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Abstract

Fast flux control on a SQUID based transmon qubit has been a hard task in three-
dimensional cavity architectures. The most simple option of putting a coil outside
a copper cavity suffers from counteracting eddy currents in the cavity walls. Eddy
currents prevent fast magnetic field changes from penetrating the conducting cavity
and thus controlling the qubit inside becomes impossible. Another option is provided
by flux bias lines, which are U-shaped wires put only ten to one hundred micrometers
next to a qubit inside the cavity. Due to the close distance the flux bias line is
capacitively coupled to the qubit and offers an additional channel for decay. The
enhanced decay of the qubit is partially prevented by complex filtering, however
filtering is never perfect. This thesis introduces a new approach for fast flux control
on a transmon qubit in a three-dimensional cavity architecture. A magnetic hose is
used to guide a magnetic pulse from the outside to the inside of a three-dimensional
microwave cavity. The magnetic pulse is generated by a coil outside the cavity and
sent through the hose to control the transition frequency of a SQUID based transmon
qubit inside the cavity on a timescale of hundreds of nanoseconds.
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Introduction

The original task for this thesis was to build fast tunable coils. These coils should be
able to generate a magnetic field of maximally some nanotesla at a point of interest.
The magnetic field at the point of interest should be switched fast to arbitrary values
within the maximum range. Fast switching between two arbitrary field strengths has
to be below some hundreds of nanoseconds. First estimations show that magnetic
fields of some nanotesla are easy to reach and the switching below hundreds of
nanoseconds is feasible either. So far so good, building such fast tunable coils is
possible. However, there is a tricky part concerning the point of interest, where the
field should be applied.

The point of interest is enclosed by a highly conducting box, a microwave cavity
made out of copper. This constraint leads to problems as soon as a magnetic field is
switched fast between two values. Whenever the magnetic flux through a conductive
surface changes, eddy currents appear in the surface and counteract the change in
magnetic flux. The counteracting effect of eddy currents increases proportional to the
change of flux in time. As a consequence the conducting cavity walls act as a low pass
filter for the applied magnetic field and switching below hundreds of nanoseconds
becomes impossible. Full control of a magnetic field inside a microwave cavity will
be unreachable, if the magnetic source is placed outside the cavity.

But, why does someone want to have full control of a magnetic field inside a
conductive box? The answer is, to control a superconducting qubit. At the point of
interest, the centre of a microwave cavity, a superconducting qubit is placed. The
qubit is sensitive to magnetic flux and thus its transition frequency is tunable by an
external applied magnetic field. Full control of the magnetic field inside the cavity
results in full control on the qubit’s transition frequency. The magnetic field has to
be applied from the outside of the microwave cavity, since a coil inside the cavity
couples capacitively to the qubit and the microwave field. The coupling enhances the
decay of the qubit and offers an additional channel for microwave losses. Controlling
a qubit’s transition frequency is a necessary ingredient for the realisation of quantum
computation and simulation. This thesis motivates the task of full flux control on
a superconducting qubit inside a microwave cavity, analyses the issues that come
along and gives a solution.

In the first chapter the qubit is introduced and motivated by the idea of quantum
computation and simulation. It is shown, how a qubit can be realised experimentally
in a cavity quantum electrodynamic system. The relevant mathematical background
is derived, leading to the Jaynes-Cummings Hamiltonian in the dispersive limit. The
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dispersive limit is used to read out the state of the qubit. Instead of using a cavity
quantum electrodynamic system one can use a circuit quantum electrodynamic sys-
tem to realise and control a qubit. The mathematical background is the same in both
systems, despite the totally different experimental setup. In a cavity electrodynamic
system atoms are interacting with light in an optical cavity, in a circuit electrodynamic
system superconducting quantum circuits are interacting with microwaves in a mi-
crowave cavity. Superconducting quantum circuits can be designed nearly arbitrarily
and therefore offer a large tunability in their parameters. Such kind of circuits can be
used to built artificial atoms with a huge dipole moment. Therefore superconducting
quantum circuits can be used as qubits and are a promising candidate for realising
quantum computation and simulation. The working principle of the transmon, a
special superconducting qubit, is explained in the first chapter.

The second chapter explains how to guide a magnetic field from the outside to
the inside of a highly conducting cavity. First, the generation of magnetic fields is
explained in the static case by the law of Biot-Savart. Switching on a static magnetic
field is discussed next and first experimental limits are introduced. Everything seems
fine until eddy currents are considered. A theoretical model on eddy currents is
introduced and the effect is measured. Two widely known solutions to compensate
the effect of eddy currents are presented. However both cannot be implemented
in this setup. A way to circumvent all theses issues is offered by a magnetic hose.
A magnetic hose is a device that transfers an arbitrary magnetic field between two
points, that are connected by the hose. The functionality of the hose is investigated
systematically, leading to promising results.

The final results of fast flux control of a superconducting qubit are shown in the
third chapter. In the first section the experimental setup is explained for different
measurements and it is shown, how a qubit is measured and characterised. The
following section discusses the generation of fast magnetic pulses. The measurement
scheme for investigating the fast flux control of a superconducting qubit is intro-
duced. Finally the results are presented, indicating a tunability below two hundred
nanoseconds.
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Chapter 1

From Cavity To Circuit Quantum
Electrodynamics

1.1 Overview

This chapter presents the required theory to understand the flux control of a super-
conducting quantum bit. Therefore the quantum bit is introduced first and the idea
to use it for computation and simulation is motivated. Within this section, some
quantum gates operating on the quantum bit are explained. These gates are necessary
to perform the measurements shown in chapter 3.

The next section introduces the field of cavity quantum electrodynamics by
considering the coupling between a single atom and a single electromagnetic field
mode. In case the atom is driven between two of its states only, it is treated as spin-1/2
particle. This assumption and some additional approximations lead from a general
linearised Hamiltonian to the Jaynes-Cummings model. There the cavity photons
and the atom form a joint state, which obscures their individual character. However,
in the dispersive limit of the Jaynes-Cummings model their individual character
emerges. As a consequence the photon number or atom state in the cavity can be
measured individually by performing a so called dispersive read-out. Actually, the
dispersive read-out scheme can be applied to any physical system, where a spin-1/2
particle is coupled to a harmonic oscillator.

Circuit quantum electrodynamics provides such a system and is introduced in the
following section. Instead of atoms, circuit quantum electrodynamics uses supercon-
ducting quantum circuits as artificial atoms and couples them to a single microwave
mode in a microwave resonator. The working principle of any superconducting
quantum circuit is based on the Josephson effect caused by a Josephson junction.

A superconducting quantum bit is basically an anharmonic oscillator and is
explained by comparing it to a harmonic oscillator in the language of electronic
circuits. The harmonic oscillator of choice is the LC-circuit, which is realised by a
microwave cavity. Subsequently the relevant properties of such a cavity are discussed.
It is quantised by introducing flux and charge operators.

Next the transmon, a special superconducting quantum bit, is introduced and
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1.1. OVERVIEW

quantised. It consist of a single Josephson junction and has a fixed transition fre-
quency. To make this transition frequency tunable, one adds a second Josephson
junction in parallel to form a loop. The transmon transition frequency is then sensitive
to the flux through the loop and becomes tunable.

Finally the microwave cavity and the transmon are coupled to form a circuit
quantum electrodynamic system. The system is described by the same mathematics
as in the case of an atom coupled to a single electromagnetic field mode. Therefore
it is possible to detect the state of the transmon by a dispersive read-out and use the
system for quantum simulation and computation.
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CHAPTER 1. FROM CAVITY TO CIRCUIT QUANTUM ELECTRODYNAMICS

1.2 Quantum Computation And Simulation

Nowadays computers are based on classical mechanics using classical bits for infor-
mation processing. Since quantum mechanics is a more general theory including
classical mechanics, one can make us of additional properties of quantum mechanics
to provide more power for computation. Entanglement between quantum systems
and the superposition principle make parallel processing possible. In theory quantum
algorithms outperform some of the today known algorithms for classical computation
in tasks like searching, factorising or optimising [1]. Basic principals have been
verified experimentally, but there is still a lot of development and improvement
necessary to beat classical computation.

To realise a universal quantum computer one has to fulfil the first five criteria
stated by Di Vincenzo [2]. Therefore one requires:

1. a scalable physical system with well characterised qubits

2. the ability to initialize the state of the qubits to a simple fiducial state

3. long relevant decoherence times, much longer than the gate operation time

4. a „universal“ set of quantum gates

5. a qubit-specific measurement capability

In principle these criteria are fulfilled in ion trap and superconducting circuit ex-
periments. Still both could not manage to sufficiently control large systems, that
outperform a classical computer.

Besides the hot topic of building a universal quantum computer, specific binary
quantum systems can be used for simulating other quantum systems. Quantum
simulations on classical computers need a huge amount of resources. Even relatively
small systems consisting for example out of fifty particles will become impossible
to simulate on a classical supercomputer if an interaction between all particles is
considered. A system of n spin-1/2 particles can take on a superposition of 2n states,
each having a different complex amplitude. Therefore space in the order of 2n

classical bits is needed to save the state of n quantum bits, even more space and time
is then needed to perform calculations on this huge number of bits.

Richard Feynman was the first one who pointed out that it might be more efficient
to simulate quantum systems with other well controlled quantum systems [3]. In
case of a specific quantum simulation, it is not required to build a universal quantum
computer. The system of interest is actually built for a specific class of problems only.
Using such a system may be more efficient than using classical supercomputers for
solving the same problem.

The experimental development of quantum simulators is promising and they
might outperform classical computation in the next ten years [4]. Superconducting
qubits are one way to realise quantum computation and simulation. The theory of
their physics is investigated in the following sections, starting with introducing the
closely related topic of cavity quantum electrodynamics.
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1.2. QUANTUM COMPUTATION AND SIMULATION

In this section the idea of information processing is introduced first. Then the
concept of the quantum bit and gates is discussed shortly. Finally the necessary gate
operations for this thesis are explained.

1.2.1 The Idea Of Computation

Computation is processing of information. Information is always connected to a
physical system and it is gained from distinguishable states of that system. The
smallest system that acts as information carrier is a system with two distinguishable
states. To do computation on such a system one introduces the binary digit, shortly
called bit. It is is the unit of information and can take on the values 0 or 1 for
convenience.

Any information of a two state system is represented by a single bit. Therefore
a two state system can be encoded into a single bit. Of course one can think of a
larger system that takes on more than two states and use it for computation. The
information of such a system can always be encoded into a sequence of bits. A
sequence of n bits has 2n different ways to be ordered, so 2n different states can be
encoded. The ordering of a sequence is spatial or temporal.

The process of computation is done by an algorithm. An algorithm is a specific
ordering of operations, that act on a given bit sequence. Therefore the algorithm
fulfils a predetermined task on an input sequence and yields an output sequence.
From decoding the output sequence new information is gained.

To do computation one needs two state systems acting as bits that can be initialised
and keep their assigned state sufficiently long. Next operations acting on the bits are
required to realise an algorithm. Finally a measurement process has to be available
to detect the output bit sequence.

1.2.2 The Quantum Bit

Quantum computation is processing of information gained from quantum systems.
There the unit of information is the quantum bit, abbreviated qubit. A qubit distin-
guishes between two quantum states of a quantum system. The two distinguishable
states are written as |0〉 and |1〉 in analogy to classical computation. In contrary to
classical systems, quantum mechanics allows superposition of two quantum states to
form a new state. Therefore a quantum bit can be set to an arbitrary state of the form

|Ψ〉= α |0〉+ β |1〉 , (1.1)

where α and β are complex numbers that satisfy |α|2 + |β |2 = 1 for normalisation.
The state |Ψ〉 is a vector in a two dimensional Hilbert space H , where |0〉 and |1〉
form an orthonormal basis.

A useful representation of a single qubit state is

|Ψ〉= cos(θ/2) |0〉+ eiϕ sin(θ/2) |1〉 . (1.2)

In this representation the state is visualised on a sphere, the so called Bloch sphere.
It is illustrated in figure 1.1. The angles θ ∈ [0,π] and ϕ ∈ [0, 2π) are the same as in
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CHAPTER 1. FROM CAVITY TO CIRCUIT QUANTUM ELECTRODYNAMICS
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·c = 2L/c

ÈF̂ Í = 2~Ê

c

Èâ†âÍ
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†âÍ
·c

ÈF̂ Í = |�p|Èâ
†âÍ
·c

= ~GÈâ†âÍ
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Èâ†âÍ
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G = Ê/L

G = Ê

L

Hint = ≠~Gx̂â†â ∆ ≠dHint
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†âÍ
·c

= ~GÈâ†âÍ
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——————————————————————————————————————

H = ~Êc(x̂)â†â+ ~Êmb̂
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Figure 1.1: Bloch sphere. The Bloch sphere is used to illustrate a single qubit state
|Ψ〉= cos(θ/2) |0〉+ eiϕ sin(θ/2) |1〉.

spherical coordinates. Every point on the Bloch sphere represents a single qubit state.
The coherent superposition of the states |0〉 and |1〉 is given by θ and the relative
complex phase between them is given by ϕ.

Multiple qubits are described in a joint Hilbert spaceH =
⊗n

i=1Hi by the tensor
product of every single qubit Hilbert spaceHi . The resulting state

|Ψ〉=
n
∑

i=1

ci |i〉 (1.3)

is a 2n dimensional vector, where the condition
∑n

i=1 |ci|2 = 1 normalises the coeffi-
cients. The i in each basis state |i〉 is sometimes written in binary notation to see the
connection to each qubit.

One may think that infinite information can be encoded into a single qubit,
because there are infinite possibilities to choose the complex numbers α and β . This
is only partially true. Even if the information can be encoded arbitrarily, the decoding
does not work that easy. The state of a quantum system can only be determined after
performing a measurement on the system.

A measurement is related to a specific basis. Such a basis consists of two orthonor-
mal states in case of a single qubit, like |0〉 and |1〉 form the σz-basis along the z-axis.
The measurement projects the initial qubit state into one of the two orthonormal
basis states. This happens with the probability given by the square of the absolute
value of the corresponding complex amplitudes α and β .

A single shot measurement result is one of two eigenvalues connected to the
basis. The corresponding eigenvalues appear with probability |α|2 or |β |2. Therefore
only the states |0〉 or |1〉 can be concluded from the obtained eigenvalue after a single
shot measurement in the σz-basis. The amplitudes α and β are obtained to arbitrary
precision either by measuring a sufficiently large ensemble of qubits prepared in the
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1.2. QUANTUM COMPUTATION AND SIMULATION

same state or by repeatedly measuring a single qubit, that is prepared in the same
state again after the measurement.

1.2.3 Single Qubit Gates

A single qubit can take on one state out of infinite possible states, which are rep-
resented on the Bloch sphere. To transfer a state from one point on the sphere
to another one, infinite ways are possible. Consequently there exists an infinite
number of single qubit operations to control the state. In the language of quantum
computation, an operation that transfer the quantum state is called gate.

Mathematically single qubit gates are represented by unitary 2×2 matrices acting
on the two-dimensional single qubit state. Any arbitrary complex 2× 2 matrix can
be represented by a linear combination of the identity and the Pauli matrices:

σ0 =

�

1 0
0 1

�

σx =

�

0 1
1 0

�

σy =

�

0 −i
i 0

�

σz =

�

1 0
0 −1

�

(1.4)

Therefore the operation on a single qubit is represented by the operator

H =
1
2

h01+
1
2
(hxσx + hyσy + hzσz) =

1
2
~h~σ (1.5)

in the Pauli basis.
The coefficient h0 is neglected, because it leads to a constant energy shift for any

qubit state and thus it is physically irrelevant. As a result the arbitrary single qubit
operation is the scalar product between the normalised Pauli vector ~σ/2 and a real
three-dimensional vector ~h. One can rewrite ~h by a normal vector ~n multiplied by
the normalisation Ω to get

H =
1
2
Ω~n~σ (1.6)

in the static case.
The arbitrary single qubit gate results from solving the time dependent Schrödinger

equation considering the static operator (1.6). The resulting unitary

U(t) = e−i H
ħh t ⇔ R~n(Ωt) = cos

�

Ωt
2

�

1− i sin
�

Ωt
2

�

~n~σ (1.7)

is equivalent to a rotation R~n(Ωt) on the Bloch sphere1. The vector ~n defines the
rotation axis and Ωt the amount of rotation.

In the experiments in chapter 3 only two rotations are necessary to first charac-
terise the qubit and to investigate the qubit’s behaviour on a fast flux pulse afterwards.
The required rotations are performed in the xz-plane about the y-axis on the Bloch
sphere. As a consequence the rotation matrix

R y(Ωt) =

�

cos
�

Ωt
2

�

− sin
�

Ωt
2

�

sin
�

Ωt
2

�

cos
�

Ωt
2

�

�

(1.8)

1The equivalence is shown by splitting the exponential function’s Taylor series into even and odd

terms. Since the square of any Pauli matrix σiσ j = δi j1+ i
3
∑

k=1
εi jkσk, it follows that (~n~σ)2 = 1, where

δi j is the Kronecker delta and εi jk is the Levi-Civita symbol.
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CHAPTER 1. FROM CAVITY TO CIRCUIT QUANTUM ELECTRODYNAMICS

is simplified. If the argument Ωt = π, the rotation matrix R y(π) = σx and corre-
sponds to a spin flip in the σz-basis. This operation is called π-pulse. It is used for
instance to excite the qubit from the ground state |0〉 to the excited state |1〉. If the
argument Ωt = π/2, the rotation matrix R y(π/2) =

1p
2
(1− iσy). This operation is

called π/2-pulse. It is used for instance to bring the qubit from the ground state |0〉
to the superposition state 1p

2
(|0〉+ |1〉).

