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Abstract

In this thesis a chiral waveguide was simulated and analysed, which is sensitive on
the circular polarisation of the incoming signals. The waveguide either reflects the in-
coming signal or allows it to propagate through. This leads to an asymmetric behaviour
in transmission. To launch a signal, the waveguide was combined with spiral antennas
in the simulations. A�er everything was put together, transmission from the one to the
other antenna was found to be symmetric, which is also implied by the antenna theo-
rem.
Microwave cavities made from aluminium and copper were measured in reflection con-
figuration at room temperature. Di�erent setups for the coupling to the cavities were
probed. Each of the setups was measured using coupling pins of di�erent length. This
was done in the under-coupled, as well as in the over-coupled regime. The expected re-
lation between the coupling quality factor Qc and the pin length was seen. Qc showed
an exponential behaviour in the under-coupled and an approximate linear behaviour
in the over-coupled regime. The extracted information provides knowledge to design
coupling pin length in the future.
U-shaped stripline resonators made from aluminium and niobiumwere placed in a rect-
angular waveguide. The setup was cooled down to achieve superconductivity. The qual-
ity factors (internal and coupling) and the resonance frequency of the resonators were
determined by measurements. The striplines were mounted such that they were criti-
cally coupled. Measurements were performed with the striplines placed in a copper and
an aluminium waveguide. Simulations performed with HFSS show general agreement
on the resonance frequency and the coupling quality factor. A developed circuit model,
representing the stripline as a transmission line shows good agreement and yields a
resonance frequency in the measured range. Internal quality factors of about 7⇥ 105
to 1⇥ 106 were found for the niobium striplines in the single photon limit and between
1⇥ 105 and 6⇥ 105 for the aluminium ones. A trend for increasing quality factors with
increasing input powers was measured. Performing temperature ramp up measure-
ments to around 1K showed, that the internal quality factor of the niobium striplines
increases, while the striplines made from aluminium showed a decreasing Qi .
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Chapter 1

Introduction

�antum computation promises to solve problems not feasible using classical com-
puters [1]. In particular quantum computers are superior in solving systems, which
follow the laws of quantum mechanics [2]. With classical computers they can only be
solved using a lot of computation time in combination with approximations [2].
Instead of classical bits of a classical computer, which can be either in the state 0 or 1,
quantum bits, or qubits, are used in quantum computers. They can be in an arbitrary
superposition of 0 and 1, which is described by the laws of quantum physics [1]. There
are di�erent approaches on what systems can be used as quantum bits. Some basic
requirements have to be considered [3]. �bits have to follow the laws of quantum
mechanics and are, similar to bits, two level systems. It has to be possible to initialise,
measure and perform arbitrary operations on the qubits. This leads to the requirement
of a set of single qubit gates. In addition, their coherence time is required to be a lot
longer than the gate time. To do quantum computation then, it is su�icient to have a
universal two qubit gate [4].
One of the most successful approaches is to use ions as qubits and use the discrete
energy states of its (outer) electron as the required two level system [5]. Ions carry dis-
advantages, because the ion itself cannot be customised, as it is given by nature. Some
of the disadvantages can be overcome by using superconducting qubits [5]. The two
level system is provided by the non linearity of a Josephson junction. Superconducting
qubits o�er advantages, as they can be customised in their properties, but have to be
fabricated. For instance exotic properties, not found in natural atoms, can be designed
[6]. Also the strong coupling regime can be investigated, which is not possible with
weakly coupled natural atoms [6]. However the fabrication is quite a challenge.
To do computation superconductivity is required, therefore the samples have to be
cooled down, to a few Kelvin or below. To communicate with these qubits microwaves
are required, with a frequency in the range of several GHz. This frequency prevents
thermal e�ects to play a major role, at the base temperature of the cryostat. Given the
frequency and followed by the size of structures, it is possible to see them with the bare
eye, giving advantages in the assembling process.
A challenge is to couple the qubits in a controlled way to the environment. This is neces-
sary to perform operations on the qubit and to do the readout [7]. In this thesis stripline
resonators were investigated, which can be used for readout. Of particular interest were
the internal losses, compared to the coupling to the environment, also called coupling
losses. Coupling losses include losses to the read out circuit, and should be a lot higher
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Chapter 1 1. Introduction

than internal losses [8], which lead to a loss of information. The stripline resonators
are discussed in chapter 7. To extract their properties a fi�ing routine was developed
based on the theoretical model, discussed in chapter 6. In this chapter also the mea-
surement of microwave cavity resonators is discussed. Their measurement results can
be extracted with a similar readout routine as discussed for the resonators in chapter
7. Moreover it is investigated, to which extent simulation results can be trusted. They
give important information on the design considerations for future setups. In addition
they allow to test setups, that are not possible to build in experiments and give useful
insight. Simulations were run and compared to the measurement results, which got also
compared to predictions from theory. This was done for the resonators in chapter 6 and
7.
In the first chapter of this thesis, a brief background for describing transmission lines is
presented. Based on this, the 3D waveguide is discussed, as a special case of a 3D trans-
mission line. The rectangular and the circular waveguides are discussed in detail. As it
is not feasible to solve all systems rigorously using Maxwell’s equations, a background
about network analysis is given in the next section. This concludes the theoretical chap-
ters. Following this, in chapter 5, the design of a chiral waveguide is presented. It either
allows transmission or reflects a signal, depending of its circular polarisation. As this
asymmetry was li�ed, when combing the waveguide with spiral antennas, required for
the feed, this project did not leave the simulation stage.
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Chapter 2

Transmission lines

Transmission lines consist of two conductors, allowing electromagnetic waves to
propagate along them. Starting with Kirchho�’s laws, solutions can be found and are
presented in this chapter. A general solution is obtained and also the special case of a
terminated transmission line is discussed.
The discussion is based on [9], where a more profound description is given.

2.1 Fundamentals

A transmission line typically consists of two conductors with a dielectric in between.
A circuit model for an infinitesimal part of a transmission line is shown in figure 2.1,
where R and L is the resistance respectively inductance per unit length for both con-
ductors, while G and C represent the shunt resistance and capacitance per unit length.

TL - infinitesimal piece

R∆z

G
∆

z

L∆z C
∆

z

+

-

+

-

v(z,t) v(z+∆z,t)

i(z+∆z, t)i(z, t)

∆z

Figure 2.1: Circuit model of an infinitesimal part of a transmission line.

Applying Kirchho�’s laws to the circuit yields two di�erential equations, one for the
voltage and one for the current derivation with respect to the position:

v(z, t)� v(z +�z, t) = R�z j(z, t) + L�z
@ j(z, t)
@ t

(2.1)

j(z, t)� j(z +�z, t) = G�zv(z +�z, t) + C�z
@ v(z +�z, t)

@ t
(2.2)

In this equation j is the current and v the voltage. Taking �! 0 leads to di�erential
equations. Assuming that the time dependence is of a form similar to sin(!t), where
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Chapter 2 2. Transmission lines

! is the frequency and t the time, we find:

dV (z)
dz

= �(R+ i!L)I(z) (2.3)

dI(z)
dz

= �(G + i!C)V (z) (2.4)

The above system is solved by these two equations simultaneously:

d2V (z)
dz
� �2V (z) = 0 (2.5)

d2I(z)
dz
� �2I(z) = 0 (2.6)

Here � represents the complex propagation constant:

�= ↵+ i�=
∆
(R+ i!L)(G + i!C) (2.7)

From equations 2.3 and 2.4 propagating wave solutions follow:

I(z) = I+
0

e��z + I�
0

e�z, (2.8)

with e±�z representing the propagation. The equation for the voltage is of the same
form. Inserting equation 2.4 into the expression 2.8 and comparing to V = Z

0

I yields:

Z
0

=
R+ i!L
�

=

vt R+ i!L
G + i!C

(2.9)

In addition we find that:
V+

0

I+
0

= Z
0

= �
V�

0

I�
0

(2.10)

Furthermore we obtain the following relation for the wavelength � on the transmission
line:

� =
2⇡

�
(2.11)

This is linked to the phase velocity vp:

�=
!

vp
(2.12)

In the lossless case ↵ = 0 in equation 2.7, as a result of this only the propagating part
remains. For that case Z

0

simplifies to
p

L/C .

2.2 Terminated lossless transmission line

Here terminating a lossless transmission line with a load is considered. The load
has a di�erent impedance than the transmission line, leading to reflections at the load.
A�erwards the special case of the load being an open is discussed.
A load, ZL is placed at the position z = 0, see figure 2.2.
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Chapter 2 2.2. Terminated lossless transmission line

TL - infinitesimal piece

0-L

Z
L

V(z), I(z)

24

Figure 2.2: Load at the end of transmission line with length L.

