power decay fit compared to circlefit reference
data (red dots) as a function of the cavity input drive power measured in the
frequency domain. Each of the blue, cyan or yellow coloured dots represents a
numerical fitted Ql value, depending on the power level leaking out the cavity.

The actual reflected power trace of the cavity’s transient behaviour for an
input power of−10 dBm and the corresponding fit function, considering a detuned
cavity drive, is shown in figure 5.16. The results of the fit process are further
shown in figure 5.17. The fits agree well with the measured data. Due to the less
pronounced power dependency of Qint and Ql respectively, the reflected power
traces were only taken at high input power. The extracted quality factors match
with the circlefit data. The ring up fit quality benefits from the rather constant
Qint, as displayed in the high power residuals plot that shows no distinct pattern.
The bigger errorbars compared to previous results at similar power levels are due
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to an additional attenuator in front of the spectrum analyzer input, which gives
rise to a lower signal to noise ratio and bigger fit uncertainty. The detuning stays
constant slightly above 1 Hz, which is a convincing inaccuracy as a consequence
of measurement uncertainty. For the data analysis of this measurement series
neither a lower boundary for δ, nor a weighted fit model is needed.

Figure 5.16: Upper left: Aged niobium cavity reflected power trace in the
time domain responding to a −10 dBm resonant drive pulse. Upper right: Ring
up segment of the aged niobium cavity reflected power trace in the linear power
scale at a drive output of −10 dBm. Additionally, the fit function, including a rf
drive detuning is plotted (red line). Lower left: Same −10 dBm rf drive output
reflected power trace and the ring up fit, regarding a detuned cavity drive, in the
logarithmic scale. Lower right: Plot of the corresponding fit residuals.
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Figure 5.17: Ring up analysis results of the reflected power trace of the aged
niobium coaxial cavity. The power dependence of the quality factors, extracted
from an analytical ring up fit function that includes a detuned cavity drive, com-
pared to frequency domain measurements of the aged niobium coax cavity are
displayed. Additionally, the ring up fit results for the cavity input signal detuning
δ (lower right) are shown.
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5.10 Summary

Probing a resonator in the time domain turns out to be an advantageous measure-
ment technique to confirm the high internal quality factor of the niobium coaxial
quarterwave resonator ranging from Qint ∼ 0.5 · 109 at low input power level and
Qint ≥ 1.1 · 109 in the high input power limit. Examining the distinct shape of
the cavity response to a resonant drive pulse reveals the coupling regime and, if
the cavity is under-coupled, a potential drive detuning. The decay of the cavity
reflected power, after switching off the drive, provides the loaded quality factor
Ql. Further knowledge of the reflected power levels of the steady state and the
immediate peak after switching on the drive leads to the coupling and internal
quality factors Qc and Qint. Making use of the Laplace transform, an analytic
expression for the cavity reflected power is derived. Furthermore an expression
for the transient cavity behaviour including a detuned drive is obtained.

As the power decay characteristic of the niobium coax cavity, after switching
off the drive, is not purely exponential, a numerical fit is implemented to obtain
Ql. The result is a trace of decreasing Ql values, depending on the power leaking
out the cavity. The Ql traces, corresponding to low input power pulses, and the
first Ql values of the high input power pulses are in agreement with the circlefit
data measured in the frequency domain. Following the traces, which involve a
significant change of Qint during the decay, a deviation from the reference data
emerges. This suggests further analysis aiming for an analytic expression of the
Qint power dependence. By fitting the analytic ring up expressions, regarding
and disregarding a detuned cavity drive, to the transient reflected power data,
the quality factors get obtained from the fit parameters. The results of the cavity
ring up fits are in good agreement with the circlefit data measured in the frequency
domain. At high input power levels a slight divergence from the reference data
is detected. This can be explained by the fit assuming a constant Qint over the
ring up process. A small detuning δ < 1.5Hz of the cavity drive is detected.
Repeating the measurements of the same, but aged cavity yields in lower results
for the internal quality factor of Qint ∼ 0.375 · 109 at high input power levels,
due to increased dielectric losses at the cavity walls. A less pronounced power
dependency of the loaded and internal Q factor is observed, from which both, the
numerical decay and the ring up fit method benefit.
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6 Conclusion

The copper coaxial λ/4 resonators yielded the lowest quality factor results, since
the resonator design possesses a rather high magnetic participation ratio for nor-
mal conducting metals. Both surface treatments etching and annealing proofed
to be advantageous. As a result, internal quality factors in the range of 104 were
achieved. Reducing material defects during the fabrication process and refining
the etching process, for example by monitoring the oxidation redox potential of
CuCl2 [23], would probably cause less surface resistance and therefore less con-
ductive losses.