In case of more than one qubit, multiple qubit gates are needed to control the
interaction among each qubit. Multiple qubit gates are described by unitary 2n × 2n

matrices, where n is the number of related qubits. Again there are infinite possible
multi qubit gates, like there are infinite possible single qubit gates. Besides the
infinite number of possible qubit gates, specific algorithms only need a few relevant
gates. There even exist sets of gates that are universal, meaning that any qubit gate
can be approximated efficiently to arbitrary accuracy by a universal set of qubit gates.
An experimental realisation of a universal set of quantum gates is the key to perform
flexible quantum simulations or to even build a universal quantum computer one
day.
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1.3. CAVITY QED
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Èâ†âÍ

ÈF̂ Í = ~GÈâ†âÍ
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†âÍ
·c

= ~GÈâ†âÍ
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Èâ†âÍ

ÈF̂ Í = ~
Ê

L
Èâ†âÍ
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Figure 1.2: Sketch of a basic cavity QED system. Two mirrors (blue) form the cavity,
comprising a single cavity mode (red). The atom (white) inside the cavity is treated
as a two level system with a ground state |g〉 and an exited state |e〉. The cavity mode
and the atom are coupled and interact depending on the interaction rate or coupling
strength g. Losses appear in two ways. On the one hand cavity photons may leak
through the cavity with a rate κ and on the other hand the atom decays with a rate γ.

1.3 Cavity QED

The interaction between matter and light is described by the theory of quantum
electrodynamics (QED). This section gives a glimpse into a special but very important
case: the interaction between a single atom treated as a two level system and a
single electromagnetic field mode trapped inside a cavity. Enclosing a single atom
and photons in a cavity decouples them from the noisy outside world. Therefore it is
possible to have a very precise control on the quantum behaviour, making quantum
information processing feasible. The research field is called cavity QED due to the
system’s setup, depicted in figure 1.2. Cavity QED has opened a wide range of new
research fields that are still growing [5].

First theoretical analysis of cavity QED was done by Purcell [6]. He assumed a
single atom in a cavity with highly conductive walls. From this model he predicted
the Purcell effect, which states that the spontaneous emission rate of an atom is
enhanced by putting it into a resonant cavity. Soon more theoretical works to this
topic followed. One of them was published by Casimir, who calculated the force
between two conductive plates in free space [7]. The result is an attracting force
between the plates, known as Casimir force. The cause of this force is a higher mode
density because of vacuum fluctuations exterior the plates. Therefore a cavity isolates
an atom inside from the high mode density and noise in free space. An important
remark to the Purcell effect was published by Kleppner [8], where he predicted that
spontaneous decay of an atom inside a cavity can also be inhibited. This is the case
when the cavity is strongly off resonant with the atom’s transition frequency and the
mode density resonant with the atom is reduced.

All these proposed models lead to experiments where single Rydberg atoms inter-
act with single photons in a microwave cavity [9]. Since then the term cavity QED has
been used to describe physical systems like that. These systems made experiments
possible, where photons enclosed in a cavity are counted without destroying them.
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CHAPTER 1. FROM CAVITY TO CIRCUIT QUANTUM ELECTRODYNAMICS

From that, precise photon state preparation, control on single atoms and entangle-
ment between atoms and photons has been developed [5]. Soon these experiments
were achieved for atoms in the optical regime [10] and also for superconducting
circuits [11].

1.3.1 Hamilton Formalism Of Cavity QED

Cavity QED investigates the interaction between a single atom and a single mode
field in a cavity. Such a system is described by the Hamiltonian

Hac = ħhωca
†a+
ħhωa

2
σz +ħhg(σ+ +σ−)(a+ a†) (1.9)

in the linear regime. A clear derivation of this Hamiltonian is given in [12] or [13].
The first term models the cavity’s field mode by a quantised harmonic oscillator

with frequency ωc, where a† and a are the creation and annihilation operators,
respectively. The field modes inside a cavity are quantised spatially by the cavity’s
geometry. Therefore the cavity acts as a filter. Only single modes from an external
light source can enter with high probability feeding the cavity with photons.

The second term describes the atom as two-level system or qubit in the language
of a spin-1/2 particle. This approximation is valid, as the atom is driven on a single
transition between two of its states only. The two states are usually referred to as
|g〉 and |e〉 for the ground and excited state, respectively. The transition frequency
ωa is connected to the energy difference between the two states via ħh, the Planck
constant in units of 2π. Here the Pauli matrix σz = |e〉 〈e|− |g〉 〈g| describes the state
dependent energy shift.

The third term characterises the interaction between the atom and single photons
of the cavity mode. The coupling strength g determines the strength of the interaction.
The value of g is proportional to the field strength inside the cavity and the atoms
dipole moment. Higher order terms of the multipole expansion are neglected, since
the dipole moment between the atomic transition is by far the leading term. The
operators σ+ = |e〉 〈g| and σ− = |g〉 〈e| describe transitions between the atomic
states.

One thing to keep in mind is that the Hamiltonian (1.9) describes a perfect
systems without any losses. In a real experiment, however, losses arise. Cavity
photons are leaking out of the cavity at a rate κ and the atom decays at a rate γ.
These losses lead to decoherence and are the main part why it is difficult to control
quantum systems. Here the loss rates will be considered small with respect to the
coupling strength and thus are neglected.

In general the Hamiltonian (1.9) models the linear interaction between a har-
monic oscillator and a spin-1/2 particle. Therefore it is used to describe many other
physical systems like ions [14], quantum dots [15], nanomechanical systems [16]
and superconducting circuits [17].
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1.3. CAVITY QED

1.3.2 The Jaynes-Cummings Model

A special case of the Hamiltonian (1.9) is achieved when the detuning ∆ =ωc −ωa
between cavity frequency and atom transition frequency is close to zero. The terms
σ+a† and aσ− are then very unlikely to happen. These terms become highly off-
resonant transitions in the interaction picture and can be neglected due to energy
conservation in the rotating wave approximation. The result is the Jaynes-Cummings
Hamiltonian

HJC = ħhωca
†a+
ħhωa

2
σz +ħhg(σ+a+ a†σ−) . (1.10)

In this regime, where ∆ ≈ 0, the cavity is resonant with the atom transition
frequency. Cavity photons and the atom form a joint state out of a family of states, that
follow from diagonalising the Jaynes-Cummings Hamiltonian (1.10). The resulting
eigenstates and eigenvalues are the so called dressed states and dressed eigenvalues

|±, n〉=
1
p

2
(|g, n+ 1〉 ± |e, n〉) (1.11)

E±,n = ħhωc

�

n+
1
2

�

± 2ħhg
p

n+ 1 (1.12)

for ∆= 0.
The system is in the so called resonant regime for ∆� g. If the coupling strength

g is sufficiently large, meaning larger than the loss rates κ and γ, the cavity photons
and the atom can freely exchange energy. In the resonant regime the atom may
absorb a photon and emit it back to the cavity, performing vacuum Rabi oscillations.
Therefore g is a measure for the interaction rate between the atom and the cavity
photons before losses prevail.

1.3.3 Dispersive Read-Out

In the case of ∆� g the cavity QED system is in the dispersive regime, where the
cavity state and the atom state show only weak properties of a dressed state and
thus are considered separately. Due to the strong detuning and the relatively small
coupling strength, the atom does actually not absorb or emit a cavity photon. The
Jaynes-Cummings Hamiltonian is approximated by the dispersive Hamiltonian

Hdisp = ħhωca
†a+
ħhωa

2
σz +ħh

g2

∆

�

a†a+
1
2

�

σz (1.13)

in this regime.
The approximation is found by first applying a unitary transformation U = eη to

the Jaynes-Cummings Hamiltonian. Then the Baker-Campbell-Hausdorff formula
[18] is used to expand the transformed Hamiltonian to second order. After that, η is
chosen such that first order terms in the expansion drop out. First order terms have
to drop out, because they do not add any energy shift. This can be easily seen by
applying time independent first order perturbation theory to the interaction term.

Equation (1.13) is simplified and rewritten to

Hdisp = ħhωca
†a+ħhω̃aσz +ħhχσza†a (1.14)
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Figure 1.3: Dispersive read-out scheme. In a) the transmission of the pure cavity
is sketched. Adding a two-level atom to the cavity shifts the transmission peak in
the dispersive limit depending on the qubit’s state as sketched in b). The red peak
presents the transmission when the qubit is in the ground state and the blue peak is
referred to the excited state. For the dispersive read-out the transmission at ωc +χ
is measured. According to the purple dots the transmission decreases, if the qubit is
in the excited state following the purple arrow.

by introducing the dispersive frequency shift χ = g2

∆ and the effective atom transition
frequency ω̃a = (ωa +χ)/2. The third term again considers the interaction between
atom and cavity. Now however, it is called dispersive energy shift and depends on
the atom’s state and the photon number in the cavity.

The dispersive regime allows one to perform measurements on the atom’s state
or the cavity photon number by preserving the measured state. This kind of measure-
ment is called quantum non demolition (QND) measurement. If the interest is in the
atom’s state, the cavity’s transmission at a particular frequency has to be measured.
The dispersive Hamiltonian

Hdisp = ħh (ωc +χσz) a
†a+ħhω̃aσz (1.15)

shows in this form a frequency shift for the cavity depending on the atom’s state, see
figure 1.3. To access a high measurement resolution, χ ≈ κ and γ� κ,χ has to be
valid.

The dispersive Hamiltonian (1.15) is essential for quantum computation. It
provides a read-out scheme for the atom or qubit. As said before, starting from
equation (1.9) all derivations done so far are valid for all kind of systems where a
harmonic oscillator interacts with a spin-1/2 particle. Therefore it can be applied to
a superconducting qubits coupled to a coherent microwave field mode as explained
in the next section.
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Èâ†âÍ
·c

ÈF̂ Í = |�p|Èâ
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†âÍ
·c

ÈF̂ Í = |�p|Èâ
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·c = 2L/c

ÈF̂ Í = 2~Ê

c

Èâ†âÍ
·c

= ~
Ê

L
Èâ†âÍ
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Figure 1.4: Sketch of a Josephson junction. The grey areas symbolise supercon-
ducting islands that are separated by an insulator represented as blue area. In each
superconducting island Cooper pairs are described by a joint quantum state |Ψ1〉 and
|Ψ2〉 respectively.

1.4 Circuit QED

Another way to realise a physical setup like in cavity QED is offered by circuit QED. In
circuit QED superconducting quantum circuits are interacting with the single modes
of a microwave resonator. Superconducting quantum circuits can be designed in
different ways to perform various tasks. They act as resonators, nanomechanical
systems [19] or qubits [17]. Here the focus is on the interaction between a single
superconducting qubit and photons in a microwave cavity at some GHz.

The essential element of superconducting quantum circuits to get into the quan-
tum regime is the Josephson junction. A Josephson junction is a nanoscale insulator
between two superconducting islands, illustrated in figure 1.4. In a superconducting
island all Cooper pairs form a joint quantum state

|Ψ〉=
p

neiφ̃ (1.16)

where n is the density of Cooper pairs and φ̃ the wavefunction’s phase. Whenever a
Cooper pair tunnels from one island through the junction to the other, the state in
each island is changed.

This was first theoretically predicted by Brian D. Josephson and is now known as
the Josephson effect [20]. The Josephson effect is summarised in two equations

I = Ic sin(φ) (1.17)

∂ φ

∂ t
=

2π
Φ0

U (1.18)

which are referred to as the first and the second Josephson equation respectively.
Here I and U are the current and voltage across the junction, Ic is the junction’s
critical current and Φ0 is the flux quantum. The current and voltage are connected
via the relative phase φ between the two wavefunctions in each superconductor.

The importance of the Josephson junction comes from the fact, that it is the
only known non-dissipative and non-dephasing element for circuits that provides
non-linearity [21]. This non-linearity is essential to define a qubit, whereas the other
properties guarantee its stability.

A Cooper pair may tunnel through the junction because of some external exci-
tation. Therefore a charge difference between the islands and a phase difference
between the wavefunction in each island appear. The charge difference causes a
capacitive energy going linearly with the charge difference. The phase difference
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Èâ†âÍ
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†âÍ
·c

1

Figure 1.5: Potential energy and circuit representation of an LC-circuit in a) and a
transmon in b). The LC-circuit on the left side behaves like a harmonic oscillator with
a quadratic potential. Therefore the quantised energy steps are separated by ħhωr
equidistantly. The capacitively shunted Josephson junction on the right side has two
equivalent circuit representations. The cross symbolises the non-linear inductance
and the cross in the box represents the total junction including the capacitance. The
potential energy of a transmon is periodic and has a cosine shape. Therefore the
quantised energy steps are not equidistant. A transmon can be used to define a
two-level system with a transition frequency ωq between its lowest states.

causes an inductive energy that is proportional to the cosine of the phase difference.
Those properties are similar to an LC-circuit, where also a capacitive and an inductive
part are combined. However, there is an essential difference.

The capacitor and inductance in an LC-circuit are linear elements. Thus it be-
haves as a harmonic oscillator at a resonance frequency ωr =

1p
Lr Cr

given by the

capacitance Cr and inductance Lr of the circuit. A Josephson junction is described
by a linear capacitance CJ and a non-linear inductance LJ . Because of the non-linear
inductance the junction is used to built an anharmonic oscillator that can be used
as two-level system, qubit or artificial atom. Adding a shunt capacitance Cs to the
junction fixes charge dispersion and thus stabilises the anharmonic oscillator. This
configuration is known as transmon [22]. Figure 1.5 shows the circuit representation
of both, an LC-circuit and a transmon.

Circuit QED investigates the interaction between superconducting circuits. In
the following, two circuits as depicted in figure 1.5 are investigated separately and
connected afterwards. First, the three-dimensional microwave cavity is presented as
a harmonic oscillator and mathematically described as an LC-circuit. Second, the
transmon qubit in general and its flux sensitive version is introduced. Finally, the
transmon is coupled to a microwave cavity and their interaction is shown to be the
same as in the cavity QED system discussed before.
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1.4.1 Microwave Cavities

In general a microwave cavity can be designed in various forms. For example there
are transmission line, coplanar waveguide or three-dimensional microwave cavities.
All cavities have the same mathematical description and can be modelled by LC-
circuits with a resonance frequency in the GHz regime. The cavity’s task is to provide
an environment that shields a superconducting qubit from noise and to enable state
control and state read-out on the qubit. This section focuses on the properties of a
three-dimensional cavity architecture.

Geometry Aspects

A three-dimensional cavity has an inner volume V = abd. It forms a rectangular
microwave resonator, where a, b and d are its dimensions. Microwaves are sent into
the cavity for qubit excitation and read-out. Depending on the cavity’s inner volume
only particular frequencies

fmnl =
c
2

√

√

√

�m
a

�2
+
�n

b

�2
+
�

l
d

�2

(1.19)

are able to enter the cavity without being heavily attenuated [23]. Here c is the speed
of light in vacuum. The integers m, n and l number the anti-nodes of the standing
electric field inside the cavity along the x-, y- and z-axis respectively.

Usually one of the cavity’s fundamental mode is used for read-out. A fundamental
mode has one of the integers m, n or l set to zero, the other two are set to one in case
of a rectangular resonator. The cavity is designed such, that the lowest fundamental
mode’s frequency fr = 2πωr is in the range of some GHz and higher modes are far
away from that frequency.

One of the inner cavity dimensions can be set close to zero, because the field is
constant along the third. Those two dimensions control the frequency according to
equation (1.19). The negligible dimension has to be the dimension that points along
the qubit’s dipole axis. In other words the cavity’s inner surface that is perpendicular
to the qubit’s dipole axis has to be the largest of the rectangular resonator. If this is
not the case, the fundamental mode’s electric field and the qubit’s dipole moment
are orthogonal. The discussed aspects are represented in figure 1.6.

In principal the two dimensions of the relevant surface are allowed to have
different lengths. One has to consider that if one dimension is smaller than c

2 fr
, the

fundamental frequency is pushed to high. In this case the other dimension cannot be
large enough to compensate the short length of the first dimension. An imbalance in
the dimensions has one disadvantage. Higher modes appear at frequencies close to
the fundamental mode. This should be avoided, because these unwanted frequencies
could interact additionally with the qubit and lead to decoherence or excite it to
higher states [24]. The best way to push the frequencies of higher modes up is to
use similar dimensions for both sides.
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Figure 1.6: Electric field in a rectangular waveguide cavity. A cavity with dimensions
a, b and d is represented in a). The qubit is fabricated on a chip (blue). It couples
to the TE110 mode (red). In b) the electric field distribution of the TE110 mode is
illustrated, resulting from a numerical calculation. The field amplitude is maximal
(red) in the center of the cavity. It decreases cosine-shaped leaving the centre and
vanishes at the cavity walls.

Manufacturing Aspects

The field in a microwave cavity has an electric and a magnetic component. Whenever
the electric component is at its maximum, the magnetic component is zero and vice
versa. The field inside the cavity induces currents in the cavity walls. These currents
oscillate at the same frequency as the microwave field, keeping the field inside alive.
As soon as the currents dissipate the mode vanishes. Therefore material of high
conductivity like OFHC copper or superconductors like ultra pure aluminium is used
to keep the currents oscillating in the cavity walls for long times.

A cavity of high internal quality factor is required to prevent the currents from
dissipating. The internal quality factor

Q i =
Ptot

Pdis
(1.20)

is a measure for the ratio of total power that is put into the cavity and the dissipated
power from the cavity. Cavities made out of ultra pure aluminium reach inner quality
factors above 106, where cavities made out of OFHC copper have internal quality
factors in the order of 104. OFHC copper cavities that are electroplated with indium
have a higher internal quality factor than the ultra pure aluminium cavities [25] in the
same order of magnitude. The best quality factors are achieved in special cylindrical
resonators [26]. These resonators do not have any single seam in the cavity walls,
which is the main reason for dissipation in a three dimensional resonator.

Rectangular waveguide resonators are manufactured having at least one seam.
The usual process is to cut one solid block of metal into two pieces and mill a half
cavity into each of them. Both milled blocks are then put together to form the actual
microwave cavity. Therefore at least one seam is unavoidable to get a cavity inside
a solid block of metal. The seam causes dissipation, but when placing it right and
enclosing it with indium the dissipation becomes negligible.
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Figure 1.7: In a) the current density ~J (yellow) oscillates on the inner cavity walls
and keeps the electromagnetic field, ~E (red) and ~B (blue), inside the cavity alive.
Cutting the cavity along the x-y-plane suppresses the essential current flow along the
z-axis, which is illustrated by the red plane in b). The current density on the inner
cavity walls is disturbed least by cutting the cavity along one of the green planes. In
c) an actual cavity made out of aluminium is shown.