We consider a voltage source generating an incident wave of the form V (z) = V+
0

e�i�z .
Z

0

relates the voltage to the current (equation 2.10). At the load the impedance changes
to ZL and the current-voltage relation, ZL = V (z = 0)/I(z = 0), has to be full filled. As
a consequence a part of the incident wave will be reflected, such that we end up with:

V (z) = V+
0

e�i�z + V�
0

ei�z (2.13)

The expression for the current follows using equation 2.10, having a � instead of the +
sign.
Inserting and rearranging the current-voltage relation at the load, ZL = V (0)/I(0). We
obtain:

V�
0

=
ZL � Z

0

ZL + Z
0

V+
0

⌘ �V+
0

, (2.14)

where equation 2.10was used. � is the voltage reflection coe�icient. Nowwe can express
the voltage along the transmission line as:

V (z) = V+
0

(e�i�z + � ei�z) (2.15)

The influence of the load is seen along the transmission line. The impedance of the load,
seen at location z on the transmission line, changes in dependence of z. The so called
input impedance, which is the impedance seen at the beginning of the transmission
line, �L in this case, is given by:

Zin =
V (�L)
I(�L)

=
1+ � e�2i�L

1� � e�2i�L
Z

0

= (2.16)

=
ZL + i Z

0

tan (�L)
Z

0

+ i ZL tan (�L)
Z

0

(2.17)

Case of ZL =1
In the special case of an open, ZL =1, the voltage and current on the transmission

line, equation 2.15, simplify to:

V (z) = 2V+
0

cos(�z) (2.18)

I(z) = �
2iV+

0

Z
0

sin(�z) (2.19)

Furthermore, the input impedance, equation 2.17, simplifies to:

Zin = �i Z
0

cot(�L) (2.20)

These expressions are plo�ed in figure 2.3 for di�erent lengths of the transmission
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0.0 0.25 0.5 0.75 1.0
l(�)

-1.0

-0.5

0.0

0.5

1.0

V(l)/(2V+
0 )

I(l)Z0/(-2 i V+
0 )

(a)

0.0 0.25 0.5 0.75 1.0
l(�)

-4

-2

0

2

4

Zin/ Z0 (l)

(b)

Figure 2.3: (a) Voltage and current distribution, (b) input impedance of an open lossless trans-
mission line in dependence of its length, l , in comparison to the wavelength.

line in terms of the incident wave’s wavelength. For a transmission line with a length of
multiple of �/2, resonances occur, as Zin goes to infinity. For this case the current at the
end of the transmission line is always zero, with the number of nodes depending on the
order of the resonance. The maximum of the current is in the middle of the transmission
line, L/2. The voltage has a node in the middle and reaches a maximum at both ends.
In case of an open on both sides of the transmission line, the same dependencies are
found for a length of �/2. The input impedance goes to infinity, the current and voltage
have the discussed form.
A later derived circuit model for the stripline resonator (chapter 7) will be based on the
discussions in this chapter. In the following chapter a 3D waveguide, being the special
case of a 3D transmission line, is discussed.
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Chapter 3

Waveguide theory

The following chapter is based on [9], where a more profound description of the
discussed is given.
A waveguide is the special case of a 3D transmission line. Its purpose is to transmit,
or guide, electromagnetic waves from one end to the other. In the discussed case, the
electromagnetic waves are in the regime of microwave frequencies.
In this chapter solutions of Maxwell’s equation will be presented, which give solutions
for the electric and magnetic field inside of the waveguide. At first, more general, for
waveguides with an arbitrary shape, but uniform in the propagation direction. Based
on that the rectangular and the circular waveguide will be discussed.
We distinguish between three di�erent kinds of modes, the TEM (transverse electro-
magnetic) mode, which has no electric or magnetic field component in the propagat-
ing (longitudinal) direction. In contrast to the TEM mode there are the TE (transverse
electric) and the TM (transverse magnetic) modes which have either only magnetic or
electric field components in the propagation direction.

3.1 General solution

Waveguide theory - general waveguide

x

y

z

x

y

z

(a) (b)

Figure 3.1: Sketch of a single conductor 3D waveguide, filled with a dielectric. With (a) and
without a central conductor (b). The propagation direction is the z direction.

In this chapter a waveguide with an arbitrary, closed shape in the x , y plane, uni-
form and infinite in the z direction, is discussed (see figure 3.1). It is either hollow or

7



Chapter 3 3. Waveguide theory

filled with a dielectric. Furthermore, it can have a central conductor of arbitrary, closed
shape in the x , y plane, not touching the outer conductor of the waveguide, uniform
and infinite in the z direction. It is assumed that the waveguide is a perfect electric con-
ductor (PEC), such that no losses are present and the propagation constant becomes
�= �. Furthermore it is assumed, that the fields are harmonic in time:

~E(x , y, z, t) = ~E(x , y, z)ei!t (3.1)

and
~H(x , y, z, t) = ~H(x , y, z)ei!t (3.2)

With the independence of field in the x � y plane from the z position, the electric field
can be split in transverse, ~e(x , y), and longitudinal, ~ez(x , y), components. The reason
for this independence is, that the waveguide looks identical, independent from the z
coordinate. Therefore the field must not depend on the z position. Using this we arrive
at the following expression:

~E(x , y, z) = [~e(x , y) + ˆzez(x , y)]e�i�z (3.3)
~H(x , y, z) = [~h(x , y) + ˆzhz(x , y)]e�i�z (3.4)

The magnetic field, ~H , follows analogue. Assuming that there are no sources in the
waveguide, Maxwell’s equations reduce to:

r⇥ ~E = �i!µ ~H (3.5)

r⇥ ~H = i!✏~E (3.6)

Using these equations and that the only z-dependency is of e�i�z , we obtain the follow-
ing relations:

Hx =
i

k2

c

Å
!✏
@ Ez

@ y
� �@ Hz

@ x

ã
(3.7)

Ex =
�i
k2

c

Å
�
@ Ez

@ x
+!µ

@ Hz

@ y

ã
(3.8)

Similar equations follow for the y components. kc is the cuto� wave number given by:

kc =
∆

k2 � �2 (3.9)

3.1.1 TEM modes
For the TEM modes Ez = Hz = 0. In this case nontrivial solutions exist, if kc = 0.

This can be also seen following equations 3.5 and 3.6:

�2Ex =!2µ✏Ex (3.10)

and leads to:
�=!

p
µ✏= k (3.11)

Using the Helmholtz equation in combination with equation 3.10 we obtain:
Ç
@ 2

@ 2

x

+
@ 2

@ 2

y

å
Ex = 0 (3.12)
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Chapter 3 3.1. General solution

Similar relations can be found for the y component, as well as the magnetic field. Thus
the transverse fields have the same form as the fields between two conductors. More-
over, the electric field can be expressed as the gradient of a scalar potential (e(x , y) =
�rt�(x , y)). Hence the voltage between the conductors can be found as the potential
di�erence and the current by applying Ampere’s law. Furthermore, it can be shown that
the wave impedance, calculated by Ex/Hy , equals the vacuum wave impedance.
The solutions for the fields have the same form as the field between two conductors,
thus TEMmodes can only exist in the two conductor case. In case of a single conductor
no voltage di�erence is possible, which prevents TEM modes from propagating.

3.1.2 TE modes
In the case of TE modes, Ez = 0 while Hz 6= 0. Equation 3.7 and the equivalent

expression for the y component have to be solved, to obtain expressions for the fields.
These expressions simplify due to Ez = 0:

Ex = �
i!µ
k2

c

@ Hz

@ y
(3.13)

Furthermore, kc 6= 0 is a requirement, as Hx would diverge otherwise (see equation
3.7). To solve these expressions Hz has to be found, which is then su�icient to solve
all the transverse field components. Similar to the TEM case this is done by solv-
ing the Helmholtz equation, taking the boundary conditions into account. Using the
known decomposition for the transverse and longitudinal components, Hz(x , y, z) =
hz(x , y)e�i�z , it reduces to the following equation:

Ç
@ 2

@ 2

x

+
@ 2

@ 2

y

+ k2

c

å
hz = 0 (3.14)

The wave impedance is now frequency dependent:

ZT E =
Ex

Hy
=

k⌘
�

(3.15)

with ⌘ being the free space impedance.