The aluminum cavities showed internal quality factors up to ∼ 107. Changing
the cavity machining technique from drilling to sinker electrical discharge machin-
ing and optimizing the cavity design parameters revealed a beneficial effect. Still,
fabrication and surface treatment fine tuning should lead to enhanced internal
quality factors of about ∼ 108, as reported in [7].

The niobiumQ-improvement, involving the buffered chemical polishing method
turned out well, as the achieved internal quality factor is in the range of 109.
Further examination of various annealing or baking methods could lead to even
higher quality factors. Especially the 340◦C vacuum heat treatment, as reported
in [36], seems to be a promising approach.

The investigations on the cavity reflected power traces in the time domain,
responding to a resonant drive pulse, yielded a robust method to extract res-
onator characterising parameters. In particular, if the trend of increasing quality
factors proceeds, VNA resonator measurements in the frequency domain could
get challenging with decreasing resonance line widths. The loaded quality factor
of the resonator can be derived via numerical analysis of the measured power,
which is leaking out of an excited cavity. By further studying the enhanced Ql

values, obtained from the late stages of the decay, new insights about long-lived
two-level-systems or quasi particle recombinations could be derived.
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Appendices

A Experimental setup picture

Figure A.1: Bottom view of the experimental setup inside the dilution refriger-
ator. One copper and three aluminum coaxial quarterwave cavities are mounted
on the cryostat’s baseplate in reflection configuration with the aid of a microwave
switch. The aluminum resonators are situated inside (half opened) magnetic
shields. Copper braids assist the resonator’s thermalization.
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B Python code of the numerical fit routine

1 import numpy as np
2 for s in np. arange (len( dmb2log )):
3 end=len(np.array( dmb2log [s].y))-np. nanargmax ( dmb2log [s].y)

-100
4 Ql[s]=[]
5 Ql_err [s]=[]
6 P[s]=[]
7 P_raw_err =[]
8 P_raw[s]=[]
9 Power_a =[-5, -25, -40, -55, -70, -75, -80]

10 Power_b =[-10, -15, -20, -30, -35, -45, -50, -52, -58, -62,
-65, -68, -72, -78]

11 deltaP =np. nanmax ( dmb2log [s].y)-Power_b [s]
12

13 for i in np. arange (0, end , 10):
14 a=np. nanargmax ( dmb2log [s].y)
15 a= a+10+i
16 y= dmb2log [s].y[a:a+400]
17 x= dmb2log [s].x[a:a+400]
18 perr=np.std(y)
19 P[s]. append (np. nanmean (y)-deltaP )
20 P_raw[s]. append (np. nanmean (y))
21 idx = np. isfinite ( dmb2log [s].x)
22 & np. isfinite ( dmb2log [s].y)
23 fit ,cov=np. polyfit (x[idx[a:a+400]] ,
24 y[idx[a:a+400]] ,1 , cov=True)
25 stderr =np.sqrt(np.diag(cov))
26 Q =7.924224544 e9 /(1/(2* np.pi*(
27 -(fit [0]/10* np.log (10))** -1)))
28 Q_err =7.924224544 e9 *2* np.pi *10/
29 (fit [0]**2* np.log (10))* stderr [0]
30 Ql_err [s]. append (Q_err)
31 Ql[s]. append (Q)
32

33 Q_all_b . append (Ql[s])
34 P_all_b . append (P[s])
35 P_all_b_raw . append (P_raw[s])
36 Q_all_b_err . append ( Ql_err [s])