In [25] this problem is investigated to realise multilayer quantum circuits. They
show that the cavity is allowed only to be cut such, that the induced currents in the
cavity walls do not have to cross the seam. This is illustrated in figures 1.7 a) and
b). A cut along any other direction leads to a dissipation of currents and thus to a
decrease in the cavity’s quality factor, especially when no indium is used to close the
seam.

Quantisation

The oscillating currents in the cavity walls act the same as in an LC-circuit, where
the charge difference Q in a capacitor interchanges with the magnetic flux Φ in an
inductance. Therefore a single mode in the cavity is modelled by an LC-circuit with
resonance frequency ωc =

1p
LC

. The total energy of an LC-circuit is given by the
Hamiltonian

Hc =
Φ2

2L
+

Q2

2C
, (1.21)
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Cs

CJ ,LJ

Cs
CJ1 ,LJ1 CJ2 ,LJ2

Φext 

a) b)

Figure 1.8: Circuit representation of a transmon in a) and a SQUID based transmon
in b). The transmon is represented by a Josephson junction and a large shunt
capacitance in parallel. Adding a second Jospehson junction in parallel to the first
junction results in the SQUID based transmon. The SQUID based transmon is sensitive
to an external magnetic flux Φex t through the enclosed area (green).

where the first term indicates the inductive and the second term the capacitive energy.
One defines the canonical conjugated operators

Φ̂= i

√

√ħhLωc

2
(â− â†) and Q̂ =

√

√ħhCωc

2
(â+ â†) (1.22)

which satisfy the quantisation relation [Q̂, Φ̂†] = iħh due to [â, â†] = 1. Inserting the
operators Φ̂ and Q̂ into the Hamiltonian (1.21) gives

Hc = ħhωc

�

â†â+
1
2

�

(1.23)

the quantised Hamiltonian for an LC-circuit or microwave cavity.

1.4.2 The Transmon Qubit

The transmon consists out of two superconducting islands separated by a Josephson
junction. The superconducting islands are designed such that the capacitive energy
of the circuit is lowered. In a circuit representation, depicted in figure 1.8, a large
shunt capacitance Cs is added next to the Josephson junction. As a result the total
capacitance is given by CΣ = CJ + Cs. The enhanced capacitance stabilises charge
fluctuations and therefore increases the qubits coherence time.

Another version of the transmon has two Josephson junctions in parallel and
forms a closed loop. A superconducting loop separated by two Josephson junctions is
known as superconducting quantum interference device (SQUID). The SQUID based
transmon design is sensitive to the flux that penetrates the loop. As a result the
qubit’s transition frequency becomes tunable by an external applied magnetic field.

Next the transmon is quantised. The results are then used to calculate the
properties of a SQUID based transmon.
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Quantisation

The transmon has a linear capacitive energy part and a non-linear inductive part.
The sum of both gives the Hamiltonian

Hq =
Q2

2CΣ
− EJ cos (φ) , (1.24)

where E j is the Josephson energy.
The transmon is an anharmonic oscillator and acts as a qubit when it is driven

on its two lowest states only. As a consequence the cosine may be approximated for
small phase differences. A Taylor series up to forth order yields

Hq ≈
Q2

2CΣ
− EJ +

EJ

2
φ2 −

EJ

24
φ4 (1.25)

such that the non-linear behaviour is still included in the last term. The first three
terms approximate the cosine as a parabola, which describes a harmonic oscillator
with a constant energy shift. The constant energy shift is neglected, because energy
differences are measured.

Since the phase difference φ is connected to the flux variable Φ via φ = 2πΦ
Φ0

, the

same operators Q̂ and Φ̂ from equation (1.22) are used to quantise the Hamiltonian.

The only modification is that a different capacitance CΣ and inductance LJ =
1
EJ

�

Φ0
2π

�2

are introduced and the creation and annihilation operators are rewritten. Naturally
this leads to a different resonance frequency ω0 =

1p
LJ CΣ

for the quadratic terms.

After inserting and rewriting the Hamiltonian (1.25) one obtains

Ĥq ≈ ħhω0 b̂† b̂−
e2

24CΣ

�

b̂− b̂†
�4

. (1.26)

The last term is treated as capacitive energy that adds anharmonicity to the harmonic
potential. One introduces the capacitive energy EC =

e2

2CΣ
and finds

(b̂− b̂†)4 ≈ 12
�

1
2
(b̂† b̂)2 + b̂† b̂

�

by applying first order perturbation theory2 and using the commutation relation
[b̂, b̂†] = 1. The resulting Hamiltonian

Ĥq ≈ ħhω0 b̂† b̂−
EC

2

�

b̂† b̂
�2
− EC b̂† b̂ (1.27)

introduces an energy shift ħhωq = ħhω0 − EC .

2Expanding (b̂− b̂†)4 gives terms with a different number of b̂ and b̂† that are multiplied with each
other. Only terms with the same number of b̂ and b̂† stay in first order perturbation theory due to
energy conservation.
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Next the number operator b̂† b̂ is replaced by the Pauli operator σz = |e〉 〈e| −
|g〉 〈g|, because the transmon is driven only on its lowest two levels. Finally the
Hamiltonian

Ĥq =
ħhωq

2
σz (1.28)

is found and describes the transmon as two level system.
The qubit’s transition frequency is typically at some GHz. For the used quit in

the final experiment ωq = 3,931 GHz is measured at the high frequency sweet spot.
The anharmonicity is given by the capacitive energy and is typically few hundreds of
MHz. The used qubit has an anharmonicity EC/ħh≈ 300 MHz.

SQUID Based Transmon

The SQUID based transmon is a superconducting loop with two Josephson junctions
as depicted in figure 1.8 (b). Again it has a large shunt capacitance to avoid charge
noise, which distinguishes it as transmon. The Hamiltonian is

H =
Q2

2CΣ
− EJ1 cos(φ1)− EJ2 cos(φ2) (1.29)

Next one defines the phase difference φ = φ1 −φ2 = 2πn+ 2πΦex t/Φ0, where n is
an integer. The phase difference is related to an external applied flux Φex t through
the loop. The effective phase difference ϕ = (φ1 +φ2)/2 and the total Josephson
energy EJΣ = EJ1 + EJ2 are defined. A trigonometric transformation leads to

H =
Q2

2CΣ
− EJΣ

�

cos
�

π
Φex t

Φ0

�

cos(ϕ) + d sin
�

π
Φex t

Φ0

�

sin(ϕ)
�

, (1.30)

where d = (EJ2− EJ1)/(EJ1+ EJ2) is the SQUID’s asymmetry parameter. One defines
the constant phase shift tan(φ0) = d tan(πΦex t

Φ0
) and finds

H =
Q2

2CΣ
− EJΣ cos

�

π
Φex t

Φ0

�

√

√

1+ d2 tan
�

π
Φex t

Φ0

�

cos(φ −φ0) (1.31)

The form of this Hamiltonian is the same as in equation (1.24). The only difference
is that the effective Josephson energy

EJ = EJΣ cos
�

π
Φex t

Φ0

�

√

√

1+ d2 tan
�

π
Φex t

Φ0

�

(1.32)

of the transmon is now tunable. As a result the transmon’s transition frequency is
tunable by an external magnetic field. The phase φ0 ∈ [−π/2,π/2] only appears for
an asymmetric junctions. It can be eliminated for a constant magnetic flux by a shift
of variables. Quantisation then is the same as for a single junction transmon. In case
of a time variable magnetic field the phase φ0 offers an additional qubit control. The
additional control leads to an additional qubit decay channel [22].
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LrCr

Cc

Cs CJ ,LJ

Figure 1.9: Circuit representation of the coupling between a transmon and a cavity.
The cavity represented by an LC-circuit is capacitively coupled to the transmon.

1.4.3 Coupling A Transmon To A Cavity

To read-out the state of a transmon qubit one needs to couple it to a coherent
microwave field in a cavity. As a consequence the system’s Hamiltonian consists out
of three parts like in the previously discussed cavity QED system. First, the microwave
field is described as a single mode harmonic oscillator, see equation (1.23). Second,
the transmon qubit acts the same as a spin-1/2 particle when it is driven on its lowest
two levels, see equation (1.28). Finally, one has to consider the dipole interaction
between the microwave field and the transmon. Adding all three parts together leads
to the same mathematical description as in cavity QED. Therefore all Hamiltonians
derived in section 1.3 are valid and QND measurements on the transmon are possible
due to the dispersive Hamiltonian.

Figure 1.9 shows the coupling between a transmon and an LC-circuit in a circuit
representation. The coupling constant

g =
2βeV0

ħh
(1.33)

depends on the ratio β = Cc/CΣ between the coupling capacitance and the total

capacitance CΣ = CJ +Cs+Cc [22]. Of course the gate voltage V0 =
r

ħhωr
2Cr

is relevant
for the coupling constant too.

Remarkably, all parameters in circuit QED can be designed more or less arbitrarily.
Therefore high coupling strengths between cavity and qubit are possible, which is
necessary for high contrast in the dispersive read-out.
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1.5 Summary

The theoretical concepts of realising and controlling an artificial quantum bit have
been shown. A Josephson junction, which is a tiny insulating gap between two
superconducting islands, provides the required non-linearity to define a two-level
system. Adding a large shunt capacitance in parallel to the Josephson junction
enhances the stability of the two-level system. This configuration is then known as
transmon. The transmon is expanded to the SQUID based transmon by adding a
second Josephson junction in parallel. In this configuration the transition frequency
is sensitive to the magnetic flux through the formed loop.

The transmon’s state can be read-out by coupling it to a coherent microwave
field. Therefore the transmon is enclosed into a microwave cavity, which is required
because of two main reasons. On the one hand the cavity shields the transmon from
noise and enhances the qubit’s lifetime due to the Purcell effect. On the other hand
the cavity makes dispersive read-out of the transmon’s state possible.

The dispersive read-out is essential for a QND measurement. Originally the idea
of a QND measurement comes from cavity QED experiments with Rydberg atoms.
Due to the same physics the mathematics derived in section 1.3 is directly applied
to circuit QED. All this effort of building and investigating circuit QED systems is
motivated by performing quantum simulations in the next decade and realising a
quantum computer in the future.

Experiments with superconducting qubits have been developed a lot since their
start in the eighties [27]. The research on circuit QED systems has spread into many
different directions, where a lot of problems have to be investigated and solved
experimentally. One thing to solve is the fast flux control of SQUID based transmons
in a three dimensional cavity architecture. There the main issue is to switch on
a magnetic field next to a transmon, without decreasing its coherence time. The
problem of getting a magnetic field inside the cavity is discussed in the following
chapter.
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Chapter 2

The Magnetic Field’s Guide To The
Cavity

2.1 Overview

This chapter shows how to guide a magnetic field into a conductive box. The magnetic
field is used to control a SQUID based qubit, which is placed in the centre of the
box. The box acts as a microwave resonator, which is referred to as cavity. The cavity
has to be highly conductive to reach long qubit coherence times. Now the goal is to
switch a constant magnetic field inside such a cavity on and off immediately to have
fast control of the qubit frequency. This task, however, comes with some issues.

In the case of a standard design for a superconducting aluminium cavity, it is not
possible to get any magnetic field from outside into the cavity due to the Meissner
effect. Another option is to use a highly conductive but not superconducting material
for building the cavity, like oxigen free highly conductive (OFHC) copper. Copper
has a relative permeability close to one, which makes it practically not magnetisable.
A magnetic field applied from outside can therefore penetrate the copper cavity
completely without being deflected. But this is only valid for static or slowly changing
magnetic fields below 1 kHz. In the case of fast changes above some kHz the field is
attenuated strongly. The cause of the attenuation is the appearance of eddy currents
trying to oppose the magnetic field change due to Faraday’s law. The attenuation
increases with higher frequencies dramatically. Above 100 kHz the magnetic field is
attenuated by more than a factor of one thousand and it practically cannot penetrate
the copper cavity any more.

There are two obvious options to circumvent these issues. First one could put a
magnetic source inside the cavity close to the qubit. Such kind of solution is offered
by flux bias lines [28]. Flux bias lines are a good solution for two-dimensional
architectures and can be easily implemented as part of a coplanar resonator. In the
case of a three-dimensional architecture it decreases the qubit lifetime, as it disturbs
the cavity mode and acts as an additional port through which the cavity field can
decay. Despite the capacitive coupling between the flux bias line and the qubit, the
qubit decay can be prevented by filtering. However, since filtering is complex in this
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case and never perfect, flux bias lines may not be an optimal solution. The second
option is to put the magnetic source outside the copper cavity and try to compensate
the effect of eddy currents. The compensation methods include cutting the cavity or
applying very high currents. These solutions are not viable in this experiment.

Besides these two options, a third one is introduced in this chapter. A hose for
magnetic fields is built to guide a magnetic field from the outside to the inside of
a cavity. Based on the theory of transformation optics, a magnetic hose was first
developed by [29] for static fields. A tiny topological change in the setup of the hose
allows high frequency fields to pass through. As a result it can then be used to guide
a high frequency magnetic field through a conductive wall or to send fast flux pulses
from the outside of a cavity to a qubit inside.

Before introducing the magnetic hose, the chapter starts with detailing the gener-
ation of magnetic fields in general. Experimental aspects are taken into account step
by step, leading to first limits in the realisation of fast flux pulses. The effect of eddy
currents is investigated next. A theoretical model and measurements of the effect
are discussed. The measurement results point out, that fast flux control of a qubit
inside a cavity is not possible by simply putting a magnetic source outside the cavity.
Finally the magnetic hose is introduced. The theory behind it is explained and first
measurements are presented.
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C1

Figure 2.1: Conceptual flux bias line setup for fast flux control on a qubit. A SQUID
based qubit is placed in the centre of a cavity. Next to the qubit a U-shaped wire is
placed. This wire is a so called flux bias line. Switching on a current through the flux
bias line generates a magnetic field. The field controls the magnetic flux through the
qubit and thus the qubit’s transition frequency.

2.2 Generating Magnetic Fields

The observation of a magnetic field is a pure relativistic effect. Any charged particle
moving along a reference frame generates a magnetic field. In the final experiment
described in this thesis a static magnetic field has to be switched on and off immedi-
ately. Therefore the generation of a static magnetic field is explained first, then the
difficulties in switching it on and off immediately are discussed.

To produce the static magnetic field one needs a constant current of charged
particles. The easiest way to realise this is to apply a constant voltage between two
wire ends. As a result a constant current of electrons flows through the wire leading
to a static magnetic field. Since the wire is in total neutral no electric fields appear.
The wire is then put next to the qubit. Whenever a magnetic field is needed, the
current through the wire is switched on. Figure 2.1 illustrates the idea in case of a
flux bias line next to a SQUID based qubit enclosed by a cavity.

2.2.1 The Biot-Savart Law

The magnetostatic case is well described by Biot-Savart’s law ([30] chapter 5.2).
This law considers a given current density ~J in a Volume V . The current density
can have different values at different points ~x ′ in this volume, but it has to be
constant in time to be described by Biot-Savart’s law. Any infinite small current
density element acts as a magnetic field source. One has to notice, that the magnetic
field at a point ~x decreases with increasing distance d = |~x − ~x ′| from the source.
The decrease is proportional to 1/d2 in case of an infinitely small current density
element. Integration along a given current density can then lead to specific solutions.
Therefore the decrease depends strongly on the total current density’s geometry. This
is pointed out in figure 2.2. A magnetic field is a circular field perpendicular to the
current flow. For this reason the cross product is part of Biot-Savart’s law. Finally the
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Figure 2.2: Comparison between different magnetic field source geometries. The
compared geometries are sketched in figure a) to d). All geometries lie in the
x y-plane and the field strength along the z-axis (red dot) is investigated. Figure
(A) illustrates the magnetic field decrease along the distance z for a circular loop
B(z) = µ0 I

2
r2

(r2+z2)3/2 (blue), a square loop B(z) = µ0 I
π

4a2

(a2+4z2)
p

2a2+4z2
(green), a finite

long rod B(z) = µ0 I
2πz

lp
l2+4z2

(red) and an infinite long rod B(z) = µ0 I
2πz (orange). The

current through each geometry is set to I = 2/µ0 to be normalised with respect to
the circular loop. Geometry values are set to r = 1, a = 2, l = 2 for fair comparison.
In the limit of large distance the loop geometries behave like a dipole with the
characteristic 1/z3 drop. Figure (B) illustrates the magnetic field decrease along
z for circular loops of different radius. Again the current through each loop is set
to I = 2/µ0 to be normalised with respect to the loop with radius r = 1 (blue).
Increasing the radius flattens out the magnetic field curve.
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corresponding magnetic field in a specific point ~x is given by

~B(~x) =
µ0

4π

∫

V

~J(x ′)×
~x − ~x ′

|~x − ~x ′|3
d3 x ′ , (2.1)

where the magnetic constant is defined as µ0 = 4π · 10−7.
In the experiments a wire of constant diameter is used to guide the current.

Therefore two simplifications can be done. First the current density per wire length
is assumed to be constant. In this case the current density is equal to a constant
current I per wire length l and one can write J = I/l. Second the current is confined
to the conductor and thus to a specific path in space. As a result the magnetic field
at a specific point depends only on the amount of current through the wire and the
wire geometry. Biot-Savart’s law (2.1) is then simplified to

~B(~x) =
Iµ0

4π

∫

l
d~l ×

~x − ~x ′

|~x − ~x ′|3
. (2.2)

The integration is along all infinitely small wire parts d~l, where each is placed
at a point ~x ′ in space. From this equation two important statements should be
remembered:

• The magnetic field is direct proportional to the applied current through the
wire. This makes magnetic fields easy to tune, in theory arbitrary values are
possible.

• The magnetic field decreases with growing distance to the source. This decrease
is in general given by the integral part of equation (2.2) and therefore depends
on the path the wire takes in space, see figure 2.2.