3.1.3 TM modes
The TMmodes are solved the same way, the only di�erence being that Ez 6= 0, while

Hz = 0. Therefore a solution for Ez has to be found, which can again be separated in
transverse and longitudinal components, Ez(x , y, z) = ez(x , y)e�i�z .
The solution is obtained using the Helmholtz equation:

Ç
@ 2

@ 2

x

+
@ 2

@ 2

y

+ k2

c

å
ez = 0 (3.16)

The wave impedance is given by:

ZT M =
Ex

Hy
=
�⌘

k
(3.17)

The scaling factor is the inverse of the TE mode.

9



Chapter 3 3. Waveguide theory

3.2 Rectangular waveguide

x

y

z

a

b

Waveguide theory - rectangular waveguide

Figure 3.2: Sketch of the rectangular waveguide. It can be hollow or filled with a dielectric.

In this chapter a waveguide with a rectangular cross section is discussed. It is
sketched in figure 3.2, assuming a > b. The waveguide can be hollow or filled with
a dielectric, the walls are again PEC and it is infinitely long.
Due to the case of just a single conductor being present, TEM modes cannot exist, as
those need two conductors to propagate.

3.2.1 TE modes

With the knowledge of the boundary conditions it is possible to solve the Helmholtz
equation (3.14) from the previous chapter. Therefore specific expressions for the E and
H field are obtained. The method to solve the partial di�erential equation is through
separation of variables, also in the transverse field, such that: hz(x , y) = X (x)Y (y).
Pu�ing that into equation 3.14 leads to:

1

X
d2X
d x2

+
1

Y
d2Y
d y2

+ k2

c = 0 (3.18)

There are two independent parts, one depending on x and the other one on y . To satisfy
this for all values, both parts must be equal to a constant, such that k2

x + k2

y = k2

c .
A general solution for this system is given by:

hz(x , y) = (Acos kx x + B sin kx x)(C cos ky y + D sin ky y), (3.19)

with A, B, C and D being constants. Due to the boundary conditions the tangential
electric field components on the walls have to vanish. This condition cannot be directly
applied to the magnetic field, therefore we use relation 3.8, which links the magnetic
to the electric field. A�er applying the boundary conditions the following solution is
obtained:

hz(x , y) = Amn cos

m⇡x
a

cos

n⇡y
b

(3.20)

Required by the boundary conditions, kx = m⇡/a and ky = n⇡/b, with m, n being
integers. Combining the above equation with equation 3.8, an expression for the electric
field in x direction is obtained. To get the y component, the equivalent equations for
the y direction are taken. The electric field components in the x and in the y direction,

10



Chapter 3 3.3. Circular waveguide

including the propagation in the z direction, are given in the following expressions:

Ex =
i!µn⇡

k2

c b
Amn cos

m⇡x
a

sin

n⇡y
b

e�i�z (3.21)

Ey = �
i!µm⇡

k2

c a
Amn sin

m⇡x
a

cos

n⇡y
b

e�i�z (3.22)

Similar equations follow for the magnetic field components. The propagation constant
� is given by:

�=
∆

k2 � k2

c =

vt
k2 �
⇣m⇡

a

⌘
2

�
⇣n⇡

b

⌘
2

(3.23)

For � being real, or k2 > k2

c , one refers to propagation modes, while for � being imagi-
nary the modes are exponentially a�enuated. This leads to the formulation of a cuto�
frequency for each mode, given by:

f c
mn =

kc

2⇡
p
µ✏
=

1

2⇡
p
µ✏

vt⇣m⇡
a

⌘
2

+
⇣n⇡

b

⌘
2

(3.24)

For a frequency above the respective cuto� frequency a mode can propagate. The TE
mode with the lowest cuto� frequency, also called the fundamental mode, is the TE

10

mode with f c
10

= 1/(2a
p
µ✏). The wave impedance is given by 3.15.

3.2.2 TM modes
As Hz = 0 here, we solve the Helmholtz equations directly for the E field, where ex-

actly the same solutions as in equation 3.19 are obtained. The only di�erence is that the
boundary conditions, which have to be the same, can be applied directly. The obtained
expressions for the x and y component of the electric field are:

Ex = �
i�m⇡
k2

c a
Bmn cos

m⇡x
a

sin

n⇡y
b

e�i�z (3.25)

Ey = �
i�n⇡
k2

c b
Bmn sin

m⇡x
a

cos

n⇡y
b

e�i�z (3.26)

The expressions for the propagation constant and cuto� frequencies are identical to the
case of the TE modes. However the di�erence here is, that in contrast to the TE modes,
m, as well as n, have to be 1 or above for the field components not to vanish. This makes
the TM

11

the lowest one in frequency. That can be easily checked for the electric field
components using 3.25 and 3.26, and is also true for the magnetic field. Therefore the
TE

10

mode is the fundamental one in any rectangular waveguide. The wave impedance
is given by 3.17.
The modes and their respective cuto� frequencies in comparison to the fundamental
mode are plo�ed in figure 3.3. In figure 3.4 the shape of the fields for the first modes
are plo�ed.

3.3 Circular waveguide

For a waveguide with circular shape, equivalent to a rectangular one, only TE and
TMmodes can propagate due to the lack of the central conductor. In figure 3.5 a circular

11



Chapter 3 3. Waveguide theory

Waveguide theory - cutoff rectangular waveguide

fc / fc(TE10)
0 1 2 3 4

TE10 TE20

TE11 
TM11

TE21 
TM21

TE30

TE31 
TM31

a = 2b

TE01

24

Figure 3.3: Cuto� frequencies for di�erent modes in a rectangular waveguide, compared to the
fundamental mode cuto�, for the case a = 2b.

Figure 3.4: E and B field in a rectangular waveguide for di�erent modes. The E field is depicted
with solid lines, the B field with dashed ones. From: [9], figure 3.9.

waveguide with the radius a is sketched. It is useful to work in cylindrical coordinates.
Again conditions following from equation 3.5 and 3.6 apply and have to be worked out
in cylindrical coordinates.

3.3.1 TE modes

For the TE modes Hz has to be solved, which again is divided into a transverse and
a longitudinal part, such that Hz = hz(⇢,�)e�i�z . Applying the Helmholtz equation in
cylindrical coordinates leads to:

Å
@ 2

@ ⇢2

+
@

⇢@ ⇢
+

@ 2

⇢2@�2

+ k2

c

ã
hz(⇢,�) = 0 (3.27)

Similar to the rectangular waveguide, hz is separated into hz(⇢,�) = R(⇢)�(�), leading
to two independent parts. For �(�) a general solution, already using the required 2⇡

12



Chapter 3 3.3. Circular waveguide

Waveguide theory - circular waveguide

x

y

z

a

!
ɸ

Figure 3.5: Sketch of the circular waveguide, which can be hollow or filled with a dielectric.

periodicity, can be wri�en as

�(�) = Asin(n�) + B cos (n�), (3.28)

with n being an integer. Inserting this solution for the �(�) part into 3.27, we identify
Bessel’s di�erential equations. Thus R(⇢) has to be of the form

R(⇢) = CJn(kc⇢) + DYn(kc⇢),

where kc, C , D are constants and Jn, Yn are the Bessel functions of first and second kind.
Due to Yn diverging at 0, it cannot be accepted as a solution, leading to the following
solution for the whole system:

hz(⇢,�) = (A0 sin(n�) + B0 cos n�)Jn(kc⇢) (3.29)

The boundary conditions are, again as in the case of the rectangular waveguide, that
the tangential electric field has to vanish. To apply them, we first use the equivalent for
equation 3.8 in cylindrical coordinates. A�erwards we are able to apply the boundary
conditions. To satisfy them it is required that:

J 0n(kca) = 0, (3.30)

, where J 0n is the derivative of the Bessel function. Therefore J 0n(p
0
nm) = 0, with p0nm being

the m-th root of the n-th order derivative of the Bessel function. This leads to:

kc,nm = p0nm/a (3.31)

This has to be computed to get the cuto� wave number. The roots of the Bessel func-
tions can be found in literature (for example [9], table 3.3) and it is obtained that the
fundamental TE mode is the TE

11

mode.
The cuto� frequencies are given by:

f c
nm =

p0nm

2⇡a
p
µ✏

(3.32)
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Chapter 3 3. Waveguide theory

The final field components are obtained using 3.6 and 3.29, also including the e�i�z prop-
agation in z directions:

E⇢ = �
i!µn
k2

c⇢
(Acos n� � B sin n�)Jn(kc⇢)e�i�z (3.33)

E� = �
i!µ
kc
(Asin n� � B cos n�)J 0n(kc⇢)e�i�z (3.34)

For the components describing the magnetic field, similar equations follow.