Listing 1: Python code of the numerical fit routine.
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C Laplace Transform Mathematica Code

1 ( FullSimplify [
2 InverseLaplaceTransform [( LaplaceTransform [( HeavisideTheta [t - (

e)]*
3 HeavisideTheta [-t + (f)])*( Cos [(r)*2 Pi*t] +
4 I*Sin [(r)*2 Pi*t]), t, s,
5 Assumptions ->
6 e < f]) *(((2/(1 + 1/b))/((1 + 2*l/(r*2 Pi)*s - 2*I*(l))) -
7 1)), s, t]])
8 (* Laplacetransform a resonant Input pulse starting at time e and

\
9 ending at f*)

10 (* Inverse Laplacetransform previous result times \
11 transfrefunction , which is in this case equivalent to the

reflection \
12 scattering parameter S_11 *)
13

14 (( Abs [1/(1 + b) E^((( -1 + 2 I l) \[Pi] r t)/l) ] //
15 ComplexExpand ) ((-1 + b) E^((\[ Pi] r t)/
16 l) ( HeavisideTheta [-e + t] - HeavisideTheta [-f + t] +
17 HeavisideTheta [-e, f] - HeavisideTheta [-e, -e + t] +
18 HeavisideTheta [-e, -f + t] - HeavisideTheta [-e, f, -f + t

]) +
19 2 b (- HeavisideTheta [-e, f] +
20 E^((e \[Pi] r)/
21 l) (- HeavisideTheta [-e + t] + HeavisideTheta [-e, -e + t

]) +
22 E^((f \[Pi] r)/
23 l) ( HeavisideTheta [-f + t] - HeavisideTheta [-e, -f + t]

+
24 HeavisideTheta [-e, f, -f + t]))))^2
25

26

27 (* (Abs []// complex expand ) makes the expression for the result
signal

28 real. Squaring it brings power equivalent *)
29

30 (* simplify expression *)
31

32 FullSimplify [
33 1/(1 + b)^2 E^( -((2 \[Pi] r t)/
34 l)) ((-1 + b) E^((\[ Pi] r t)/
35 l) ( HeavisideTheta [-e + t] - HeavisideTheta [-f + t]) +
36 2 b (+E^(((e \[Pi] r)/l)) (- HeavisideTheta [-e + t]) +

72



C Laplace Transform Mathematica Code

37 E^((f \[Pi] r)/l) ( HeavisideTheta [-f + t])))^2, {e >= 0,
38 f >= e, t >= e}]
39

40

41 FullSimplify [
42 1/(1 + b)^2 E^( -((2 \[Pi] r t)/
43 l)) ((-1 + b) E^((\[ Pi] r t)/
44 l) ( HeavisideTheta [-e + t] - HeavisideTheta [-f + t]) +
45 2 b (+E^(((e \[Pi] r)/l)) (- HeavisideTheta [-e + t]) +
46 E^((f \[Pi] r)/l) ( HeavisideTheta [-f + t])))^2, {e >= 0,
47 f >= e, e < t < f}](* ringup function for e<t<f*)
48

49 FullSimplify [
50 1/(1 + b)^2 E^( -((2 \[Pi] r t)/
51 l)) ((-1 + b) E^((\[ Pi] r t)/
52 l) ( HeavisideTheta [-e + t] - HeavisideTheta [-f + t]) +
53 2 b (+E^(((e \[Pi] r)/l)) (- HeavisideTheta [-e + t]) +
54 E^((f \[Pi] r)/l) ( HeavisideTheta [-f + t])))^2, {e >= 0,
55 f >= e, t > f}](* ringdown function for t>f*)
56

57 TrueQ[ Simplify [
58 Expand [(-2 b E^((e \[Pi] r)/l) + (-1 + b) E^((\[ Pi] r t)/l))

^2],
59 e == 0] ==
60 Simplify [ Expand [(E^((\[ Pi] r t)/l) -
61 b (-2 + E^((\[ Pi] r t)/
62 l)))^2]]] (* check if reflected power formula from H.