2.2.2 General Fast Flux Limits

Biot-Savart’s law is valid in the static case. It is used to calculate the magnetic field
generated by a constant current through a given wire geometry. Here the interest
is in switching a constant magnetic field on and off immediately to realise fast flux
control on a qubit. Switching a magnetic field on and off means to switch a current
through a given wire geometry on and off. To provide the required current, the wire
is connected to a power supply and forms a closed circuit. The circuit is modelled
by an RL-circuit, as depicted in figure 2.3. The resistance results from the finite
conductivity of the wire and the inductance results form the wire’s geometry. A
capacitive part is neglected, as it plays only a minor role here. The switch-on process
of an RL-circuit is investigated next.

When switching on a constant current through an inductance, the current does
not jump instantly to its proposed value. This is due to Faraday’s law. The switched
on current generates a magnetic field and therefore a magnetic flux through the
inductance. Any change of magnetic flux induces an electric field in the inductance.
The induced field powers a current that tries to compensate the change in flux by
building up a counteracting magnetic field. As a result the instantly switched on
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L

R IVR

V0

Figure 2.3: Powered RL-circuit. The
current I in the circuit depends on the
voltage source and the resistance R
only in the static case. The inductance
L comes into play if V0 changes in time,
as in a switch-on process.

E(t)

B(t)
n

Figure 2.4: Faraday’s law. A time vari-
ant magnetic field ~B(t) passes the area
of a closed conducting loop and in-
duces an electric field ~E(t) along the
loop. The area is orientated normal to
~n.

current will ramp up in a finite time. This ramp up is characterised by a time constant
τ= L/R. The time constant depends on the inductance’s self-inductance L and the
resistance R of the circuit. In the experiment it is required to have a low time constant
to make fast switching possible.

The well known differential equation for the RL-circuit can be derived from
Faraday’s law1 ([30] chapter 5.15):

∮

C

~Ed~l = −
d
d t

∫

S

~B~nda (2.3)

Faraday’s law states, that an electric field ~E along a closed circuit C is induced,
whenever the magnetic flux through the surface S spanned by the closed circuit
changes in time. The integral on the right hand side is defined as magnetic flux

Φ=

∫

S

~B~nda (2.4)

through S. Here ~n is the normal vector perpendicular to S. The situation is shown
in figure 2.4 for a single loop. Basically a change of flux is related to a change of
magnetic field or a change of the surface in time. In general the surface S is equal
to the surface spanned by the circuit C . Parts of the circuit are usually shielded or
the flux through them is negligibly small. Therefore in most cases the only relevant
surface in the circuit is the inductance’s surface. This assumption is part of the
following calculations.

1Setting right hand side of equation (2.3) equal zero gives Ohm’s law. Ohm’s law is just a special
case of Faraday’s law.
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If the area A of the inductance is invariant in time, the right hand side of equation
(2.3) simplifies to

−
d
d t

∫

S

~B~nda = −A
dB~n
d t

, (2.5)

where B~n is the magnetic field component parallel to ~n at the inductance’s position.
Now one can insert equation (2.2) for the magnetic field in equation (2.5). Since the
path of the wire is fixed, only the current through the inductance depends on time.
Therefore

−A
dB~n
d t
= −A

µ0

4π
G~n

dI
d t

, (2.6)

where G~n is a geometric factor. This factor equals the integral in equation (2.2) scalar
multiplied with ~n and evaluated at the inductance’s position. All factors in front of
the time derivative are constant. Together they define the self-inductance2 L of the
inductance and one rewrites

−
d
d t

∫

S

~B~nda = L
d I
d t

. (2.7)

The self-inductance always has a positive value. The minus sign vanishes, because ~n
points in a direction opposite to the magnetic field in case of self-induction3.

The left hand side describes the electric field along the circuit. Any voltage drop is
added up, like in Ohm’s law. The difference of the voltage source V0 and the voltage
along the wire’s resistance VR are the only relevant parts, such that

∮

C

~Ed~l = V0 − VR . (2.8)

Putting left and right hand side together gives

V0 − VR = L
d I
d t

⇐⇒ V0 = RI + L
d I
d t

. (2.9)

To solve this differential equation an initial condition is needed. At t = 0 the
voltage source is switched on to a specific value V0 instantly. The instant voltage
change leads to an instant current change in the circuit. The instant current change
leads to an instant flux change through the inductance. Due to Faraday’s law a
counteracting voltage is induced. As a result there is no effective current in the circuit
at t = 0. Therefore the initial condition is I(0) = 0 and

I(t) =
V0

R

�

1− e−
R
L t
�

Θ(t) (2.10)

2The self-inductance L is defined as

L =
µ0

4πI2

∫

d3 x

∫

d3 x ′
~J(~x)~J( ~x ′)
|~x − ~x ′|

following [30] chapter 5.17.
3The closed integral along the electric field and the closed integral along the current through the

wire have opposite direction, meaning opposite signs. The normal vector ~n is orientated corresponding
the integration direction of the induced electric field. As a result it is anti-parallel to the self-induced
magnetic field.
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Figure 2.5: Process of switching on an RL-circuit. The current is normalised. The
time is given in units of the time constant.

solves the differential equation. Here Θ(t) is the Heaviside function. It describes the
process of switching on the constant voltage source. In case of a current source one
writes V0/R= I0, where I0 is the constant current output.

Equation (2.10) describes the behaviour of the current in the RL-circuit if a
voltage source is switched on instantly. This behaviour is shown graphically in figure
2.5. The current cannot jump immediately to its proposed value. The time it takes
to reach the final value is given in units of the time constant τ= L/R. After 5τ the
current reaches more than 99 % of its proposed value. Therefore the key for fast
switching is a small time constant.

The time constant can be reduced in two ways. First one can add resistance to
the circuit in series, second one can reduce the inductance. However, both options
have disadvantages. In case of a finite voltage source additional resistance lowers
the maximum current. Raising the resistance adds noise to the signal. Reducing
the inductance is related to reducing the generated magnetic field. It is therefore
essential to find a suitable balance between resistance and inductance.

2.2.3 Specific Fast Flux Requirements In The Experiment

In the experiment a few limits have to be taken into account. First the magnetic
flux through the qubit has to reach at least one flux quantum Φ0 for full tunability.
Second there is a given distance between the magnetic field source and the qubit.
This limit leads to a specific wire geometry for the magnetic source. Next the voltage
source that powers the magnetic field source has a maximum output power. Finally
the magnetic source’s time constant has to be below 10 ns. Combining all of those
requirements gives the relevant parameter range to design the final setup.
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C1

Figure 2.6: Schematic setup. A coil is placed outside a copper cavity. The generated
magnetic field is used for qubit control.

Minimal Needed Magnetic Field

The field strength has to be chosen such, that a SQUID based qubit can be tuned
over its full frequency range. Therefore the field has to be strong enough to thread a
full flux quantum Φ0 through the SQUID loop. A SQUID with an area A requires a
maximum field B = Φ0/A. The larger the area the smaller is the maximum needed
magnetic field. But larger SQUID based qubits suffer from flux noise [31]. Again
the key is to find a suitable compromise. Typically areas are in the order of 0,01 to
1 mm2 and fields between 2 and 200 nT are needed for full tunability. In the final
experiment a SQUID with an area of 200×200µm2 is used. The required field is
52 nT for full tunability.

Optimal Magnetic Source Geometry

As shown in the previous sections the magnetic field decreases with increasing
distance between source and probe. Thus it is very helpful to put the source as close
to the probe as possible and it is beneficial to fit the wire geometry of the source to
the probe dimensions. In the experiment a qubit is placed in the centre of a cavity.
The source is expected to be outside the cavity, as depicted in figure 2.6. The setup
implies a fixed distance between qubit and source in the range of some millimeters.
The qubit is treated as a point like probe, because of its small size in comparison to
the distance. In this case the optimal source geometry is a circular loop, which can
be seen by the following argumentation.

To bring the source as close to the qubit as possible one is forced to put it on the
outer cavity wall. The source is realised by a current through a wire. Therefore the
wire has to form a two dimensional path along this wall. Since any electrical circuit
is closed, the path of the wire has to be closed at some point and encloses an area.
From equation (2.6) one can see, that the self-inductance is minimal for the smallest
loop area and the shortest wire length. Both properties are fulfilled by a circular loop.
For a given current a circular loop generates the highest magnetic field at the qubit’s
position with minimal self-inductance.
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Minimising The Distance

The distance between magnetic source and qubit is given by the cavity parameters.
Cavity walls are usually in the range of 5 to 12 mm thick. At the position of the
source the wall thickness can be reduced to about 1 mm, if it is necessary. Below
1 mm the cavity walls get deformed or even brake during the manufacturing process.
Additionally the cavity’s inner volume is taken into account, where the qubit is placed
in the centre.

The design of the cavity’s inner volume is discussed in section 1.4.1. The funda-
mental mode’s frequency has to be in the range of 9 GHz and higher modes should
be far away from that frequency. Therefore in the experiment a size of 22×22 mm2

is used for the relevant inner cavity surface. So there are 11 mm left between the
inner cavity wall and the qubit. All together the total distance between source and
quibt can be minimised to 12 mm.

Voltage Source Limit

The used voltage source is an arbitrary wave generator (AWG) of model AOU-H3353 /
H3354 from Signadyne. It has a maximal output voltage of 3 Vpp into 50Ω. Therefore
it can source a current of 60 mApp maximally. The signal produced by the AWG is
guided through a coaxial cable into the cryostat. On its way it has to pass a −20 dBm
attenuator, which is necessary to get rid of thermal noise. The total connection has a
resistance of approximately 70Ω for direct current. As a result the maximal current
is reduced to about 4,3 mApp.

Adding additional resistance lowers the time constant. But it also lowers the
maximal current. Since the current is already low, it is not preferable to add additional
attenuation or resistance to the line.

Time Constant Limit

The aim is to switch on and off the current through the used magnetic source in a
time below 100 ns. As shown before it takes about five time constants to reach nearly
100 % of the desired current. The resistance of the circuit is given by the attenuator.
From this value a limit for the maximal self-inductance can be calculated. Since
5τ < 10−6 s fulfils present requirements the self-inductance L has to be smaller than
1,4µH.

Final Coil Dimensions

The used magnetic source should be strong enough to generate a field of 52 nT at a
distance of about 12 mm. The distance includes the cavity’s inner volume and the
cavity wall thickness, which is assumed to be 1 mm for the used cavity. A maximal
self-inductance of 1,4µH is allowed. As argued before the best magnetic source
geometry is a circular loop in this experiment. Now one needs to find a proper radius
r.
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The relevant mathematical equations are

B(z) =
µ0 I
2

r2

(r2 + z2)
3
2

(2.11)

describing the loop’s magnetic field along its symmetry axis and

L =
µ0rπ

2
(2.12)

describing its self-inductance4. From this the minimal necessary radius can be
calculated, which is about 7,5 mm assuming a current I of 4,3 mA and distance z of
12 mm. The related self-inductance is not larger than 15 nH. This value is allowed to
be increased by nearly a factor of thousand. Therefore it is in principle possible to
add additional loops and build a cylindrical coil. As a consequence less current is
required for the same magnetic field strength.

The coil’s magnetic field increases linearly with the number of turns if the distance
between each loop is small compared to the distance between the coil and the probe,
because each loop adds approximately a magnetic field given by equation (2.11) at
the probe’s position. The self inductance, however, considers the mutual inductance
between each loop. Therefore the coil’s self inductance increases quadratically with
the number of turns.

2.2.4 So Far Conclusion

Until know it seems there are no problems to realise the experiment. Magnetic fields
can be generated strong enough to control a qubit in the cavity from the outside.
Even the time constant is small enough to reach nanosecond switching times. All in
all the distance between source and qubit caused by the cavity is no challenge.

The big challenge in applying flux pulses comes with the cavity’s conductivity.
Using a superconductive cavity is no option, if one wants to get a magnetic field from
the outside into the cavity. Due to the Meissner effect, no magnetic field can enter
the superconductor. The solution is to use a non-superconducting but still highly
conductive material for the cavity. The material of choice is copper, because of two
main reasons. First, its conductivity is high enough such that the qubit coherence
time is sufficiently long, about 100µs. This time is necessary to successfully perform
some operations in the order of 100 ns on the qubit. Second, copper has a relative
permeability close to one and is therefore practically not magnetisable. Still the cavity
is highly conductive and problems appear, when fast flux pulses try to penetrate the
cavity wall.

4In this case it is not necessary to calculate the full magnetic field in every spatial direction. The
qubit is very small compared to the coil and it is aligned with the loop’s symmetry axis. Therefore
calculating only the field along this symmetry axis is a sufficient and effective approximation. The
self-inductance is calculated assuming the same field B(0) through all the loop’s area.
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Figure 2.7: Circuit model for eddy currents. A powered RL-circuit generates a time
varying magnetic signal next to n passive RL-circuits. All passive RL-circuits are
coupled among each other and to the powered RL-circuit via a mutual inductance
Mi j .

2.3 The Eddy Current Problem

Whenever a magnetic flux change appears through a conductive surface, an electric
field is induced in that surface. The induced electric field causes currents, so called
eddy currents. Theses currents move in the conductive area such that, the external
change in magnetic flux is compensated. Again this behaviour is explained by
Faraday’s law (2.3). The appearance of eddy currents grows proportional to the
change of flux in time and thus leads to massive attenuation for high frequency
magnetic fields. The flux caused by a magnetic square pulse changes instantly, so
the eddy current effect will be maximal. As a result no fast flux pulses can be sent
through the conductive cavity, without being distorted heavily.

2.3.1 A Theoretical Model For Eddy Currents

The problem of eddy currents is well known in NMR-systems. Reference [32] models
eddy currents in a conducting surface by a series of RL-circuits. The resistance appears
due to the surface’s finite conductivity. The inductance comes from the effective path
that the eddy currents take on the surface. For each conducting surface eddy currents
are assumed to appear according to the surface geometry and orientation with respect
to the applied magnetic field. To investigate such a system one writes down the
differential equation for an RL-circuit for each eddy current that might appear in
this configuration. The interaction among eddy currents is then investigated in the
picture of RL-circuits. Figure 2.7 outlines the idea.

Each RL-circuit has a specific self-inductance Li and resistance Ri and each RL-
circuit is coupled inductively to all other RL-circuits via a mutual inductance Mi j,
where i 6= j. One has to remember that the eddy currents appear only because a
coil generates a magnetic pulse. As shown before a driven coil is modelled by an
RL-circuit too. The coil has a self-inductance L0 and is coupled to all eddy currents
via a mutual inductance M0 j . These assumptions lead to a set of coupled differential
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equations

V0 =R0 I0 + L0
dIi

d t
+

n
∑

j

M0 j
dI j

d t
(2.13)

0=Ri Ii + Li
dIi

d t
+

n
∑

j 6=i

Mi j
dI j

d t
(2.14)

describing the whole system5. The integer i ranges from 0 to n, meaning n eddy
currents are part of the system.

It is not necessary to solve this set of differential equation for each current Ii
exactly. The form of the first order differential equations gives some clue to the form
of the solution. Reference [32] claims that

Ii(t)∝−I0 bie
−t/τi (2.15)

is valid for each appearing eddy current using signal processing theory for linear
time invariant (LTI) systems. The factor bi is dimensionless and has its origin in the
interaction between all components. The time constant τi indicates the current’s
decay. All eddy currents contribute to an effective magnetic field of the form

Be(t)∝
n
∑

i=0

−I0 bie
−t/τi . (2.16)

This field counteracts the applied magnetic pulse. It appears almost instantly because
the self-inductance of an eddy current is close to zero. Its decay is slow due to the
high conductivity. From Faraday’s law one can see the counteracting field Be becomes
even stronger for faster flux changes. The effect on an initial magnetic pulse might
look like this:

Eddy currents 

If a magnetic square pulse is applied next to a conductive material, eddy currents in
the conductive material attenuate the pulse. As a result the sharp edges are rounded.

2.3.2 Measuring The Eddy Current Effect

The strength of the eddy current effect can be easily measured. Figure 2.8 shows the
setup. A signal generator is connected to a resistance and a coil in series. The coil
is placed next to a disk made out of copper. On the other side of the disk a second
coil is positioned, which is connected to a lock-in amplifier. The signal generator
powers the first coil with a sinusoidal signal. Its frequency is varied from low to
high in discrete steps. Due to the varying magnetic field generated by the first coil, a

5In [32] the applied magnetic pulses and conductive surfaces are orientated along specific directions
in space. The ordering of eddy currents is then referred to the spatial orientations. As a result the set
of differential equations has spatial symmetries that go along with their assumptions.
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Coil 1 Coil 2

Figure 2.8: Setup to measure the effect of eddy currents on a time varying magnetic
field. A signal generator powers coil 1. The coil generates a time varying magnetic
field. This field is picked up by coil 2. An oscilloscope or lock-in amplifier measures the
induced voltage in coil 2. In order to study the effects of eddy currents a conductive
material like a copper plate is placed between coil 1 and 2.

voltage is induced in the second coil. The induced signal has the same frequency as
the generated one. Therefore it can be detected by the lock-in amplifier, which gives
amplitude and phase of the detected signal with respect to the signal sent by the first
coil.

Figure 2.9 shows the measured eddy current effect on a sinusoidal magnetic field
passing through a 1,5 mm thick copper plate of 45× 45 mm2 in size. The illustrated
frequency response shows three measurement series. The black series is measured
without a copper disk between the two coils. This serves as reference for the other
two series. The red series is taken at room temperature with a copper disk between
the two coils. The green triangles show the same measurement series done in liquid
nitrogen. One can clearly see the effect of eddy currents acting as a low pass filter of
high order. The phase shift of more than 360 ◦ indicates a low pass filter of more than
fourth order for the green series. At room temperature the cutoff frequency is close
to 1 kHz. Lowering the temperature to 77 K increases the copper plate’s conductivity.
As a result the cutoff frequency is decreased and found close to 100 Hz. At 100 kHz
the attenuation of the received magnetic field is −21,90(2)dB and −34, 48(1)dB at
273 K and 77 K respectively6. Therefore the signal is attenuated more than a factor
of one thousand at temperatures below 77 K.