3.3.2 TM modes
To solve the TM modes, where Hz = 0, identical steps to the TE mode calculation

are carried out for the electric field instead of the magnetic field. Everything is identical
until the boundary conditions are applied, which can be directly applied as they concern
the E field.
Using the equivalent of equation 3.29 for the E field we apply the boundary conditions
to obtain:

Jn(kca) = 0, kc =
pnm

a
(3.35)

Where pnm is the m-th root of the n-th Bessel’s function. The cuto� frequency is found
using the cuto� wave number:

f c
nm =

pnm

2⇡a
p
µ✏

(3.36)

Comparing the cuto� frequencies, we see that the fundamental mode for the circular
waveguide is the TE

11

mode, followed by TM
01

. In figure 3.6 the cuto� frequencies of
the first modes in comparison to the TE

11

mode are plo�ed. The expressions for the field

TM21

fc / fc(TE11)

0 1 2 3

TE11 TE21

TM01 TE01 
TM11

TE31

TE41

TE12

TM02

Waveguide theory - cutoff circular waveguide

Figure 3.6: Cuto� frequencies for di�erent TE and TMmodes in a circular waveguide, compared
to the fundamental mode cuto�. Similar to: [9], figure 3.13.

components of the transverse electric field are given in the following:

E⇢ = �
i�
kc
(Asin n� + B cos n�)J 0n(kc⇢)e�i�z (3.37)

E� = �
i�n
k2

c⇢
(Acos n� � B sin n�)Jn(kc⇢)e�i�z (3.38)

For the components describing the magnetic field, similar equations follow. In figure
3.7 the shape of the fields for the first modes are plo�ed.
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Chapter 3 3.3. Circular waveguide

Figure 3.7: E and B field in a circular waveguide for di�erent modes. The E field is depicted
with solid lines, the B field with dashed ones. From: [9], figure 3.14.

In this and the chapter before basic elements used for circuits were discussed rigorously.
In the following chapter, methods of analysing more complex networks consisting of
several devices are given.
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Chapter 4

Network analysis

Methods and considerations for analysing networks are presented in this chapter. In
contrast to before, a network consisting of multiple basic elements (e.g. a transmission
line) is considered. Typically power flows or voltages between terminals are of inter-
est, which are then su�icient to characterise the network and avoid solving Maxwell’s
equations for the whole system. The following chapter is based on [9], where a more
profound description is given.
In the case of low frequencies, where the dimensions of the circuit are below the wave-
length, the phase delay can be neglected. Therefore quasi static solutions apply, such
that currents and voltages can be assigned conventionally. This is di�erent in the case
of microwave frequencies, where the circuit dimensions are similar or larger than the
wavelength. Hypothetically one could solve Maxwell’s equations and get the electric
and magnetic field at every point in space. However, this is cumbersome and yields
more information than needed, thus it is not the regular approach.
Usually a set of voltages, currents or the power flow between two terminals is of interest.
Such a setup can be extended, joining multiple units together, and due to the knowl-
edge of its components, conclusions for the whole setup can be drawn. Typically some
basic devices are analysed rigorously within some simplifications (e.g. the waveguide
or transmission line in the previous chapters) to gain knowledge about their behaviour.
Joining several basic devices together, intuition about their behaviour exists. The whole
network is then typically analysed using the tools of network analysis.

4.1 Equivalences for voltage and current

For the two conductor case, like the transmission line or the briefly discussed wave-
guide with an inner conductor, a voltage can be assigned as the potential di�erence
between both conductors. The current can be found using Ampere’s law, leading in
combination with the voltage to the impedance.
For the case of a single conductor this is not possible. In figure 4.1 the electric field of
the fundamental mode in a rectangular waveguide is sketched. We see that it critically
depends for which point x the voltage is measured over y . This also implies di�iculties
on how to define voltages. This leads to the formulation of voltage (and current) equiv-
alences for the single conductor case. Therefore some considerations should be taken
into account. First of all, the voltage and current should concern a single mode and
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Chapter 4 4. Network analysis

network analysis - fundamental mode rect. wg

x

y

a

b

24

Figure 4.1: Sketch of the E field magnitude in a rectangular waveguide for the fundamental
mode.

should be given by the transverse fields, the voltage by the electric and the current by
the magnetic field. In addition, the power flow should follow by multiplying the fields.
Moreover, the familiar relation between current, voltage and the impedance, Z = V/I
should hold.
The idea is then to extend equation 2.8, which is the current over a transmission line
and the similar expression for the voltage such that:

~Et(x , y, z) =
~e(x , y)

CV
(V+e�i�z + V�ei�z) =

~e(x , y)
CV

V (z) (4.1)

In the case of the fundamental mode of the rectangular waveguide:

~e(x , y) = sin

⇣⇡x
a

⌘
ˆy , (4.2)

where ˆy is the unit vector in y direction. Also taking the equivalent equation for current
into account and applying the considerations from above one obtains solutions for the
constants. CV , for the electric field, which is linked to the voltage and CI for themagnetic
field, which is linked to the current.
The above illustrates a possibility to obtain expressions for voltage, current and power
flow equivalences in the case of a single conductor using some basic requirements in
combination with relations derived previously.

4.1.1 Concept of impedance

NA - refleciton on Z change

Z0 Z1

Γ

In Out

1-Γ

24

Figure 4.2: Sketch of reflection upon an impedance change. � notes the reflected part of the
signal, the remaining part, 1� � , continues to the output.

This section briefly summarises the di�erent kinds of impedances, which are neces-
sary connections between circuit theory and field theory.
There is the intrinsic impedance of a material, which is determined by the material
properties µ and ✏ and is given by ⌘ =

p
µ/✏. For vacuum it is around 377�.

Moreover, there is the wave impedance, given by Et/Ht , being the ratio between the
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Chapter 4 4.2. Sca�ering parameters

electric and the magnetic transverse fields. It depends on the type of mode (TEM, TE or
TM) and is typically also frequency dependent.
In addition, the impedance is obtained by the relation between voltage and current,
V/I , which is also known as the characteristic impedance.
It should be noted, that upon every change of impedance, reflections occur, which is
sketched in figure 4.2. The amount of reflection is given by the reflection coe�icient, � ,
which was derived in chapter 2.2.

4.2 Sca�ering parameters

For microwave frequencies it is o�en di�icult to assign and measure currents or
voltages [10]. Furthermore, only measuring magnitude neglects the complex nature
of these quantities. Therefore the sca�ering matrix is a useful tool. Its entries give
the relation between the input (~a = (V+

1

, V+
2

, ..., V+n )
T ) and the output voltage (~b =

(V�
1

, V�
2

, ..., V�n )
T ). 2
664

b
1

b
2

...
bn

3
775 =

2
664

S
11

S
12

· · · S
1n

S
21

S
22

· · · S
2n

...
... . . . S

2n

Sn1

Sn2

· · · Snn

3
775

2
664

a
1

a
2

...
an

3
775 (4.3)

This leads to the specific entries of the sca�ering matrix:

Si j =
bi

aj

����
ak=0,k 6= j

=
V�i
V+j

����
ak=0,k 6= j

(4.4)

This means that port j is driven with an incident wave with the voltage V+j , while there
is no input from any other port. To avoid reflections, every port besides i should be
terminated with an impedance matched load. The magnitude of V�i is measured and
the relation to the input voltage on port j gives the S parameter.

network analysis - n port network

t1 t2

t3

t4t5

a1 b1

a2
b2

a3

b3

a4
b4

a5b5

[S]

24

Figure 4.3: Sketch of how the S parameters are obtained for a n port network. ti denotes the
di�erent terminals.