Padamsee is equal *)
63

64 Manipulate [
65 Plot [{1/(1 + b)^2 E^( -((2 \[Pi] r t)/
66 l)) (-2 b E^((e \[Pi] r)/l)
67 HeavisideTheta [-e + t] + (-1 + b) E^((\[ Pi] r t)/
68 l) ( HeavisideTheta [-e + t] - HeavisideTheta [-f + t]) +
69 2 b E^((f \[Pi] r)/l) HeavisideTheta [-f + t])^2}, {t, -5,

10},
70 PlotRange -> {0, Full }], {{b, 3}, 0.1, 10}, {{r, 500} , 100,
71 1000} , {{l, 300} , 100, 1000} , {{e, 1}, -5, 10}, {{f, 4}, 0,
72 10}] (* plot result *)
73

74 Limit[ Simplify [(
75 E^( -((2 \[Pi] r t)/
76 l)) (-2 b E^((e \[Pi] r)/l) + (-1 + b) E^((\[ Pi] r t)/l))^2)

/(1 +
77 b)^2, {l == C, r == C}],
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78 t -> Infinity ](* check steady state limit of ringup formula *)
79

80 Limit [( Simplify [(
81 4 b^2 E^( -((2 \[Pi] r t)/l)) (-E^(((f \[Pi] r)/l)))^2) /(1 +
82 b)^2, {l == C, r == C}]) , f -> t]
83

84 (* check inital power value P_0 of exponential decay of ringdown
formula *)

Listing 2: Mathematica Script for the analytical expression of the resonator
response to a resonant drive pulse.

1 A = LaplaceTransform [
2 HeavisideTheta [
3 t]*( Cos [(r + \[ Delta ])*2 Pi*t] + I*Sin [(r + \[ Delta ])*2 Pi*t

]), t,
4 s]
5 S11s = ReplaceAll [2 l/c/(1 + 2*l/(r*2* Pi)*s - 2*I*l) - 1,
6 l -> 1/(1/i + 1/c)]
7 R1 = FullSimplify [ InverseLaplaceTransform [A*S11s , s, t]]
8 R2[t_ , i_ , r_ , c_ , \[ Delta]_] =
9 FullSimplify [( Abs[R1] // ComplexExpand )^2]

10 R3 = R[t_ , i_ , r_ , c_ , \[ Delta]_] =
11 1/((c + i)^2 r^2 + 4 c^2 i^2 \[ Delta ]^2)
12 Simplify [
13 Expand [(2 c i \[ Delta] Cos [2 \[Pi] t (r + \[ Delta ])] +
14 2 E^( -(((c + i) \[Pi] r t)/(c i)))
15 i r Sin [2 \[Pi] r t] + (c - i) r Sin[
16 2 \[ Pi] t (r + \[ Delta ])])^2 + (2 E^( -(((c + i) \[Pi] r

t)/(
17 c i))) i r Cos [2 \[Pi] r t] + (c - i) r Cos[
18 2 \[ Pi] t (r + \[ Delta ])] -
19 2 c i \[ Delta] Sin [2 \[Pi] t (r + \[ Delta ])]) ^2]]
20 Manipulate [
21 Plot [{R[t, i, r, c, \[ Delta ]]}, {t, 0, 2.4} ,
22 PlotRange -> {0, 1}], {{i, 600} , 100, 1000} , {{r, 500} , 100,
23 1000} , {{c, 500} , 100, 1000} ,
24 {{\[ Delta], 0}, -1, 1}]
25 R4 = ((c - i)^2 r^2 + 4 E^( -((2 (c + i) \[Pi] r t)/(c i))) i^2 r

^2 +
26 4 c^2 i^2 \[ Delta ]^2 -
27 4 E^( -(((c + i) \[Pi] r t)/(c i)))
28 i r (-(c - i) r Cos [2 \[Pi] t \[ Delta ]] +
29 2 c i \[ Delta] Sin [2 \[Pi] t \[ Delta ]]))/((c + i)^2 r^2 +
30 4 c^2 i^2 \[ Delta ]^2)
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31 TrueQ[ Expand [R3] == Expand [R4]]

Listing 3: Mathematica Script for the analytical expression of the transient
resonator behaviour allowing a detuned drive.
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