At this point one faces two problems. First the fast flux pulse should be switched
on and off within a few hundreds of nanoseconds. Looking at the measurement this
seems not to be reachable. The magnetic field practically vanishes above 100 kHz
which corresponds to a time scale of 10µs. Second the effect becomes even worse at
lower temperatures. Experiments with superconducting qubits take place in a cryostat

6The decibel scale is a logarithmic scale to compare a power signal P(x) with a reference power P0.
The power signal P(x) corresponds to a function Q(x) = 10 log10(P/P0) in decibel. When comparing a
variable field strength F(x) with a reference field strength F0, the power ratio in decibel is given by
Q(x) = 10 log10(F

2(x)/F2
0 ) = 20 log10(F(x)/F0). Therefore the field strength in a frequency response

plot corresponds to half of the drawn power value in decibel.
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Figure 2.9: Frequency response of the transmitted magnetic field through a 1,5 mm
thick copper plate. The black squares are a reference measurement without any
copper next to the coils. The red dots and green circles are measurements with a
copper plate between the coils at room temperature and in liquid nitrogen respectively.
Horizontal lines are drawn at -3 dB and 45 ◦ to compare the data to a low pass filter.
These lines define the filters cut off frequency. Measurements at frequencies below
5 Hz show a systematic error. Signals below about 60 dB are no more detectable.

with temperatures close to 10 mK. The low temperature raises the conductivity of
copper and attenuation due to eddy currents become stronger. There are widely
used solutions to circumvent problems with eddy currents, but they cannot always
be applied to a given setup.

2.3.3 Solutions To Compensate Eddy Currents

Mainly there are two solutions to compensate eddy current effects. The first one
tries to redirect the path where the eddy currents flow along. This is done by cutting
the conducting surface apart. Eddy currents cannot flow across the introduced slits.
Therefore they have to take another path, that is bounded by the slits. Figure 2.10
illustrates the idea. The second solution tries to counteract the magnetic field’s
attenuation by applying a corrected signal like this:

Eddy currents 
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x

y

z

Figure 2.10: Two conducting blocks of the same size are shown in the sketch. The
left block is untouched, the right one is cut into two pieces. A magnetic field is
switched on. It penetrates both blocks in the z-direction (black circles with a dot).
This causes the appearance of eddy currents (red dashed lines). Effectively all eddy
currents form a current distribution (red solid lines) such that the sudden change
of magnetic flux is compensated. For the cut block, eddy currents cancel each other
close to to the slit.

As seen in figure 2.9 high frequency components are attenuated and phase shifted
stronger. The corrected signal takes these changes into account. Thus high frequency
components are amplified and phase shifted during generation. As a consequence
the eddy currents modify the signal such that the desired one is applied.

Cutting The Conducting Surface

Slits in a conducting surface can reduce the eddy current effect. By increasing the
number of slits the counteracting fields become smaller. To investigate this behaviour
a simple setup is built. The transmission of a sinusoidal magnetic field through a
copper plate like in figure 2.8 is measured. Now, the copper plate is cut into 1 mm
thin slices at its centre. As a result slits are introduced in the plate, as depicted in
figure 2.11. The number of slits is variable, since the single slices can be exchanged.
Figure 2.12 shows the transmission through the copper plate for a different number
of slits. Even a single slit enhances the detected flux by nearly a factor of ten at
1 MHz. The transmission is improved by additionally putting Teflon tape between
the single parts of the copper plate. Teflon acts as an insulator and thus completely
stops the flow of eddy currents between the touching parts. Furthermore the red
lines are flatter than the the blue ones. At 20 MHz the transmission between the coils
drops in general, as it can be seen from the reference measurement through air.

In the final experiment a magnetic pulse has to penetrate a conductive cavity.
Eddy current effects can be reduced sufficiently by cutting the cavity apart many times.
As shown in section 1.4.1, the cavity is allowed to be cut only along the direction
of current distribution resulting from the field mode inside the cavity. However, as
pointed out in [25], any introduced cut decreases the cavity’s quality factor and
should be avoided, despite the cut is along a valid path.
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Figure 2.11: SOLIDWORKS sketch of a copper plate with a variable number of slices.
The plate is cut into eight parts resulting in seven slits.
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Figure 2.12: Measurement of the flux penetrating a copper plate with different
number of slits. The black line is a reference measurement without any copper
between or next to the coils. The blue lines show measurements for 1, 5 and 7 slits
(from dark to light blue), the red lines show measurements for 1, 3 and 7 slits with
isolating Teflon tape (from dark to light red).
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Applying A Correction Signal

The second solution to compensate the effect of eddy currents is to generate a signal
that takes the eddy current effects into account. Since eddy currents are modelled
as RL-circuits, they behave like linear filters. One can in theory totally compensate
this filtering by using signal processing theory in LTI systems [33], see appendix B.
Reference [32] explains an algorithm to optimise the eddy current compensation
based on signal processing theory in LTI systems.

As seen in figure 2.9 one needs about a factor of one thousand more current
for high frequency components. In the final experiment this is not manageable.
The used voltage source does not have the required power. One could think about
amplifying the signal, but this introduces unwanted noise to the system and may
heat the cryostat due to higher dissipation.

Despite there are two possible solutions to compensate the effect of eddy currents,
both cannot be implemented in this experiment. Cutting the cavity leads to dissipation
of the field inside the cavity and applying a corrected signal requires too high currents.
The effect of eddy currents destroys the idea of controlling a qubit with fast magnetic
pulses completely. Therefore a different way has to be found to solve this task. In
the next section a new approach is investigated, that circumvents the problem with
eddy currents.
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a) b) c) d)

y

x
z

Figure 2.13: Different magnetic hose designs. Figure a) shows the basic hose design
for static fields. The grey core refers to a ferromagnetic material, the blue shell
represents a superconductor. A magnetic field is guided along the z-axis through
the hose. In b) the idea of improving the hose by raising the number of layers is
visualised. Here there are four alternating layers. Figure c) illustrates a first design
for a hose that guides high frequency magnetic fields along the z-direction. This is
possible due to the applied slit. Therefore no counteracting eddy currents can flow in
closed circles in the x-y-plane. In figure d) the slits are ordered in a different way to
minimise magnetic field leakage. An insulating material (red) has to be put between
each conductive layer in this configuration. Otherwise eddy currents are able to flow
across the slits and form slightly deformed but closed circles in the x-y-plane.

2.4 The Magnetic Hose

A magnetic hose is a device that transfers magnetic fields through it. The working
principle of such a hose is quite simple. Basically only two ingredients are needed,
something that attracts magnetic field lines like a ferromagnetic material and some-
thing that expels magnetic field lines like a superconductor. The hose is realised by
wrapping cylindrical layers of ferromagnetic material and superconductors alternat-
ing around each other. This is represented in figures 2.13a and 2.13b. A magnetic
field applied at one end is then transferred to the other end.

The original design is obtained from transformation optics [34]. It is a technique
to calculate magnetic permeability and electric permittivity that force electromagnetic
fields along an arbitrary path in space. This theory got its main attention as solutions
to cloaking and making things invisible were proposed [35]. Meanwhile experiments
demonstrated first promising proposals and transformation optics is used in a wide
range nowadays [36].

Here the technique is used to build a magnetic hose that guides a magnetic field
into a superconducting box, the cavity. In this section the required theoretical tools
are explained first. They are then applied to the idea of guiding a static magnetic field
along a straight path. The resulting ideal magnetic permeability is approximately
realised by a combination of materials. This metamaterial structure represents the
magnetic hose for static fields. Finally a small modification from section 2.3.3 is
applied to make the transfer of high frequency magnetic fields possible.

2.4.1 Transformation Optics

The idea of transformation optics is to guide electromagnetic fields along an arbitrary
path in space. Electromagnetic fields change their propagation when they hit media
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a) b) c)

Figure 2.14: Sketch of the idea behind transformation optics. An electromagnetic
wave (red) becomes deformed when entering a material with corresponding proper-
ties (blue).

with different magnetic permeability µ and electric permittivity ε. To guide them at
will, material with very particular distributed µ and ε has to be placed in the space
of interest.

The methode is to first calculate the required µ and ε distribution and then to find
a material combination with the calculated properties. The procedure of calculation
has a fixed algorithm and is described in the following.

• All starts in an empty Cartesian space. Empty means that µ(~r) = µ01 and
ε(~r) = ε01 in any spatial directions ~r. Here 1 is the three dimensional unitary
matrix, µ0 and ε0 are the magnetic and electric constant respectively. In this
empty space electromagnetic waves travel along straight lines as depicted in
figure 2.14a.

• Now one deforms the space of interest in such a way, that in the deformed
space electromagnetic fields behave as desired. This is done by a spatial
transformation

~r ′ = ~r ′(x , y, z) ⇐⇒











x ′ = x ′(x , y, z)
y ′ = y ′(x , y, z)
z′ = z′(x , y, z)

(2.17)

on purpose. With respect to this new coordinate system straight rays in the
Cartesian space are described as curved rays. On the other hand rays that move
straight in the new coordinate system are curved rays in the Cartesian space,
see figure 2.14b.

• The last step is to calculate the relevant µ′(~r ′) and ε′(~r ′) tensors for bending
the fields in the space of interest. The tensors are given by

µ′ =
Λµ0Λ

T

detΛ
and ε′ =

Λε0Λ
T

detΛ
, (2.18)

where

Λi j =
∂ ~r ′i
∂ ~r j

(2.19)
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Figure 2.15: Representation of the spatial transformation for the magnetic hose
calculations. In a) two points, z1 and z2, along the z-axis are selected. Between these
two points the whole space, except for an infinitely small part ξ, is cut away in b).
The missing space is replaced in c) by shifting z1 + ξ to z2 and stretching the space
between z1 and ξ apart.

is the Jacobian transformation matrix. These transformations are valid, because
Maxwell equations are invariant under spatial transformation. The result is
illustrated in figure 2.14c.

After these calculations another task comes up. One has to find a way to realise
the materials with relevant permeability and permittivity calculated in 2.18. Typically
µ′ and ε′ are distributed anisotropic and highly inhomogeneous. A realisation of
such a material is not always feasible or only approachable for special cases.

Calculating The Magnetic Hose

First7 one considers an empty Cartesian space. Then a transformation has to be done
that transfers magnetic fields. The idea is to cut out the space between two points
z1 and z2 except for an infinitely small part of thickness ξ. The boundary z1 + ξ is
shifted to the position of z2. Simultaneously the part of thickness ξ is stretched to
connect the space between z1 and z2 again. The transformation

z′ = z, z ∈ (−∞, z1) ⇔ z′ ∈ (−∞, z1); (2.20)

z′ =
z2 − z1

ξ
(z − z1) + z1, z ∈ [z1, z1 + ξ) ⇔ z′ ∈ [z1, z2); (2.21)

z′ = z + (z2 − z1 − ξ), z ∈ [z1 + ξ,∞) ⇔ z′ ∈ [z2,∞) (2.22)

describes this process. It is represented in figure 2.15. The orthogonal coordinates
x ′ and y ′ are unaffected.

Next the Jacobian matrix and the resulting µ′ is calculated. The result is given by

µ′ = µ0, z′ ∈ (−∞, z1); (2.23)

µ′ = µ0 · diag
�

ξ

z2 − z1
,
ξ

z2 − z1
,
z2 − z1

ξ

�

, z′ ∈ [z1, z2); (2.24)

µ′ = µ0, z′ ∈ [z2,∞) (2.25)

7The calculations and results are taken from the supplementary of [29].
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in the whole space. To shift magnetic field form z1 to z2 one has to put a material
with the calculated properties between the two points. In the limit ξ→ 0 a material
with µz = µ′z′z′ →∞ along the z-axis and µρ = µ′x ′x ′ = µ

′
y ′ y ′ → 0 along the radial

direction is needed.

The required material properties are known. But no material with such properties
is known. Therefore an approximation is done by combining two known materi-
als. Ferromagnetic materials have a large permeability and attract magnetic fields.
Superconductors completely repel magnetic fields. The solution is to alternately
wrap layers of ferromagnetic and superconducting material in a cylindrical form,
like in figure 2.13b. In this combination the ferromagnetic material provides a large
permeability in z-direction and the superconductor sets µρ effectively to zero. The
higher the density of alternating layers the better is the approximation to the ideal
material. Reference [29] predicts that even a few layers achieve a significant trans-
port of magnetic field. They could also show the working principle of such a hose for
static fields. In the case of high frequency fields a tiny modification has to be done.

2.4.2 A Magnetic Hose For High Frequency Fields

Sending a high frequency field through a magnetic hose described in figure 2.13b does
not work. Eddy currents will flow in closed circles in the x y-plane and counteract
the magnetic flux change through the hose. But, there is an easy way to prevent
eddy currents in the x y-plane as shown in section 2.3.3. Cutting each layer along
the z-axis like in figure 2.13c prevents the eddy currents from flowing in a closed
circle in the x y-plane.

Even though the introduced cut prevents the counteracting eddy currents, mag-
netic field might leak through the resulting slit. Therefore, it is necessary to alternate
the position of a slit with respect to each layer. As a consequence the leakage is
minimised. However, alternating the slit position makes conductivity between layers
possible. As a result eddy currents appear again. Thus the final solution is to put an
insulating layer between the conducting layers. Figure 2.13d illustrates the design
for a high frequency magnetic hose.

The magnetic hose is tested first in a slightly different way. Instead of supercon-
ducting layers, layers of copper are used. Copper acts as a diamagnet8. It does not
perform as perfect as a superconductor, but the property enhances for high frequency
fields. This facilitates tests at room temperature. Thus measurements can be done in
a quite simple setup without the need for a cryostat.

In the final experiment such a hose should guide a magnetic field from the outside
to the inside of a conducting cavity. Therefore the first measurements test if the hose
is working in general and if a magnetic field can be transmitted through a copper
disk. Finally it is tested weather a magnetic field can be sent into a copper cavity
with a hose made out of copper at room temperature.

8Ironically the diamagnetic behaviour is based on eddy currents.
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Figure 2.16: Different measurement setup with the magnetic hose and three different
copper disks. Setup a) is used as reference measurement. No components are placed
between coil 1 and coil 2. The distance between the two coils is the same in all
measurement setups. This is necessary for comparison. In a)-d) three different
copper disks are put between the coils: an untreated one in b), one with a hole in
the center in c) and one with a hole and a slit from the centre to the edge in d).
Measurements f) to h) show the configurations with hose and disk. The distance
scale in g) and h) relates to the part of the hose that is pushed through the hole.
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Figure 2.17: Frequency response of different setups with the self-made magnetic
hose and three different copper disks. The results are related to the measurement
setups in 2.16 in the following. Black squares represent the reference measurement
between the two coils only (2.16a). Red circles refer to 2.16e, purple upside triangles
to 2.16b, magenta downside triangles to 2.16f, dark blue diamonds to 2.16c, light
blue left side triangles to 2.16h, dark green right side triangles to 2.16d and light
green hexagons to 2.16h. The measurements in air and through the slit copper disk
coincide. Adding the hose amplifies the signal in both setups but does not change
the phase. The solid disk and the copper disk with a hole show the same behaviour
in amplitude and phase.

Measurements With A Self-Made Magnetic Hose

First measurements are taken with a self-made magnetic hose. A steel drill-bit with a
diameter of 2,5 mm acts as cylindric core. Around that, copper tape and steel tape are
wrapped. Both layers are connected with adhesive tape, which acts as an insulator.
In total, four alternating layers make the hose 7,5 mm thick in diameter. The length
is 26,3 mm. With this hose the magnetic field transfer between two coils is measured.
All different measurement setups for the first series are illustrated in figure 2.16 and
the corresponding results are presented in figure 2.17.

One can see a clear improvement if the hose is between the two coils. The signal is
amplified and the phase stays nearly constant. For frequencies higher than 10 kHz the
signal strength becomes even stronger. This is related to the increasing diamagnetic
property of copper with increasing frequency.

Next a 2 mm thick copper disk with 12 cm diameter is put between the two coils.
As expected one observes an attenuation and a phase shift for high frequencies.
Drilling a hole with 7,6 mm diameter into the disk makes no difference. The result
is the same as if there was no hole. Cutting a 0,3 mm thin slit from the edge to the
central hole of the disk changes the behaviour totally. Eddy currents are prevented
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Figure 2.18: Frequency response of different setups with the self-made magnetic
hose and the copper disk with a hole. Black squares show the reference measurement
in air between the two coils and red circles represent the measurement with the hose
between them. The other measurement series are measured with the setup shown in
2.16g, where the hose is pushed through the disk’s hole. The fraction is related to
the part of the the hose that is pushed through.

and the related attenuation vanishes.
The three setups with copper disks are connected with the hose. If the hose is

placed close to the untreated copper disk, the signal is amplified but shows the same
attenuation and phase shift. In the case of the disk with a slit, again amplification is
observed and no phase shift appears. Finally, the maybe most relevant measurement
is, when the hose is put through the hole in the copper disk. This combination comes
close to the main idea of guiding a magnetic field into a cavity. In this configuration a
resonance appears. It is investigated in a further measurement series in the following.

The hose is put through the holed Cu-disk for different lengths, shown in figure
2.16g. If one hose end is put asymmetric into the copper disk, the resonance is shifted
to higher frequencies and the attenuation is stronger, see figure 2.18. The resonance
for the symmetric setup is measured more precisely, as it can be seen in figure 2.19.
A phase shift of 180,4(2,4) ◦ is measured at 2,153(5) kHz, where the received signal
power drops to a minimum. This indicates a resonance effect.