In figure 4.3 it is depicted how S parameters are obtained between di�erent terminals
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t for a multiple port network. The corresponding Smn parameter gives the transmission
from terminal n to terminal m. In case of a single port network the S parameter reduces
to the reflection coe�icient:

b
1

= � a
1

= S
11

a
1

In a more complicated network, having multiple ports, every entry in the sca�ering ma-
trix is related to a reflection coe�icient.
Knowing the sca�ering parameters is a full description of the network. Algebraic con-
versions to other, in that sense equal, descriptions of a network like the impedance
matrix

[V ] = [Z][I]

exist.
In the case of a lossless network, the S matrix is purely imaginary and also unitary.
For the case of a reciprocal network, the sca�ering matrix is symmetric. Reciprocity
implies that the obtained values are equal, whether one probes the transmission from
terminal n to m or vice versa. This means that

Smn = Snm,

which leads to a symmetric sca�ering matrix.
In many of the experiments a reciprocal 2-port network is present, meaning that the
knowledge of S

11

and S
21

is su�icient to fully characterise the network.
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Chapter 5

Design of a circular chiral waveguide

This chapter discusses the design of a waveguide working as a polarisation sensitive
element, where the polarisation of the propagating microwave leads either to reflection
or transmission. The purpose is to achieve directionality and then to align qubits in the
propagating direction. The idea is to only allow communication between the qubits in
one direction.
Therefore it is necessary to achieve some kind of non-reciprocal S parameter, S

21

6= S
12

.
The idea was to design a circular waveguide and use the dependency between its diame-
ter and the cuto� frequency. A screw-like waveguide was designed, where the inner and
outer diameter give di�erent cuto� frequencies for circular right and le� polarisation.
In the following spiral antennas for the feed were designed. Finally, pu�ing everything
together, it was obtained that the whole setup was symmetric and the directionality
was not achieved, as the antennas exactly li� the asymmetric e�ect.
To gain information about the features of the designed structures, simulations using
the so�ware HFSS where performed. Details about HFSS are given at the end of this
chapter.

5.1 Chiral waveguide

A chiral waveguide was designed as a polarisation sensitive element. The depen-
dency of the cuto� frequency on the radius, see equation 3.32, for the circular waveguide
was used. A waveguide with two di�erent radii, an inner and an outer one, similar to a
screw-like structure was designed, figure 5.1(b). Circular polarised microwaves should
either see the outer diameter, or the smaller, inner, diameter depending on their polar-
isation. The polarisation, which is able to pass is the same for both directions. In this
particular case right handed polarised waves can pass while le� handed polarised waves
get reflected. The chiral part of the waveguide follows this equation:

R(x ,�) = r � d sin

Å
x⇡

pitch
+m�
ã

2

(5.1)

Here x is the propagation direction and � is the angle, similar to cylindrical coordinates
around x . R gives the current radius in the y, z plane. This equation is similar to the
one describing a corrugate spiral in [11], where a similar waveguide is discussed. In the
above equation m refers to the folding of the spiral structure, which is 1 here, pitch is
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Chapter 5 5. Design of a circular chiral waveguide

the period of the corrugation. So we see, that the waveguide is periodic in the pitch
and also 2⇡ periodic for �. Furthermore, for any value of x , a value for � can be found,
where the cross section looks identical to any other point. A detailed description of the
wave propagation in such a helical waveguide can be found in [12].

(a)

Chiral waveguide - HFSS model

rise = 100 const. = 400 rise = 100

r = 22

d = 10pitch  
= 30 in mm

24

(b)

Figure 5.1: (a) Chiral waveguide model used for the HFSS simulations. (b) Side view of the
model including dimensions.

The exact dimensions of the waveguide are specified in figure 5.1(b). For the sections
marked with ’rise’, the depth d is modulated sinusoidal, drise = sin (⇡x/(2rise)), until it
reaches the desired value. The S parameters are obtained performing HFSS simulations.
The target was to have (nearly) lossless transmission of right handed polarised signal
to the other end and le� handed polarised signal a�enuated su�iciently, in a suitable
bandwidth of several GHz. The expectations were, that above the cuto� for the outer
radius, the right polarised mode is dominating, until the frequency gets above the cuto�
for the inner radius. From there, on the le� circular polarised wave propagates as well
and both polarisations should be transmi�ed with about equal strength.
In figure 5.2 the circular S parameters for right to right handed versus le� to le� handed
polarisation are plo�ed. They are plo�ed in transmission and reflection. A bandwidth
from around 6GHz to nearly 9GHz is obtained, where right handed signal passes, while
the le� handed one is suppressed by a factor of 100 to 1000. In this range the waveguide
works as a polarisation sensitive element, as expected, which was the main goal of these
simulations. Looking at the reflection parameters, nearly all the le� handed polarised
signal is reflected. In case of the right handed polarised signal, only a minor fraction of
the signal gets reflected. The reason for the S parameters not entirely adding up, can be
normalisation issues from HFSS. In addition, sca�ering to other modes, like le� handed
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Figure 5.2: S parameters are plo�ed for transmission of right to right (blue) and le� to le� (red)
polarised waves through the waveguide. The right polarised signal propagates (nearly) lossless.
The le� polarised signal gets a�enuated by a factor 100-1000 between around 6GHz to 9GHz.
From around 7GHz onwards ripples in the le� to le� polarised S parameter are observed. The
cuto� of the T M

01

mode (do�ed line) is around 7GHz. Possibly coupling to this mode takes
place.

to right handed is not plo�ed here.This e�ect was seen to be around −15 dB or lower, so
more than an order of magnitude below the transmission of the right polarised mode.
Two observations are of particular interest. The first one is that while the le� handed sig-
nal is suppressed, it is not a�enuated exponentially. A mode below the cuto� frequency
is supposed to be a�enuated exponentially. Here, below 9GHz the le� handed mode
is suppressed, but its amplitude remains overall constant independent of the frequency
until around 6GHz. The reason is most likely, that some kind of coupling between the
two modes takes place. So its actual cuto� is, as for the right polarised mode around
5.5GHz, only suppressed in a range of nearly 3GHz.
In addition, from about 7GHz onwards ripples are observed. Comparing to the cuto�
frequencies of the di�erent modes (see figure 3.6), the TM

01

mode starts propagating
in the range, where the ripples start (see figure 5.2). Likely some coupling to this mode
takes place.

Chiral waveguide - HFSS fields without antenna,RHP

(a)
Chiral waveguide - HFSS fields without antenna, LHP

(b)

Figure 5.3: In (a) the right handed polarised mode is excited on one end and the magnitude of
the electric field is plo�ed. It propagates through without major losses. In (b) the le� handed
polarised mode is excited (on the right end). Only a weak field is observed at the other end,
the remaining part was reflected. Red corresponds to a strong field, blue to a weak field (in
comparison), the scale is linear. The fields are shown at a frequency of 8GHz.

Figures 5.3(a), (b) compare the magnitude of the electric field at a frequency of 8GHz.
In (a) the right handed polarised mode is excited and one can see that the mode prop-
agates through the waveguide. In (b) the same for the le� handed polarised mode is
depicted. The field through the waveguide is weaker, while on the end, where the exci-
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Chapter 5 5. Design of a circular chiral waveguide

tation happens, it is stronger, which is due to the expected reflections.
To summarise, a waveguide was designed, which successfully works as a polarisation
sensitive element. Right polarised waves propagate without (or minor) losses, while le�
polarised waves are a�enuated by a factor of 100 to 1000. In the next step an antenna
has to be designed to launch circular polarised microwaves in the waveguide.

5.2 Spiral antenna for feed

Spiral antenna - HFSS

r0
g

r1

w

24

Figure 5.4: Sketch of an Archimedean spiral antenna, r
0

is the initial inner radius, r
1

the outer
radius, g the growth rate, and w the inner width of the arms. The red arrow in the center marks
the port, which is between the two conductors of the antenna.

For the feed an Archimedean spiral antenna was designed, to launch circular po-
larised waves. Such an antenna is described by [13]

r(�) = g� + r
0

,

where r is the radius in dependence of �, which is continuous over 2⇡, g is the growth
rate and r

0

the initial radius. A sketch of such an antenna is plo�ed in figure 5.4, its de-
sign causes the radiation to be circularly polarised. The radiated polarisation is opposite
in both directions, so in case it radiates dominantly right handed in one direction, it ra-
diates le� handed in the other direction. This is exactly what is required for the antenna
in combination with the waveguide to be directional.

Figure 5.5: Setup used for the simulations. Waveguide in combination with the antenna, ori-
ented right handed in the waveguide. The signal received at the other, far end (highlighted port)
is of interest.