The cause for this behaviour is a combination of three effects. First, there are eddy
currents in the copper disk attenuating the signal. These eddy currents mainly result
from magnetic field lines that leak through the copper shells of the hose. Second, at
higher frequencies the shielding increases and less magnetic field lines leak through
the hose layers. Third, some magnetic field lines that pass the hose cannot close their
way back through the hose. They have to pass the copper disk surrounding the hose.
If one hose end is close to the copper disk, the field line density through the disk
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Figure 2.19: Accurate frequency response of transmission through the self-made
hose symmetrically placed in the copper disk with hole. The reference measurement
for the magnitude is the measurement series through air in figure 2.18. The resonance
frequency is found at 2,153(5) kHz by fitting the tip of the tilted peak with a Lorentzian
curve. The phase signal is fitted with two straight lines through points next to its
inflection points. The distance between the points, where the fitted lines cross the
resonance frequency, results in a 180,4(2,4) ◦ phase shift.

next to the hose is higher. Therefore the attenuation due to eddy currents is stronger.
This results in a lower maximal signal strength for frequencies above the resonance.

Measurements With A Fabricated Hose

Since the first measurements with the self-made hose are promising to transport a
magnetic field into a cavity, the subsequent step is to improve the magnetic hose.
The next hoses are fabricated by the local workshop in a well controlled way. The
manufactured layers are about 200µm thin. This is the minimal thickness that is
possible to manufacture in the workshop. Thinner layers break during the wire
erosion process. Figure 2.20 shows the CAD-drawing of the fabricated hose. A steel
core with 1 mm diameter is used as core. Then alternating copper and steel layers
are wrapped around. In between every second layer is Teflon tape for isolation. The
outermost shell and the steel core can be removed and varied between three different
lengths. The three available shells and cores are 20 mm, 25 mm and 30 mm long.
The inner part between core and outermost shell has a constant length of 20 mm.
Four such inner parts are fabricated. They have different diamagnetic material and
number of layers. Two use copper as diamagnet, and the other two are made out of
aluminium. The copper ones are intended for measurements at room temperature,
the aluminium ones are for measurements in the cryostat.
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Figure 2.20: SOLIDWORKS sketch of a magnetic hose fabricated by the workshop.
The left picture shows the frontside. Four copper layers can be seen, represented in
brown colour. In between two copper layers is a steel layer (light grey) and a Teflon
layer (dark grey). In the right picture the larger outermost shell can be seen. Inside
one overlapping end a coil is placed to generate a magnetic field.

The following measurements are taken at room temperature. Therefore the two
copper hoses are used. One hose has three alternating layers with a diameter of
3,6 mm and the other one has four layers with a diameter of 4,4 mm. The outermost
shell of 30 mm is chosen for both hoses9. It is 10 mm longer than the inner part and
therefore it sticks 5 mm out at each side, as illustrated in figure 2.20. Again two coils
are used to measure the frequency response like in figure 2.17a. Coil 1 generates
the signal and coil 2 receives it. Both coils have ten turns, a diameter of 3 mm and a
length of about 7 mm. To put coil 1 as close to the inner part as possible it is placed
into the outermost shell, like it is sketched in figure 2.24. Coil 2 is put at the end of
the complete hose as usual.

First measurements investigate the difference in layer numbers and length of the
steel core. Figure 2.21 shows a measurement from 100 Hz to 100 kHz. It is recorded
with a lock-in amplifier. A network analyser is used for the measurements in figure
2.22. There the signal spans from 100 kHz to 300 MHz. One can clearly see, that
the transmitted magnetic field increases with the number of layers. But a longer
iron core enhances this effect much more. The phase varies in the range of ±10 ◦

with respect to the mean of a single measurement series. Again the hose increases
its performance at higher frequencies up to about 100 kHz. At higher frequencies
the transmitted signal decreases. In the range of 30 to 40 MHz there is a drop in
transmission. This drop is related to the used coils, because it is also visible in the
reference measurement without hose. Finally above 60 to 70 MHz strange things
happen. The signal is totally messed up. A possible explanation might be, that in

9The hose is structured like a coaxial cable. Therefore electromagnetic waves are able to transfer
through the hose too. Connected to the cavity, the hose offers an additional channel for microwaves to
get from the inside to the outside of the cavity or the other way round. As a result the internal quality
factor of the cavity decreases. To prevent microwaves from passing the hose, the outermost shell is
made longer than the inner part. This acts as a circular waveguide and attenuates microwaves below
its cutoff frequency fc =

1,8412c
2πr ≈50 GHz considering an inner radius r of 1,75 mm at the speed of light

c in vacuum. Below the cutoff the attenuation in Np/m is equal to the complex propagation constant

iβ =
q

( 2π f
c )2 − (

1,8412
r )2, which is equivalent to approximately 9 dB/mm for f = 9 GHz [23].
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Figure 2.21: Frequency response of the fabricated hose in the range of 100 Hz to
100 kHz. Black squares represent a reference measurement through air. Measure-
ments with hoses made out of three copper layers with short (red dots) and long iron
core (green upside triangles) as well as measurements with hoses made out of four
copper layers with short (dark blue downside triangles) and long iron cores (light
blue diamonds) are done.

this regime resonances between the two coils and within the hose appear.

The longer iron core of 30 mm length does improve the signal up to 10 MHz. From
then on it matches the signal of the shorter iron core of 20 mm length. Since a flat
frequency response is preferable, the short iron core is taken for further investigations.
The larger hose with four alternating layers has better transmission than the hose
with three layers. The problem is that it needs more space resulting in a stronger
modification of the cavity. A larger hose provides a better connection for microwaves
to the outside of the cavity, which is unwanted in the final experiment. Therefore
the smaller hose with short iron core is chosen for further investigations.

In the next measurement series a copper disk with hole is added. The measure-
ments are represented in figure 2.23. First a reference measurement is recorded.
Then the thinner copper hose with three layers and short iron core is measured again.
This hose is then pushed through the copper disk. Once it is put half through and
once it is flush with the copper disk. At the end of this measurement series again a
reference measurement is done, because the position between the coils moved a bit
when putting the copper disk into the setup. The reference value is given by the mean
of both measurements through air in the range of 1 to 10 MHz. If the hose is pushed
half through the disk, the transmission is still better than in air. This gives hope that
guiding a magnetic field through a hose into a cavity works, which is treated next.
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Figure 2.22: Frequency response of fabricated the hose in the frequency range of
100 kHz to 300 MHz. The black line in the range of 1 to 10 MHz is used as reference
measurement through air. The colour code for the other measurements with different
hoses is the same as in 2.21.
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Figure 2.23: Frequency response of the fabricated hose with the copper disk in the
range of 100 kHz to 300 MHz. The mean value of the black and grey line in the range
of 1 to 10 MHz is used as reference measurement through air. The red line shows a
measurement with the hose only. Green and orange lines are measurements of the
hose in a copper disk pushed half through or flush respectively.
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Coil 1 Coil 2Coil 1

Figure 2.24: Setup for measurements with a magnetic hose and a copper cavity. Coil
1 is placed inside the outermost shell of the hose. The other end is flush with the
inner cavity wall. Coil 2 is placed in the cavity centre.

Meausrements With A Magnetic Hose And A Copper Cavity

Two things have to be investigated now. First if it is possible to get any magnetic
field inside the cavity and second if the hose has some unwanted effects on the cavity
mode.

To measure magnetic field transmission again two coils are used. Coil 1 generates
the field. It is placed inside the hose’s outermost shell as close to the inner part as
possible. Coil 2 is fixed in the cavity centre, where usually the qubit is placed. Both
coils have ten turns and the diameter is about 3 mm. The hose is attached to the
cavity, as depicted in figure 2.24. The part of the hose entering the cavity is flush with
the inner cavity wall. In figure 2.25 and 2.26 the corresponding frequency response
is illustrated.

The detected signal in this measurements is very low, as there is additional space
between the hose and the receiving coil of about 9 mm. It was hard to even detect
the reference signal through air. Additional amplification and averaging is necessary
to detect the small signals. Since the reference signal is not that flat, it is not used
for calculating a relative dB-scale. Therefore the absolute measured magnetic flux is
shown.

In the frequency response form 100 Hz to 100 kHz (fig. 2.25) the signal is
attenuated strongly for higher frequencies. The behaviour of the phase looks quite
strange. As it is expected to be flat as the green triangles for all measurements. One
explanation for this behavior is that the phase in the other measurements was locked
close to a 180 ◦ phase shift. Averaging over a lot of measurements leads to the large
jumping for small deviations.

The frequency response from 100 kHz to 10 GHz (fig. 2.26) is quite different
from the former one. All three signals start at the same level. Then there is a linear
reduction in signal until 4 MHz. From then on the transmission through air stays
constant, but the transmission to the cavity increases. A reference slope is drawn in
light blue. This rise may result form the diamagnetic behaviour of the copper. For
increasing frequency the shielding effect of copper is enhanced. The magnetic field
that enters the cavity through the hose cannot leave the cavity through the inner
cavity walls.
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Figure 2.25: Frequency response of the magnetic hose flush in the copper cavity
from 100 Hz to 100 kHz. The black squares show a measurement with the hose only.
Both coils and the hose are kept at the same distance as in the measurements with
the cavity. Two measurements with cavity are done. One at room temperature (red
circles) and another one in liquid nitrogen (green triangles).
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Figure 2.26: Frequency response of the magnetic hose flush in the copper cavity
from 100 kHz to 10 GHz. The colour code for the represented results is the same
as in figure 2.25. A light blue reference line is drawn to compare the rise of the
transmitted magnetic field. Its slope has 100 Vs per decade.
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Figure 2.27: Quality factors of an undercoupled and overcoupled copper cavity with
hose. The measurements are taken at room temperature. Blue lines show the results
from the overcoupled and red lines from the undercoupled setup. The quality factors
Qc and Q i are presented by squares and triangles, respectively.

The measurement clearly shows, that high frequency magnetic fields can be sent into
a cavity. There is some attenuation for low frequencies, but it is compatible. For better
transmission the hose can be pushed more inside the cavity. This will shift the cavity’s
resonance frequency to a higher frequency, as the inner cavity volume is reduced.
Furthermore the hose might influence the quality factor, which is investigated next.

The cavity has two ports. Each port can be used to send microwaves into the
cavity or receive microwaves from the cavity. In this configuration the scattering
parameters can be determined. For the following measurements only one port is
used to measure reflection, which is the S11 parameter. Thus a microwave signal is
sent to one port of the cavity. All reflected signals that cannot enter the cavity are
detected. The second port is closed. From performing a reflection measurement the
cavity’s resonance frequency and quality factors can be determined.

Reflection measurements are done for two different pinlengths of the microwave
port. The pinlength of the port specifies the coupling between the port and the
cavity. If the pin enters the cavity, it is overcoupled. A longer pin means a stronger
coupling and the microwave field enters the cavity more easily. If the pin does not
enter the cavity, the cavity is in the undercoupled regime. The pinlength determines
the coupling quality factor Qc of the setup.

Figure 2.27 shows how the cavity quality factors change by pushing the hose
more inside the cavity. The coupling quality factor Qc does not decrease in both
cases, the undercoupled and the overcoupled one. The internal quality factor Q i
decrease by pushing the hose more inside the cavity. Since 1/Q l = 1/Qc + 1/Q i , the
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load quality factor Q l follows the internal one. This indicates internal loss due to
the hose. Additionally the cavity frequency is shifted maximally by about 30 MHz in
both cases.

The hose has an influence on the cavity’s internal quality factor and its resonance
frequency. By pushing the hose deeper inside the cavity, internal losses are enhanced
and the cavity’s resonance frequency is shifted to higher frequencies. However, there
is no influence on the cavity, if the hose is flush with the inner cavity wall. Guiding
a fast oscillating magnetic field inside a cavity has been achieved and it is feasible
without additional influence on the cavity.

56



CHAPTER 2. THE MAGNETIC FIELD’S GUIDE TO THE CAVITY

2.5 Summary

It has been shown experimentally that it is possible to guide a high frequency magnetic
field into a conductive box. Magnetic field transfer to the cavity is achieved by using a
magnetic hose. In section 2.2.3 experimental limits are discussed without considering
the hose. The discussed limits stay the same, but the experimental setup is changed.
A magnetic hose is used to transfer the magnetic field from the outside to the inside
of the cavity, such that a SQUID based qubit inside the cavity can be controlled. Still a
field of 52 nT is needed for full flux control on the qubit and the coil’s self-inductance
has to be below 1,4µH.

The actual hose design in figure 2.20 suggests to put a coil inside one of its ends.
Since the outermost shell has an inner diameter of about 3,3 mm, the coil has to be
a bit smaller. To enhance the generated magnetic field the final coil has ten turns.
The resulting self-inductance is about 0,3µH. The resulting field inside the cavity
can be estimated by the measurement depicted in figure 2.25. There the magnetic
flux through a coil with ten turns and a diameter of 1,5 mm is shown. A minimal
flux of 10−12 Vs is detected at room temperature and corresponds to a magnetic field
of 14 nT. This is a too small field. The value becomes even smaller when the current
of 333 mA through the coil is compared to the maximal current of 43 mApp that can
be supplied by the AWG. As this is the worst case scenario, there are some ways to
improve the field strength.

First of all, the performance of the hose improves at lower temperatures. This is
shown in figure 2.25 for a hose that uses copper as diamagnetic material. In case of
a superconducting material the field transfer is expected to improve even more.

A main improvement is achieved by putting the hose as close to the probe as
possible. In the previous measurements the hose is put into the cavity, flush with the
inner cavity wall. So there is a lot of unnecessary space between probe and hose.
Using a hose with a superconducting outermost layer should not have a noticeable
effect on the cavity’s internal quality factor and thus the hose can be put close to the
qubit.

As shown in figure 2.17 a single slit into a copper disk prevents the formation of
eddy current. It is possible to cut the cavity along specific lines without losing much
of the cavity’s internal quality factor, see figure 1.7. Combining such an additional
cut with the hose might enhance the magnetic field transport a lot. This is an easy
option, but the benefits have not been investigated so far.

The performance of the hose increases when a material with high permeability
is used. Here steel is used as ferromagnetic material inside the hose. The relative
magnetic permeability of the steel used in the experiment is unknown. One knows
for sure that it has to be much lower than the permeability of pure iron. Still there
are materials with much higher permeability than pure iron available, like mu-metal.
This could be used instead of steel to improve the magnetic field transport, because
the magnetisation is much better.

Magnetic field lines have to be always closed. The hose is not closed. Thus some
field lines may form closed loops all inside the hose. All others have to close by
going around the hose. These field lines are connected to eddy current effects, if
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conducting material surrounds the hose, like a cavity. In case of a cavity it may be the
best to built a hose that enters the cavity at two opposite sides and connects them.
In this case the coil has to be embedded in the hose. Otherwise the hose can be cut
into two parts that connect to the coil.

From these measurements a realisation of fast flux control of a SQUID based
qubit in a 3D cavity architecture seams feasible. The results are promising and there
are a lot of possibilities to improve the setup. The next step is to test the setup in the
cryostat on a qubit.
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Chapter 3

Fast Flux Pulses

3.1 Overview

In this chapter the transition frequency of a SQUID based transmon qubit is switched
by a magnetic pulse. The qubit is placed in the centre of a microwave cavity and the
magnetic pulse is generated by a coil outside the cavity. A magnetic hose is put into
the cavity. The hose provides a connection for magnetic fields between the outside
and the inside of the cavity. Thus a fast flux pulse applied form the outside is able to
change the transition frequency of a qubit inside the cavity.

In the beginning of this chapter the experimental setup is presented. Next, first
measurements on the qubit and cavity are done to characterise the system. Before
performing experiments with fast flux pulses, the generation of current pulses is
discussed theoretically. The current pulses are provided by an AWG with a sample
rate of 200 MS/s. The bare output of the AWG pulses are investigated and adjusted.

Finally the fast flux pulses are applied to the qubit. The experimental results show
that a flux pulse is able to tune the qubit from one to another transition frequency
within 200 ns.
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Figure 3.1: Cavity setup with hose and two qubits. The hose is about 2 mm away
from the central qubit when the cavity is closed.

3.2 Characterising The Qubit

The following two subsections present the measurement setup and how a single qubit
is characterised. The heart of the setup is the cavity with qubit and hose, which is
all placed in a cryostat. Next the connection from the outside of the cryostat to the
cavity is explained. The setup for exciting and detecting the qubit is presented. In
the following first measurements are done on the cavity and qubit to characterise
the system. All essential parameters result from these measurements.

3.2.1 Measurement Setup

Heart Of Setup

A SQUID based transmon is placed in the centre of a cavity. The cavity has an
inner volume of 22× 22× 10 mm3, resulting in a resonance frequency of 9,6 GHz
approximately. The transmon is designed to have a tunability of 1 GHz around its
transition frequency. The transition frequency should be close to 6,9 GHz. The cavity
frequency, the qubit transition frequency and their coupling are chosen such that the
dispersive limit is reached.

The transmon’s SQUID loop has an area of 200×200µm2 for sufficient magnetic
flux control. Besides that, the transmons anharmonicity should be in the range of
100 to 200 MHz and the dispersive shift should be around 5 MHz for sufficiently
good read-out. The ratio EJ/EC is designed to a value of 70 to make sure the qubit
operates in the transmon regime and the anharmonicity is in the proposed range.
The values are measured to verify if the qubit is built as intended.

The hose is made out of aluminium, steel and Teflon with three alternating layers,
described in section 2.4.2. Inside the hose there is a coil made out of a 279µm thin
superconducting wire. The coil has a mean diameter of about 2,5 mm and a length of
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3,7 mm approximately. The coil is soldered to an SMA connector, which is attached
to the cavity. Outside the cavity walls there are two indentations for two larger coils.
The larger coils are made out of a 152µm thick superconducting wire. The wire is
wound forty times around a cylindric copper body, that is 2 mm in diameter. The
cavity is shown in figure 3.1. It is mounted below the 20 mK plate in the cryostat
and surrounded by an Al-shield to protect the system from external magnetic fields.

Connection To The Cryostat

The cavity has two SMA ports to measure the transmission. The input port is under-
coupled to get microwave signals into the cavity and the output port is overcoupled
to read-out the transmission. Before entering the cryostat, the input signal has to
pass a DC-block on top of the cryostat, to get rid of any DC-offset. The DC-block is
connected to a 20 dB attenuator between the 70 K and 4 K-plate. Next the signal is
guided into a 30 dB attenuator between the 100 mK and the 20 mK-plate. All this
attenuation is necessary to reduce thermal noise. Still between the two lowest plates,
an Eccosorb filter absorbs infrared radiation that appears in the signal path. Finally,
the signal enters the cavity.