There are many free parameters which critically influence the radiation character-
istics and the bandwidth. The method to find a suitable setup was to put the spiral
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Figure 5.6: (a) HFSS simulation results of a spiral antenna in a circular waveguide, with the
same dimensions as the chiral one (without the corrugation). Transmission of right vs. le�
polarised waves to the far end of the waveguide. (b) Same as (a), in the chiral waveguide.

antenna in a circular as well as into the chiral waveguide, change its properties and find
a suitable working layout. Due to the coupling to the waveguide walls, it was necessary
to investigate the antenna in the waveguide. The parameters, which can be optimised,
include the number of turns, the inner radius, the growth per turn and the width of
the antenna wire itself (see figure 5.4). In figure 5.5 the simulation setup of the spiral
antenna in the waveguide is shown. In there the antenna is oriented right handed in
the waveguide. The fields of the antenna are discussed in the next section, 5.3.
In figure 5.6 the obtained results are plo�ed. In (a) the simulation results for the an-
tenna transmission from one end to the other one of a circular waveguide is plo�ed.
This waveguide has the same dimensions as the chiral one without the corrugation. The
antenna is excited and the transmission from the antenna port, which is in the center
of the antenna, to the far end of the waveguide is shown. The transmission di�erence
between the right and le� handed polarisation is the one which had to be increased,
while the right handed polarised signal should be as strong as possible. The setup plot-
ted here works satisfyingly and is of su�icient bandwidth.
In (b) the same spiral antenna is placed at the end of the chiral waveguide and the same
parameters are plo�ed. The right handed polarised part propagates similar as in the
circular waveguide, which is within the expectations. Additional a�enuation of the le�
handed polarised wave is observed. Probably it is not as strong as expected when com-
pared with figure 5.2, where around 20 dB to 30 dB are expected, while approximately
10 dB are observed. An explanation is that earlier the le� polarised excitation was ideal,
which is not the case any more using the antenna, and thus a stronger le� polarised
signal reaches the other end.
Mirroring the antenna, the radiation is exactly opposite.
To summarise, a spiral antenna was designed, which can be used to launch right circu-
lar polarised waves into the chiral waveguide. The following, final, step is to put two
antennas into a chiral waveguide.

5.3 Two spiral antennas in chiral waveguide

Simulations were run with two spiral antennas in the chiral waveguide, one at each
end. The main target was to detect, if an asymmetric e�ect in their transmission from
one to to the other one can be observed, meaning S

12

6= S
21

. The antennas were oriented
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Figure 5.7: Simulation results for the chiral waveguide with two antennas. S parameters show-
ing the transmission between the antennas in both directions, which are identical. This implies
that the setup including the antennas is symmetric.

in the same direction, such that looking into the waveguide (propagation direction of in-
terest), one antenna radiates right handed and the other one le� handed. So the power
received by the le� handed antenna should be much higher, as it gets the signal from
the right handed antenna, which passes the waveguide without (or minor) a�enuation.
The other way round, the signal, the right handed antenna receives is much weaker,
as it comes from the le� handed antenna, and thus is mainly reflected by the chiral
waveguide.
So a di�erence in the S parameters was expected, but they turned out to be exactly iden-
tical (figure 5.7). Comparing this to the E field magnitude plots, figure 5.8 the behaviour
is not completely intuitive. In (a) the magnitude of the electric field is plo�ed, for excita-
tion of the right polarised antenna, si�ing at the right end. There an equal field strength
is observed all over the waveguide, meaning that the wave can propagate through the
waveguide without major reflections. In (b) the le� polarised antenna, si�ing at the le�
end, is excited. Here the magnitude of the field close to the antenna is stronger than
on the other end, meaning that the wave gets reflected with the beginning of the cor-
rugation. This is expected due to the design of the chiral waveguide. Comparing the
absolute field strength here to the case without any antenna, the values add up. The
strength is about a factor of two weaker than for the case, where the waveguide itself
is excited (figure 5.2(a)). This is expected from the transmission S parameter from one
antenna to the other end of the waveguide (figure 5.6(b)). This just gives an estimate,
as the range for the field strength can be chosen individually by hand.

The reason for the S parameters being symmetric lies in the antenna theorem [14,
Chapter 1.7]. It implies that the sending and receiving ability of an antenna is identical.
This means for the given setup, that the le� handed antenna would get a huge signal,
which is right polarised, but is unable to receive most of it. On the other hand, as
discussed in the previous section, this le� handed antenna sends a fraction of the power
right polarised. This part of the signal propagates through and is then well received by
the right handed antenna at the other end. Consequently the whole situation is exactly
symmetric.
It is stated by the antenna theorem, that reciprocity cannot be broken by antennas in
combination with geometric structures. Some other approaches were made with the
goal to achieve non symmetric S parameters, which did not succeed. Some of these
approaches were to put a planar chiral structure on a substrate into the waveguide,
e.g. slit rings [15] or chiral fish scale pa�erns [16]. The main reason for this not being
suitable was the low chiral e�ect, so both directions were similar in terms of signal.
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Chiral waveguide - HFSS fields antenna, RHP

(a)
Chiral waveguide - HFSS fields antenna, LHP right, RHP left

(b)

Figure 5.8: Magnitude of the electric field at 8GHz. In (a) the antenna is oriented in a way,
that it radiates right polarised into the waveguide. There it can be seen that the mode is excited
all over the waveguide, the wave propagates through. In (b) the antenna (on the le� end) emits
le� polarised in the waveguide, a major part of the signal gets reflected. Red corresponds to a
strong field, blue to a weak field (in comparison), the scale is linear. The fields are shown at a
frequency of 8GHz.

5.4 Conclusions

To summarise, the objective was to design a directional structure. The intention was
to use a polarisation sensitive element, a chiral waveguide in the given case, and build
qubits coupled to antennas, which should then be coupled to the waveguide.
In the first step, a chiral waveguide was designed as a selective element. Right handed
polarised waves could propagate with minor a�enuation, whereas le� handed polarised
waves were reflected to 99% or above. In the second step, a spiral antenna was designed
to launch the circular polarised waves. Many parameters could be modified to find the
best characteristics, and a satisfying setup was found.
In the final step two antennas were combined in the chiral waveguide. No asymmetry
was observed in the S parameters, as the sending and receiving ability of a spiral is
symmetric, which is true for any antenna.

5.5 Notes on HFSS

To perform simulations the so�ware HFSS was used, which solves Maxwell’s equa-
tions inside a given structure (e.g. a waveguide). This chapter presents the fundamen-
tals of how HFSS obtains a solution and lists the necessary steps to start the simulation
process. Furthermore, useful considerations and advice on doing the simulations are
given.

5.5.1 Basics
HFSS is a finite element solver, which numerically solves Maxwell’s equations in a

3D structure [17]. Therefore the structure is divided into tetrahedra, or triangles in case
of a surface, called the mesh. The electric and magnetic fields are calculated on the
edges of the triangles. A suitable mesh has to be found, which describes the model with
su�icient accuracy. This is discussed in chapter 5.5.3.
Using this division into tetrahedra, Maxwell’s equations can be transformed to matrix
equations and can thus be numerically solved. The magnetic field is computed from the
electric field, using H =r⇥ ~E/(�i!µ), which makes the magnetic field fundamentally
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Chapter 5 5. Design of a circular chiral waveguide

less accurate in comparison [17].
There are two di�erent solution types mainly used in our simulations. The eigenmode
gives the resonance frequency and the corresponding field of the setup. For the driven
solutions the model is externally excited at given frequencies. To excite the setup, ports
are required, which are explained in the next section.
The solution type used for the chiral waveguide was of driven type. Thus the following
sections are mainly based on this.

5.5.2 Port and boundary assignment

In the first step a 3D model is drawn, similar to a conventional CAD so�ware. For a
waveguide (or similar) the material is set to vacuum or another dielectric, correspond-
ing to the inside of the waveguide. It is possible to place di�erent objects inside the
waveguide and assign di�erent materials, the material properties can be customised.
It is advised to assign variables to each dimension, using their dependencies if possible,
as this provides a be�er overview and makes modifications easier.
A�er completing the structure, ports have to be assigned, to calculate the driven solu-
tions. There are two types of ports, which were used to analyse the chiral waveguide,
waveports and lumped ports. Waveports are only possible to assigned to structures sup-
porting travelling waves and are typically assigned to external boundary surfaces. This
also implies why the inside of the waveguide has to be either vacuum or a dielectric.
From the dimensions of the waveport the supported modes are calculated and those
are used for the excitation [18]. To calculate S

21

, a second port is required. Integration
lines, which are optional when using waveports, can be drawn to get a specific field
pa�ern. Every integration line works as a port on its own again. Combining two ports
having a 90° angle and a phase di�erence in their excitation of 90°, circular polarisation
can be generated. Using a di�erent phase di�erence leads to elliptical polarisation. In

Figure 5.9: Excitation of a port. Integration lines to get circular polarisation.

figure 5.9 a port of the chiral waveguide with two integration lines is shown, necessary
for circular polarisation.
For internal ports a lumped port is used. This port requires two conductors, which are
excited by a potential di�erence between them [18]. A lumped port is therefore used for
the excitation of the spiral antenna. For this kind of port an integration line is required
and is drawn between the two arms of the antenna, which identifies where the potential
di�erence is applied.
Another type of excitation is the incident wave excitation. Di�erent kinds of incident
waves exist (e.g. plane, far field) and depending on their type di�erent options exist, like
their starting point, direction and polarisation. These kind of excitations are typically
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not used in our set of problems, but can be helpful (e.g. when designing antennas).
Similar to ports, which are taken into account in the solution process, di�erent kinds of
boundaries exist. Some examples are given here.
One option is to assign finite conductivity to a surface, e.g. to the surface of the wave-
guide. When designing an element, like an antenna in free space, radiation boundaries
exist to gain knowledge about the radiation pa�ern. These boundaries are required to
confine the setup into a finite area and assure a continuous field across them. Similar
an air box can be drawn around the structure. An air box is typically vacuum and its
purpose is to confine the area, which has to be solved, without interacting with the
structure. To full fill this, it should be at least �/4 away from the structure.