The cavity’s output is connected to a DC-12 GHz bandpass filter followed by two
isolators between the 100 mK and the 20 mK-plate. An isolator allows a signal to
pass through in one direction only. Therefore practically no signal enters the cavity
through the output port. The output signal is guided into a high-electron-mobility
transistor (HEMT) for first amplification between the 70 K and 4 K-plate. Then the
signal leaves the cryostat and is amplified by 40 dB classically at room temperature
before it is recorded.

The pulse for the fast flux coil is generated by an AWG and is sent into the cryostat
without passing a DC-block. Between the 70 K and 4 K-plate, the pulse is guided
through a 20 dB attenuator and between the 100 mK and the 20 mK-plate it passes
an Eccosorb filter and a DC-12 GHz bandpass filter. After filtering, the pulse is sent
to the fast flux coil inside the hose.

The flux bias coils are connected directly to the constant current sources outside
the cryostat without any attenuation or filtering. When entering the fridge the wires
are wound extensively around a pole for better thermalisation. Then these wires are
connected to the superconducting wires for the large bias coils between the 100 mK
and the 20 mK-plate. The superconducting wire is necessary to have no resistance
and thus no heating caused by the current.

Setup For Detection

The excitation of the qubit and the subsequent measurement of the cavity transmission
are performed in two different setups. The first setup is used to perform a two tone
scan, which is efficient in finding the qubits transition frequency. The second setup is
used to generate pulses for a precise qubit control. The second setup can only be
used when the qubit’s transition frequency is known. The setup for detecting the
cavity’s transmission is the same in both qubit excitation schemes.
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Figure 3.2: Connection to the cavity in the cryostat.
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Figure 3.3: Setup for excitation and detection.

Two Tone Scan: Two microwave generators are used, referred to as EXG I and
EXG II. One is used to excite the qubit inside the cavity by applying a saturation
pulse. The other one is used to read out the qubit’s state and therefore measures the
transmission of the cavity. Both outputs of the microwave generators are combined in
one power combiner. The output of the power combiner is connected to the cryostat
input line for the cavity.

Pulse Scan: A microwave pulse of Gaussian shape cannot be generated directly
by one of the microwave generators. Therefore a Gaussian pulse is generated by
the AWG at a frequency of 100 MHz and is mixed up to the frequency of the EXG II
using IQ-mixing. The output of the EXG II is used as local oscillator and is connected
to port L of the IQ-mixer. The AWG signal is provided at two of its outputs. Both
output signals are attenuated by a 20 dB attenuator and are connected to either the I
or the Q port of the IQ-mixer. The mixed signal leaves the IQ-mixer at port R and
enters an amplifier. A 3 dB attenuator between Port R and the amplifier lowers the
signal such that, the amplifier works in its linear regime. The amplifier is connected
to a directional coupler. The directional coupler sends a small part of its input to
a spectrum analyser for calibration of the IQ-mixing. Finally the signal passes a
bandpass filter at the range of the qubit’s transition frequency and enters the power
combiner.

Detection: The cavity output cannot be recorded directly by a digitiser, because
the digitiser cannot handle signals above 50 MHz. Therefore the output signal is
mixed down to 10 MHz before recording it. The output line for the cavity on top
of the cryostat is connected to port R of the downmixer. Another signal generator,
AnaPico, is used as local oscillator for the downmixer and is connected to Port L.
The AnaPico provides a frequency that is 10 MHz above the EXG I frequency. The
downmixed signal leaves Port I and enters a DC-80MHz filter to obtain the down
mixed signal only. After filtering the signal is amplified by a factor of 125 and sent to
the digitiser.
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3.2.2 Qubit Characterisation Measurements

To achieve full control on the qubit, it has to be characterised first. The characterisa-
tion is done in well defined steps, that are introduced next.

First Qubit Test

First the cavity’s resonance frequency is measured at high power. The resulting
peak is referred to as high power peak. Next the power is decreased stepwise. At
sufficiently low power, the resonance frequency jumps to a higher frequency if the
qubit inside the cavity is working. The resulting peak is referred to as low power
peak. In case of a SQUID based transmon one may apply a magnetic field. The cavity
resonance frequency moves if the SQUID loop is working. The low power peak is
used to perform a dispersive read-out of the qubit’s state.

Figure 3.4 shows the power dependent resonance frequency shift of a cavity with
a single qubit placed inside it. The frequency starts to shift above −24 dBm from
the high power peak to the low power peak. The low power peak is measured for a
power below −35 dBm. The shift between both peaks is 2,26(4) MHz on average.

Qubit Transition Frequency

Next the qubit’s transition frequencyωq is determined by performing a two tone scan.
A saturation pulse is swept through the frequency range, where the qubit’s transition
frequency is expected. Immediately after each applied saturation pulse, the cavity’s
transition is measured at its low power peak. A wait time of one millisecond is
necessary between every measurement sequence. The waiting is essential to be sure,
that the qubit decays to its ground state before applying the next saturation pulse. If
the qubit’s transition frequency is hit, the read-out peak shifts to a lower frequency. As
a result a lower transmission is measured, revealing the qubit’s transition frequency.

Figure 3.5 shows the detection of a quantum bit at 3,89349(3) GHz. The transmit-
ted signal drops about 1,5 mV due to the dispersive shift as the qubit is excited. The
measured data points are fitted by a Lorentzian function, mainly to gain information
about the resonance frequency. Additional information is in the width of the peak,
which is related to the qubits lifetime and the power used for exciting the qubit. A
higher excitation power results in a broader peak. It is helpful to use a relatively
high excitation power to find the qubit’s transition frequency in a first scan. The
amplitude of the peak is a measure for the read-out contrast. The contrast can be
optimised by varying the excitation power and read-out power.

Flux Tunability

The transition frequency of a SQUID based transmon is tunable by applying a magnetic
field through the SQUID loop. Changing the transition frequency of the qubit varies
the cavity’s resonance frequency. The applied magnetic field is generated by the large
bias coils. The cavity’s resonance frequency is tracked for different current throug
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Figure 3.4: Power dependent resonance frequency shift of the cavity. In the upper
figure the cavity transmission is plotted for different input power of -20 dBm (blue),
-25 dBm (red), -30 dBm (green), -40 dBm (purple) and -50 dBm (orange). The data
points in the lower plot are gained from a frequency scan on the cavity for different
powers, like in the upper figure. Each point in the plot results from a Lorentzian fit
of the corresponding frequency scan, giving the central frequency of the measured
peak.
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Figure 3.5: Detection of a qubit. The transmitted signal at the cavity’s resonance
frequency drops as the qubit is excited. The data points are fit by a Lorentzian
function (red line) to get the transition frequency.

the coils to find the flux sweet spots of the qubit. At a sweet spot the flux noise is
minimised and the qubit works best.

Figure 3.6 shows the tunability of the cavity’s resonance frequency by applying a
current through the large bias coils. The data points are fitted by the function

f (I) = fc −
g2

fc − fq
q

| cos(πω(I − I0)/Φ0)|
p

1+ d2 tan(πω(I − I0)/Φ0)2
(3.1)

that results from calculations done in [28]. One obtains a low frequency and a high
frequency sweet spot for a current of -257(5)µA and 329(11)µA respectively. The
periodicity Φ0

2ω is 1170(20)µA. The other parameters like the coupling g = 0,8 GHz,
the asymetry parameter d = 0,9 , the central qubit transition frequency fq = 1,98 GHz
and the bare cavity resonance frequency fc = 9,36 show an error, that is orders of
magnitudes larger than the result from the fit.

In this case the measurement results are mainly helpful to estimate the sweet
spots and the periodicity. The same measurement can be done with tracking the
qubit frequency instead of the cavity frequency in principle. The qubit used in this
experiment is only detectable in a small frequency range around its high frequency
sweet spot. Therefore it is not possible to track the qubit along its full range. In
further measurements the qubit is parked next to the high frequency sweet spot.
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Figure 3.6: Flux tunability of the cavity frequency. The cavity frequency shifts by
varying the current through one coil outside the cavity. A fit (red line) determines
the required current for placing the qubit at one of its sweet spots.

3.75 3.80 3.85 3.90 3.95

Frequency (GHz)

11

12

13

14

15

T
ra

n
sm

it
te

d
 a

m
p

li
tu

d
e
 (

m
V

)

Figure 3.7: High power excitation measurement. Exciting the qubit at high power
reveals a transition to the second excited state next to the broad transition to the first
excited state.
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Anharmonicity α

The anharmonicity is measured by exciting the qubit at high power. Due to the high
power an additional transition appears, exciting the qubit’s next higher state. The
additional transition is a two photon transition. Two photons at a sligthly lower
frequency excite the second level of the qubit with very low probability. If very
high power is used, the two photon transition is more likely to happen and can be
detected. The difference between the single and the two photon transition is used to
gain information on the anharmonicity.

Figure 3.7 shows a very broad peak at f01 = 3,931 GHz, which is the transition
frequency for the first excited qubit state at the sweet spot. Two peaks appear
at f (H)02/2 = 3,782 GHz and f (L)02/2 = 3,778 GHz, describing a higher and lower two
photon transition to the second excited qubit state respectively. In theory only one
peak should appear for the two photon transition. The appearance of two peaks
may be related to charge noise inside the qubit. To estimate the anharmonicity the
average of f (H)02/2 and f (L)02/2 is taken first to get a mean two photon transition frequency
f02/2 = 3,780GHz. The anharmonicity α is given by [28]

α/2π= 2( f02/2 − f01) (3.2)

and results in -300,9(3) MHz for this qubit at the upper flux sweet spot. The capacitive
energy is related to the anharmonicity by the equation

α= −Ec/ħh (3.3)

directly. Since ωq and EC is known from previous measurement, the Josephson
energy EJ is calculated by

ħhωq =
p

8EC EJ − EC (3.4)

and gives EJ = 7,439(3)GHz. The ratio EJ/EC is 24,72(3).
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Figure 3.8: Rabi oscillation. The qubit’s transition frequency is 3,925 GHz. A
Gaussian pulse of 50 ns duration is used to excite the qubit at its transition frequency.
The power of the excitation pulse is increased resulting in oscillations between ground
and excited state of the qubit. The data points are fitted by a cosine function (red
line) to get the periodicity.

Rabi Oscillation

As soon as the qubit’s transition frequency is known, the setup is switched to the pulse
measurement setup. The transition frequency is convoluted with a Gaussian pulse of
different length and power. The Gaussian pulse should be as short as possible below
100 ns to achieve fast qubit control. Therefore the power of the pulse is increased
stepwise for different pulse lengths. After each pulse the qubit state is measured.
The excited state population is plotted against the power of the Gaussian pulse. One
observes a power dependent Rabi oscillation. From that the required power for
performing a π- and a π/2-pulse is known at shortest pulse length.

Figure 3.8 shows a Rabi oscillation for a 50 ns short pulse at different power. The
measurement is taken for a qubit transition frequency of 3,925 GHz, which is close
to the upper flux sweet spot. The oscillation is fit with a cosine function to get the
periodicity. From the periodicity the required power for a π-pulse and a π/2-pulse
follows. The periodicity is 0,81(5) V.
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Figure 3.9: T1-measurement. The measurement shows an exponential decay of the
excited state after excitation at t1 = 0. The data points are fitted by an exponential
function (red line) to determine the coherence time T1 = 8,0(4)µs.

Coherence Time T1

To measure the coherence time T1 the qubit is excited by a π-pulse first.

t1π RO
t

After the excitation one waits for a time t1 and then reads out the qubit’s state by
applying a read-out pulse (R0). One observes an exponential decay of the qubit for
increasing the time between excitation and measurement. The coherence time T1 is
determined by fitting an exponential function to the measured data.

Figure 3.9 shows the result for a T1-measurement. The data points are fitted by
an exponential function, revealing a coherence time of 8,0(4)µs.

Dephasing Time T2

The dephasing time determines the time it takes the qubit to lose its phase. The
measurement sequence consist out of a π/2-pulse, followed by a variable wait time
t2 and a second π/2-pulse.

ROπ/2 π/2 t2

t
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Figure 3.10: T2-measurement. The data shows an oscillation between the ground
and the excited state, that saturates in a superposition of both states. An exponential
fit multiplied with two cosine functions at different frequencies (red line) gives the
dephasing time T2 = 1,04(9)µs.

The qubit’s state is read out after the total sequence. This is repeated for different
wait times t2 to observe an exponential decay of the qubit state. Fitting the measured
data with an exponential decay times two cosine functions of different frequencies
gives the dephasing time T2. The exponential function describes the decay, the two
cosine functions describe two different transition frequencies due two charge noise.

Figure 3.10 shows the result of a T2-measurement. The qubit’s transition fre-
quency is at 3,925 GHz. The oscillation decays and is characterised by a dephasing
time of 1,04(9)µs resulting from the fit. At about 2µs the oscillation revives and is
damped completely afterwards.

Improvement By Techo

The determination of Techo is similar to the measurement sequence of the dephasing
time. An additional π-pulse is performed in the middle of the two π/2-pulses.

π/2 π π/2 techo RO
t

The π/2-pulses are separated by a variable time techo before the read-out is done. The
measured data is fit to an exponential decay multiplied with a cosine to determine
Techo. Due to this measurement sequence the dephasing is reduced.
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Figure 3.11: Techo-measurement. The measurement shows a damped oscillation
between the excited and the ground state. The decay time is given by an exponential
fit multiplied with a cosine (red line) and gives Techo = 6,0(3)µs

Figure 3.11 shows the data of a Techo-measurement for the qubit at 3,925 GHz.
The exponential decay of the oscillation is 6,0(3)µs.

Issues During Characterisation

The qubit transition frequency is very low and misses the designed average value of
6,9 GHz by more than 3 GHz. Therefore the detuning between cavity and qubit is
very large resulting in a low dispersive shift. By tuning the qubit to lower frequencies
this effect enhances until the qubit is not detectable anymore. In this measurements
the qubit can be tracked between 3,93 and 3,75 GHz. Below 3,75 GHz the qubit peak
is split sometimes or vanishes completely. For this reason further measurements can
only be done within this relatively small range.
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Figure 3.12: Square pulse and square pulse. In a) a normalised square pulse is
plotted. If the square pulse is extended periodically, it becomes a square wave,
depicted in b). A square wave is approximated by a finite Fourier series for n = 10 in
c) and n= 100 in d).

3.3 Fast Flux Pulse Measurements

Before measurements with fast flux pulses are presented, square pulses are discusses
shortly in theory. Next the realisation of a square current pulse is investigated
experimentally with an AWG. The finite sample rate of the AWG limits the sharpness
of the pulses. Current pulses of a rise time below 100 ns are sent to the fast flux coil
inside the hose for the final test. The pules are characterised in the final measurments.

3.3.1 A Square Pulse

A square pulse starts with an instantaneous change from no signal to a fixed amplitude.
The amplitude is held for a finite time until it falls back immediately to no signal. This
is shown in figure 3.12a. One can extend a square pulse periodically and calculate
the Fourier series

fω(t) =
4
π

∞
∑

0

sin((2k+ 1)ωt)
2k+ 1

(3.5)

describing a normalised square wave of frequency ω, depicted in figure 3.12b. The
square wave consists out of an infinite series of sinusoidal functions with growing
frequency and decreasing weighting. Since a square pulse is equivalent to a square
wave considering only half a period, it has the same infinite frequency components.
The figures 3.12c and 3.12d show a square wave that is approximated by a finite
Fourier series.

Imagine a square pulse is realised by a current I(t) applied to a coil. The coil
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transfers the current into a magnetic pulse B(t), ideally of the same shape, to control
a SQUID based qubit. However, the magnetic pulse may get deformed on the way to
the qubit, because of two main reasons. First, the circuit including the coil may act
as a filter. Second, there are conducting surfaces next to the coil, that may attenuate
the magnetic pulse due to eddy currents. Both situations result in attenuation and
phase shifting of some frequency components of the applied pulse. To solve this
problem one uses concepts from signal processing theory for linear and time invariant
systems.

3.3.2 Pulse Generation

The current through the small coil in the hose is provided by an arbitrary wave
generator (AWG). The AWG accepts a programmed signal in the range of −1,5 to
1,5 V at a sample rate of 200 MS/s. Therefore every second nanosecond the voltage
can be set to an arbitrary value within the given range. The AWG tries to realise the
output signal according to the programmed input. But this comes along with some
troubles, when realising a square pulse.

Due to the finite sample rate a perfect square pulse cannot be generated. This
fundamental problem is known as Gibbs phenomenon. Frequency components higher
than 0,5 GHz cannot be provided by the AWG. These high frequencies are missing in
the pulse, leading to ripples after the rise and fall. Gibbs ringing thus overshoots the
expected pulse amplitude by approximately 9 % maximally.

Additionally to Gibbs ringing, the AWG overshoots the pulse at the beginning to
handle the fast rise and undershoots it at the end to handle the fast fall. The AWG
output for an initial programmed square pulse is shown in figure 3.13. The overshoot
and undershoot are about 28 % more than the expected pulse amplitude and are
followed by some ringing for 25 ns approximately. The amplitude of this ringing is
more than one would expect from the Gibbs phenomenon only.

The strong ripples are a problem for the precise qubit control and should be
avoided. The first try to get rid of the ringing is to use signal processing theory as
explained in appendix B. But this approach does not work for the AWG. One reason
is the fundamental limit of the Gibbs phenomenon. Another one is that the AWG is
not an LTI system as some amplifiers or in general non-linear elements are part of it.
These elements might not be able to handle the fast change in signal and result in
additional overshooting.