5.5.3 Creating a solution setup and finding the best mesh

A�er the model is drawn, the ports and boundaries are assigned, a solution setup
has to be created.
Convergence criteria, mainly concerning the ports and the mesh, are defined in there,
as well as what kind of basis functions to use. A frequency for the solution setup has
to be defined. This frequency should be the maximum frequency, which is of interest
for the whole solution. The reason is that the mesh is based on this solution frequency.
A higher frequency is linked to a shorter wavelength and the unit length of the mesh
should be based on the shortest wavelength to be more accurate. The mesh is computed
in an iterative process, which converges, if the di�erent results between two consecutive
steps are below a certain limit, given by the convergence criteria.
The solution process, described in the following, is plo�ed in a flow chart in figure 5.10.
At first a mesh is generated, a�erwards the current pa�erns for each port are calculated.
Based on them the electric field is computed from the magnetic field and vice visa, at
first only at the ports. In case their di�erence is not acceptable, the mesh at the ports
is refined [17]. A�er su�icient accuracy is obtained, the field inside the whole structure
at the probe frequency is solved. The figure of merit for the convergence criteria is the
deviation of the S parameter, �S. In case this is not reached, the mesh is refined, espe-
cially in critical areas, which leads to the adaptive process of finding a suitable mesh.
The accuracy of a solution also depends on the order of the used basis function. In case
they are set to 1

st order, field values from the vertices of the tetrahedron as well as the
middle points of the edges are used for the field interpolation, figure 5.11. This leads
to 20 unknown variables per tetrahedron. In case of a 0

th order basis function only the
values at the vertices are taken into account, leading to 6 unknown variables [17].
Ge�ing a finer mesh also leads to a be�er description as the solution for the field is
obtained in more detail. Thus it might be a be�er trade-o� to use lower order basis
functions in combination with a finer mesh. Sometimes it is useful to assign mesh op-
erations for objects, which critically influence the solution and are therefore of high
interest. One possibility is to define a maximum unit length for the mesh. An example
for that is shown in figure 5.12. In (a) the mesh is plo�ed using the standard config-
uration without constraints and in (b) a maximum length per element is defined. For
cylindrical or circular structures also an option called surface approximation exists. In
there values for the maximum deviation between the structure and the mesh in terms
of length and angle is set.
For a given model it has to be seen which kind of mesh fits best, a uniform rule cannot
be given. By plo�ing the mesh itself, it is already possible to see if it might go wrong

29



Chapter 5 5. Design of a circular chiral waveguide
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Figure 5.10: Solution process in HFSS to obtain solution for a single frequency. ftest refers to
the frequency in the solution setup. Details are given in the text. Similar to [17], figure on page
582.

somewhere or if it does not appear to be fine enough. In addition, a possible check is to
solve for the eigenmodes. If the change of resonance frequency with the mesh becom-
ing finer is small enough, a suitable mesh is found. Furthermore, one can also monitor
features, e.g. a resonance frequency, for its change.
It is always a trade-o� between the accuracy of the solution and the computation time.
Again a uniform rule cannot be given and it depends on the setup, the required accuracy
and the available computational power, how much accuracy is required and reasonable.

5.5.4 Obtaining results
The final step to obtain solutions for the driven type is to perform a frequency sweep.

The mesh remains the same for the whole sweep.
Two di�erent options exist, either to solve discretely for each frequency or to do an in-
terpolating sweep. In case of the discrete sweep, the setup is solved for every specific
frequency, in addition the fields can be saved. In case of the interpolating sweep, the
setup is solved for some points and interpolated in between. HFSS finds the points,
where it solves discretely. Interesting features, like resonances, are solved in more de-
tail, other parts in less, which leads to a speed up. There are two major drawbacks using
interpolation. In case of a narrow resonance, it can bemissed, moreover it is not possible
to solve for the fields using interpolation.
It is also possible to set up multiple frequency ranges with di�erent parameters, so one
can combine the advantages of the interpolating sweep with the discrete one to some
extent.
A�er the frequency sweep is finished, the results can be obtained. Di�erent parameters
like the S parameters can be plo�ed against the frequency. Moreover, it is possible to set
up equations combining variables, like S parameters and plot those. This was necessary
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HFSS - tetrahedron

Figure 5.11: HFSS divides the structure into tetrahedra. The tangential field components are
stored in the vertices (green). The components tangential to a face and normal to the edge are
stored in the midpoints of the edge (red). Somewhere in between the field is interpolated using
the stored values. Similar to [17], figure on page 576.

(a) (b)

Figure 5.12: Di�erent meshing setups for a simple box. In (a) a course mesh is used. In (b) a
finer mesh is used, where the maximum length per element is limited.

to obtain the results for the circular polarisation in chiral waveguide. The S parameters
are normalised, such that ~a and ~b in equation 4.3 carry one wa� of power. In addition,
only the S parameters for the dominant mode at each port are calculated [17].
In case of the discrete sweep the electric and magnetic fields are stored as well. The
magnitude of the fields can be plo�ed or they can be illustrated using vectors. It is pos-
sible to plot the fields on and in any structure. Also planes can be drawn to get a 2D
cut of the field at any point. To plot the fields the ports are excited with 1W by default,
this value was used throughout this thesis.
A useful feature is called optimetrics. It allows to change variables (e.g. some dimension)
and then carry out the sweep for every given value of it. For example certain values for
the growth rate of the spiral antenna can be set and simulations are performed for all
variations. The results can be compared to find the best working setup.
To conclude, some basic steps on performing simulations with HFSS were discussed. At
first a model has to be drawn, similar to a CAD so�ware. A�erwards ports are assigned,
necessary to excite the model. Waveports are used for external excitations, assigned to
structures, which support travelling waves. Lumped ports are used for internal excita-
tions, which excite a potential di�erence between two conductors. Furthermore, bound-
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aries can be assigned in this step. In the following a solution setup is created and the
mesh is computed. Some options exist to enforce a finer mesh, in case it is required.
With this, the setup can be solved, which is either possible using a discrete or an in-
terpolating sweep. Then S parameters are obtained and it is also possible to plot the
fields.
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Chapter 6

Resonator coupled to a feed line

To obtain information about microwave resonators, they are either measured in re-
flection or in notch configuration. In reflection configuration the same transmission
line is used for the input and readout. The signal gets reflected and propagates back,
S

11

is measured.
In the notch configuration a two port measurement is performed. So S

21

, the transmis-
sion, is measured. The resonator is capacitively coupled to a transmission line connect-
ing the two ports of a measurement device. This represents a so called hanger configu-
ration.
In this chapter at first a circuit model of such a resonator in notch and a�erwards in
reflection configuration is discussed. A model describing the measured S

21

parameter
(S

11

for reflection), in dependence of the resonator’s properties, is derived. The di�er-
ent loss mechanisms, which are fundamental when describing resonators, are briefly
discussed. A�erwards a fit, the so called circle fit, giving information about the prop-
erties of a resonator, is discussed. In the final part measurements of a copper and an
aluminium cavity are presented and compared in the di�erent configurations.