A suitable solution is offered by replacing the sharp steps of the square pulse by
a smooth transition as short as possible. The shortest transition time without any
ringing is achieved so far by using the normalised function

p(t) =
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Figure 3.13: Rise and fall of different square pulses generated by the AWG. The
output of the AWG is measured for different rise times τr of 0 ns (blue), 4 ns (red),
8 ns (green), 12 ns (orange), 16 ns (purple) and 20 ns (pink). The additional rise
time τr is added twice to the pulse of length T = 1µs, once at the beginning and
once at the end.
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as pulse of length T with smooth rise time τr ≥ 16ns for programming the AWG.
The resulting pulse is measured for different rise time and is plotted in figure 3.13.

3.3.3 First Fast Flux Pulse Measurements

This subsection presents the first fast flux pulse measurements. There the idea is to
apply a fast flux pulse (FFP) during a T1-measurement.

t1π RO
t

FFP

A fast flux pulse is applied at a fixed time for a duration of some microseconds after
exciting the qubit. Optimally the qubit coherence time is not affected by the flux
pulse. Still an effect of the fast flux pulse is expected to be visible, since the cavity’s
resonance frequency and thus the read-out peak is shifted due to the flux pulse.

Before starting the measurement sequence the qubit is set to one of its high
frequency sweet spots by one of the two large bias coils. Then the measurement
sequence is started leading to the results depicted in figure 3.14. A flux pulse is
applied after 3µs for a duration of 4µs in the upper and after 1µs for a duration of
2µs in the lower figure 3.14. Both flux pulses are generated by an AWG. An instant
current (like the blue pulse in figure 3.13) is sent from the AWG to the fast flux
coil inside the hose. The flux pulse for the measurement in the upper figure 3.14
is generated by a current of 5,7 mA. Double the current is used for the flux pulse
in the measurement depicted in the lower figure 3.14. A data point is taken every
100 ns in both measurements. One can clearly see the effect of the flux pulse on
the read-out peak additionally to the exponential qubit decay. The read-out peak is
shifted towards the read-out frequency. The shift becomes stronger for stronger flux
pulses. After the pulse ends, the bare qubit decay is observed again. This indicates,
that the applied flux pulses have an effect on the qubits transition frequency but
keep the qubit state partially excited. The rise time of the flux pulse is roughly esti-
mated below 200 ns in the upper figure 3.14 and below 500 ns in the lower figure 3.14.

From the above measurements no information is gained about the shifted qubit
frequency. Therefore another measurement is taken, that tracks the qubit frequency.
A qubit spectroscopy is done during a fast flux pulse in discrete time steps.

RO
t

FFP EXP

The fast flux pulse (FFP) is swept through the spectroscopy scheme consisting out of
an excitation pulse (EXP) and read-out pulse (RO). The result is a shown in figure
3.15.

The qubit is parked at a transition frequency of about 3,81 GHz by one of the two
large bias coils. A fast flux pulse is generated for a duration of 20µsby the AWG (like
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Figure 3.14: Fast flux pulse during a T1-measurement. The flux pulse starts 3µs
(1µs) after the initial excitation of the qubit for a duration of 4µs (2µs) in the upper
(lower) measurment. A current pulse of 5,7 mA (11,4 mA) is sent through the small
coil in the hose to generate the flux pulse..
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Figure 3.15: Two tone scan of a fast flux pulse induced frequency shift. From blue
to red the read-out signal increases.

the blue pulse in figure 3.13). The provided current is 2,9 mA. The qubit is shifted
about 50 MHz away from an initial frequency after 1µs and jumps back as the pulse
ends. One can fit the rise of the pulse with an exponential function. The resulting
rise time is 0,8(2)µs.

The qubit does not exactly jump back to its initial frequency, the frequency
increases slightly along the whole scan. A possible reason for this effect might be a
too short wait time of 1µs between two single scans. If the wait time is too short,
residual magnetic field might be inside the cavity and influence the measurement of
the next scan. The read-out scheme stays constant in time and the magnetic pulse
is swept towards the end of the sequence for each scan. Therefore it might have
a bigger influence on the shift at the end of the whole scan. Another possibility
explaining the shift is that the hose might be magnetised over time by applying a
pulse in single direction.

The measurements so far are done without making use of the smooth AWG pulse
output shown in section 3.13. As a consequence the overshooting current at the
edges of the pulse might have a bad effect on the fast flux coil and decrease the rise
time of the magnetic field. Further measurements in the next section make use of a
smooth pulse.
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CHAPTER 3. FAST FLUX PULSES

3.3.4 Further Fast Flux Pulse Measurements

In the following fast flux pulse measurements a slightly different setup is used. Two
SQUID based transmon qubits are placed inside the cavity, one in the centre of the
cavity and one next to it as depicted in figure 3.1. Additional some sapphire is put
into the qubit slots at the edge of the cavity. The additional sapphire decreases the
cavity frequency and thus the detuning between cavity and qubit. As a result the
dispersive shift is increased, which improves the read-out.

The idea of putting two qubits inside the cavity is to let them interact with each
other. For an unknown reason it is not possible to detect the single qubits during
a spectroscopy measurement with these qubits in this setup. Only by accident an
unknown excitation is detected. The excitation is achieved by applying the excitation
and the read-out pulse of a two tone scan at the same time. Applying both pulses at
the same time is unwanted, because the qubit might get excited to a higher unknown
state. Luckily this unknown excitation is flux tunable and further investigations on
the fast flux pulse can be done. The excitation is detectable between 3,7 and 3,5 GHz,
where 3,7 GHz is the high frequency sweet spot.

First the behaviour of a long flux pulse is investigated. The applied smooth
flux pulse has a rise time of 100 ns. A two tone scan is done during a flux pulse is
applied as depicted in figure 3.15. This time a wait time of 1 ms between each scan
is introduced to compensate the shift due to residual fields from a previous scan. The
minimum of the whole scan is extracted to get a line plot.

Figure 3.16 shows the extracted minimum of a measurement, where a flux pulse
is applied for a duration of 100µs. After the sharp rise at 10µs the frequency is
expected to be constant. Here an increase of about 10 MHz is measured. The increase
of the frequency is related to an increase of magnetic field in the cavity. The field
inside the cavity can be increased due to two possibilities, one is connected to eddy
currents and one to the magnetisation of the hose. The instant rise of the magnetic
field causes eddy currents in the cavity walls counteracting the change in magnetic
flux through it. As the applied field turns constant, the flux through the cavity
walls is not changed anymore and the counteracting eddy currents decay. Another
cause might be a possible magnetisation of the hose. The constant magnetic field
magnetises the hose. As the field is turned off, the magnetisation might decay slowly.
Both effects increase the magnetic field in the cavity with time and shift the frequency
slightly.

The same effect is observed when the flux pulse is switched of as depicted in
figure 3.17. There the pulse is switched of at 1µs. The qubit’s transition frequency
jumps as expected, but does not stay constant. Again a slow drift is observed that
is related to eddy currents resulting from the fast change of flux through the cavity
walls. The drift in the opposite direction towards a lower frequencies does not depend
on whether the flux pulse is switched on or off. It depends whether the excitation is
detuned towards or away from its sweet spot. In figure 3.17 the excitation is detuned
above the sweet spot.

Finally a double flux pulse is applied during a spectroscopy scan. The rise time
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Figure 3.16: Scan of a long fast flux pulse towards the high frequency sweet spot.
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Figure 3.17: Scan after a fast flux pulse is switched off.
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Figure 3.18: Scan of a fast flux double pulse.

of the double flux pulse is set to 20 ns whenever the constant field changes. Figure
3.18 shows the measurement results. An initial flux pulse is applied at 10µs for a
duration of 20µs using a current of 2,86 mA. Then an inverted pulse follows for
another 20µs using the same peak current. The region at 30µs, between the first
and the second inverted pulse, is scanned in 200 ns steps. The jump from 3,708 to
3,588 GHz happens between two data points and thus it is faster than 200 ns. For
this jump a total current of 5,71 mA through the fast flux coil is applied.

The sequence starts and ends at the same frequency when no magnetic field is
applied. This indicates that the hose is not magnetised at the end of this sequence
and shows no hysteresis. Otherwise the frequency at the end would be shifted by a
constant value with respect to the initial frequency. Before the jump at 30µs starts,
an overshoot is detected. The AWG does not cause the overshoot, because the output
of the sequence is measured with an oscilloscope before attaching the AWG to the
fast flux coil. Like in the measurements before, the constant part of each pulse shifts
slightly due to eddy currents or a magnetisation effect. The second pulse is shifted
stronger than the first one, because it is farther away from the high frequency sweet
spot.
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3.4. SUMMARY

3.4 Summary

A magnetic hose can be used to send a magnetic pulse from the outside to the inside
of a microwave cavity such that, the transition frequency of a SQUID based transmon
qubit is controllable by the applied magnetic flux pulse. The characterisation of the
fast flux pulses show that a switching between 3,708 to 3,588 GHz below 200 ns
is possible sending a current of 5,71 mA through the fast flux coil. Since the AWG
is able to handle currents of 42 mAPP it should be possible to switch between any
possible transition frequency within this timescale. It is not possible to show full flux
tunability on this qubit, because it is undetectable at low frequencies.

A flux pulse shows a slight drift during its constant regime. It is supposed to be
related to a counteracting effect that decays over time. Such a counteracting effect
might be provided by eddy currents inside the cavity or magnetisation of the hose.
This effect, however, is on slow timescales and can be fixed by initially applying a
correction pulse, that takes the slight drift into account. If the drift depends mainly
on eddy currents it might be reduced by putting a second hose inside the cavity from
the opposite direction.

As shown in figure 3.14 the qubit stays partially in the excited state when a fast
flux pulse is applied. A similar measurement can be done for the dephasing time.
There the fast flux pulse should be visible by a phase jump of the oscillation. Since
the dephasing time of the used qubit is about 1µs, the measurement will not lead to
a result.

All measurements are done with a relatively bad qubit. It is supposed that, using
a better qubit will lead to clearer results and it will be able to test the tunability
in full range. Additionally the characterisation of the fast flux pulses will be more
precise and flexible. A clear tracking of the qubit will make characterisation of the
fast flux coil feasible, which is not possible with this qubit. Despite the relatively bad
qubit the experiments show a clear result. Fast flux control on a transmon qubit in a
three-dimensional cavity architecture is possible using a magnetic hose, that guides
a magnetic pulse from the outside of the cavity to the inside.
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Outlook

The result of this thesis is clear. A magnetic hose enables the transport of a fast flux
pulse into a microwave cavity to control the transition frequency of a quantum bit. In
the experiments so far a cavity made out of copper is used. The presented technique
is assumed to permit fast flux control even in superconducting cavities made out of
aluminium.

The main idea of guiding magnetic fields is always the same. Superconducting and
ferromagnetic elements have to be combined in the right way. A smart combination
of the required materials might improve the performance of the hose and change
the design such that thinner hoses can be built. Guiding and shaping magnetic fields
might find more applications than in a magnetic cloak [37], a magnetic hose [29] or
a magnetic wormhole [38].

Fast flux control on a quantum bit is a step closer to realise quantum simulations
using superconducting qubits and might lead one day to a universal quantum com-
puter. The next step will be to test the setup with one flux sensitive and one non
flux sensitive quantum bit. There the idea is to investigate the interaction between
these two quantum bits. The flux sensitive quantum bit can be tuned and thus both
quantum bits can be excited and detected individually. This scheme will be extended
to more quantum bits in arbitrary geometries to simulate spin chains [39] in the next
five years.
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Appendix A

Dispersive Hamiltonian

The Hamiltonian (1.9) is split into two parts Hac = H0 +H1, where:

H0 = ħhωca
†a+
ħhωa

2
σz (A.1)

H1 = ħhg(σ+ +σ−)(a+ a†) (A.2)

The unitary transformation U = e−i
H0
ħh t transforms Hac into the interaction picture

via
HI = iħhU̇†U + U†HacU (A.3)

resulting from the Schrödinger equation. Since [U , H0] = 0, this gives:

HI = ħhg
�

ei(ωc a†a+ωa
2 σz)t(σ+ +σ−)(a+ a†)e−i(ωc a†a+ωa

2 σz)t
�

(A.4)

One can show that:

σzσ+ = σ+ σzσ− = −σ−
σ+σz = −σ+ σ−σz = σ−

is valid and use [a, a†] = 1 to simplify

eiωc a†at aeiωc a†at = ae−iωc t ei ωa
2 σz tσ+e−i ωa

2 σz t = σ+eiωa t

eiωc a†at a†eiωc a†at = a†eiωc t ei ωa
2 σz tσ−e−i ωa

2 σz t = σ−e−iωa t

by rewriting the exponential functions into their series representations. Using these
relations gives:

HI = ħhg
�

σ+aei(ωa−ωc)t +σ−a†e−i(ωa−ωc)
�

+ħhg
�

σ+a†ei(ωa+ωc)t +σ−ae−i(ωa+ωc)t
�

(A.5)

For ∆=ωc −ωa = 0 one obtains:

HI = ħhg
�

σ+a+σ−a† +σ+a†ei2ωa t +σ−ae−i2ωa t
�

(A.6)
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The last two terms are neglected due to the rotating wave approximation. Therefore
the Hamiltonian in the interaction picture is

HI = ħhg(σ+a+σ−a†) (A.7)

and the full Hamiltonian gives the Jaynes-Cummings Hamiltonian:

HJC = ħhωca
†a+
ħhωa

2
σz +ħhg(σ−a† +σ+a) (A.8)

From first order perturbation theory follows, that there are no energy shifts
E(1)n = 〈n(0)|V |n(0)〉 in first order approximation. Thus second order terms have to
be considered next. Girvin presents a way to calculate the corresponding Hamiltonian
in his lecture notes [40] starting at page 77. The Hamiltonian H̃JC = UHJC U† is
calculated by assuming a unitary transformation U = e ˆeta that deletes all first order
terms. Using the Baker-Campbell-Hausdorff formula to second order gives:

H̃JC ≈ H0 +HI + [η̂, H0] + [η̂, HI] +
1
2
[η̂, [η̂, H0]] +

1
2
[η̂, [η̂, HI]] (A.9)

The lowest order off-diagonal term has to be 0. Therefore η̂ has to satisfy [η̂, H0] =
−HI , which corresponds to:

η̂=
g
∆

�

aσ+ − a†σ−
�

(A.10)

Therefore the approximated Hamiltonian is:

H̃JC = H0 −
1
2
[η̂, [η̂, H0]] (A.11)

Next the commutator

[η, H0] =
g
∆
(aσ+ − a†σ−)(ħhωca

†a+
ħhωa

2
σz)−

− (ħhωca
†a+
ħhωa

2
σz)

g
∆
(aσ+ − a†σ−) (A.12)

is calculated, giving:

[η, H0] =
ħhg
∆

�

ωc(aσ+ + a†σ−)−ωa(aσ+ + a†σ−)
�

= (A.13)

= −ħhgq(aσ+ + a†σ−) (A.14)

The expression

[η, [η, H0]] =
g
∆
(aσ+ − a†σ−)

�

−ħhg(aσ+ + a†σ−)
�

−

−
�

−ħhg(aσ+ + a†σ−)
� g
∆
(aσ+ − a†σ−) (A.15)
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APPENDIX A. DISPERSIVE HAMILTONIAN

can be simplified using the relations from above and:

σ+σ+ = 0 σ+σ− = |1〉 〈1|
σ−σ− = 0 σ−σ+ = |0〉 〈0|

This gives:

[η, [η, H0]] = −
ħhg2

∆

�

2a†aσ+σ− − 2a†aσ−σ+ + 2σ+σ−
�

=

= −
ħhg2

∆

�

2a†aσ+σ− − 2a†aσ−σ+ +σ+σ− −σ−σ+ +1
�

=

= −
2ħhg2

∆

�

a†aσz +
1
2
σz +

1
2
1

�

(A.16)

The relative energy shift is dropped and it follows:

[η, [η, H0]] =
−2ħhg2

∆

�

a†a+
1
2

�

σz (A.17)

The result is put into equation (A.11) to give the Hamiltonian in the dispersive
limit:

HJC = ħhωca
†a+
ħhωa

2
σz +
ħhg2

∆

�

a†a+
1
2

�

σz
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Appendix B

Signal Processing Theory
Considering LTI Systems

An initial signal I(t) is sent and underlies the unknown influence of a linear and time
invariant (LTI) system. The received signal R(t) might be deviating from the initial
signal. In other words, the system transfers the initial signal I(t) to an received
signal R(t). For this reason, the system is characterised by an LTI transfer function
H(t) that is unknown. Under this assumption the received signal is given by

R(t) = I(t) ∗H(t) =

∞
∫

−∞

I(τ)H(t −τ)dτ , (B.1)

which is the convolution of I(t) and H(t).
One can see that the received signal would correspond to the initial signal, if a

corrected signal
Icor r(t) = I(t) ∗H−1(t) (B.2)

is applied. Obviously this is true since H−1(t) ∗H(t) = δ(t), where δ(t) is the Dirac
delta function. As a consequence any effect of the system can be counteracted, if the
system’s transfer function or its inverse is known.

The system’s transfer function can be directly measured, if I(t) = δ(t).In this
case R(t) = H(t).Since a delta function is hard to realise experimentally, one has to
find a different solution. Usually I(t) = Θ(t) is used, meaning the input signal equals
the Heaviside function. The Heaviside function is realised by instantly switching on
a constant signal. As a result the output signal equals

R(t) = Θ(t) ∗H(t) =

t
∫

0

H(τ)dτ , (B.3)

which is the integral of the system’s transfer function. The derivative of R(t) then
gives the system’s transfer function. To compensate the effect of the system one
calculates the convolution of the signal of choice and the system’s inverse transfer
function to find the corrected signal.
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A more general and efficient way is to conclude the system’s transfer function
from solving the convolution integral in Fourier or Laplace space. The convolution of
two functions in time space corresponds to a multiplication in Fourier space:

I(t) ∗H(t)' I(iω)H(iω) (B.4)

Therefore

H(iw) =
R(iω)
I(iω)

(B.5)

for an arbitrary initial signal.
From a numerical point of view, it is easy to compute the Fourier transform with

the FFT-algorithm. Solving the convolution numerically costs more resources and
therefore takes more time. Thus it is preferable to calculate the system’s inverse
transfer function in Fourier space and bring it back to time space with the inverse
Fourier transform.
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