6.1 Resonator in notch configuration

The notch configuration is depicted in figure 6.1. In (a) it is shown in full generality
with arbitrary impedances, where Z

1

and Z
2

are those of the feedline and the coupling,
Z

3

depicts the resonator. In (b) the same setup is shown, using specific elements. The
resonator is depicted as a LCR oscillator, its losses are modelled with the resistance R.
It is capacitively coupled to the feedline, with resistance Rex t . The external or coupling
losses are losses to this feedline.
Following [19] a model for the readout circuit is derived. It contains the internal and
external losses as well as the resonance frequency. The parameters are obtained by
fi�ing the model to the measurement data. The two assumptions therefore are, that it
is a two port network and the resonator has a single pole. At first the resonator is also
considered to be lossless.
With these assumptions each impedance, seen in figure 6.1(a), can be wri�en as

z =
a+ i b!
c + i d!

(6.1)
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Figure 6.1: Model for a resonator coupled to a transmission line in notch configuration. (a)
Circuit with generic impedances, Z

1

and Z
2

depict the transmission line and the coupling , Z
3

is the resonator. (b) The same circuit. Now specific circuit elements are used.

with a to d being complex numbers, which can be di�erent for each impedance. Rewrit-
ing these to the S parameters, as those are the measured quantities, and taking the
assumptions into account, we obtain:

S
21

=
g + ih!
c + id!

(6.2)

g and h are complex numbers, c and d are the same as in equation 6.1. For this setup
the transmission S parameters are of interest and since the network is reciprocal it is
su�icient to know S

21

.
A lossless resonator shows no transmission on resonance (S

21

= 0), due to the ⇡/2 shi�
from the resonator. So it is useful to introduce this property along with the resonance
frequency !r :

S
21

=
hi(!�!r)

c + di!
(6.3)

The expression simplifies as the overall magnitude and phase are unimportant, which
are related to other losses and imperfections of the transmission line. In addition, k =
c/h can be introduced, further simplifying the expression:

S
21

=
i(!�!r)

k+ i!
(6.4)

The measured resonance has the form of a Lorentzian. To arrive at such an expression,
it is useful to replace k by k = + i!r , with  being complex. As k and  are complex
numbers this is valid. We find:

S
21

=
i(!�!r)
+ i(!�!r)

= 1� 

+ i(!�!r)
(6.5)

Here the second part has the form of a Lorentzian

L(x) =
1

1

2

�+ i(x � x
0

)
, (6.6)

where � is the full width half maximum and x
0

the resonance frequency. Furthermore,
dissipation is introduced here, which is declared as an additional imaginary part to the
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resonance frequency: !r ! !r + i✏. Moreover, the introduced  can be split into its
real and imaginary components, = Re + iIm. With this S

21

becomes:

S
21

= 1� Re + iIm

(Re + ✏) + i(!� (!r � Im))
(6.7)

Comparing this to the Lorentzian, equation 6.6, we recognise thatIm is an e�ective shi�
of the resonance frequency. Therefore,!r can be re-wri�en: !0r =!r �Im =!r +�!,
where Im = �! is the shi� of the resonance frequency. We obtain:

S
21

= 1� Re � i�!
(Re + ✏) + i(!�!0r)

(6.8)

The total quality factor of a resonance, Ql , is given by x
0

/�, comparing the above ex-
pression to the Lorentzian (equation 6.6) yields:

Ql =
!0r

2(Re + ✏)
(6.9)

A quality factor generally gives the losses per cycle compared to the stored energy [20],
[21]:

Q = 2⇡
average energy stored in resonator

energy dissipated per cycle
(6.10)

=!
total energy stored in resonator

total power dissipated
(6.11)

Loss mechanisms will be discussed in chapter 6.3.
The total quality factor can be split in two parts, the internal quality factor Qi and the
coupling quality factor Qc , related to the internal and coupling losses. It is explicitly
remarked here, that the real part of the coupling quality factor, QRe

c , is discussed. It
will be clear later, when the final model is obtained, that Qc is a complex number. The
quality factors relate like this:

1

Ql
=

1

QRe
c

+
1

Qi
(6.12)

As the dissipation was only introduced as ✏, it is reasonable to split the total quality
factor, given in equation 6.9, in two parts:

1

Ql
=

2Re

!0r
+

2✏

!0r
(6.13)

Coming back to the S
21

parameter we end up with:

S
21

= 1�
!0r

2QRe
c
� i�!

( !
0
r

2QRe
c
+ !0r

2Qi
) + i(!�!0r)

(6.14)

This equation can be simplified to the final expression:

S
21

= 1� Ql/Qc

1+ 2iQl
!�!0r
!0r

(6.15)
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Here Qc describes a complex number, which relates to the earlier QRe
c by:

1

QRe
c

= Re
Å

1

Qc

ã
=

1

|Qc|
ei�

0 (6.16)

�
0

is the impedance mismatch between Z
1

and Z
2

of the transmission line, which will
become clearer in a later section. �! only depends on the imaginary part of 1/Qc , which
was used for the simplification from equation 6.14 to 6.15.
It might seem not entirely intuitive that the real part of the coupling quality factor, QRe

c ,
is greater than Qc . The reason for that is that the physical quantity is Re, which is
inversely related to Qc , as seen above:

Re =
!0r

2QRe
c

Thus the real part of , is smaller than the complex , which makes the opposite true
for Qc .

6.2 Resonator in reflection configuration

In the reflection configuration only a single port is required and S
11

is measured.
The signal propagates back through the same transmission line, therefore no impedance
mismatch arises, except at the resonator. The layout is sketched in figure 6.2, in (a) with
arbitrary impedances, where Z

1

is the transmission line and Z
2

depicts the resonator.
In 6.2(b) the reflection configuration with specific elements is shown, the measured
resonator remains the same, as in the notch configuration.

Resonator coupled to TL - circuit, reflection

Z1

Z
21 R

R E
XT

(a) (b)

Figure 6.2: Resonator coupled to a transmission line in reflection configuration. (a) Circuit with
generic impedances, Z

1

depicts the transmission line, while Z
2

is the resonator. (b) The same
circuit shown using specific circuit elements.

Equation (2.16) from [22] describes an ideal resonator in reflection configuration:

S
11

=
↵out(!)
↵in(!)

=
(c � i) + 2i(!�!r)
(c + i)� 2i(!�!r)

(6.17)

↵out,in are the output and input signals.  relates to the quality factors similar to the
previous derivation, c to the coupling quality factor and i to the internal one. !r is
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the resonance frequency.
Replacing the ’s by the quality factors and using

1

Qi
=

Qc �Ql

QcQl
(6.18)

we obtain:

S
11

=
2Ql/Qc

1� 2iQl
!�!r
!r

� 1 (6.19)

As there is no impedance mismatch, �
0

= 0, therefore Qc is real. Furthermore �! = 0,
thus !r =!0r .
Some measurements are performed using a directional coupler. S

21

is measured, but
the direct path for the signal is highly a�enuated such that it becomes practically a
reflection measurement. However, there is a di�erent path for the input and for the
output from the resonator. Especially in the coupler itself a mismatch between the input
and the output path exists, leading to an impedance mismatch when S

21

is measured.
Therefore, the model describing a measurement with a directional coupler is up to a
complex Qc the same as for the case of reflection. Thus the model given in equation
6.19 has to be extended by a complex Qc to describe the impedance mismatch.

6.3 Loss mechanisms

6.3.1 Describing loss
The main source of the following considerations was [20].

The quality factor gives information about the losses of a resonator. It is calculated by
[20]:

Q =
1

Z
0

ReY

����
!=!r

(6.20)

Z
0

is the characteristic impedance of the resonator, and ReY the real part of the ad-
mi�ance 1/Z at resonance. For an existing circuit model this can be calculated. Doing
some re-arranging and identifying that on resonance ReY = 1/R, we find [21]:

Q =!rRC (6.21)

C is the capacitance of the resonator and R the resistance.
The characteristic impedance can be expressed the following way:

Z
0

=
2

!
�
@
@! ImY
�
����
!=!r

(6.22)

With this, equation 6.20 can be re-wri�en as:

Q =
2!
�
@
@! ImY
�

ReY

����
!=!r

(6.23)

Several mechanisms, �n, contribute to the losses. The total loss is the sum of these
contributions,

�tot =
X

n

�n.
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Thus the quality factor can be wri�en as [20]:

1

Q
=
X

n

1

Qn
=

1

!Etot

X

n

�n (6.24)

It is useful to consider on the one hand, how lossy a certain mechanism is itself, and on
the other hand the sensitivity to this mechanism. A useful measure for the sensitivity
is the so called participation ratio, pn. It relates the total energy in the resonator to the
part of the energy, sensitive to this loss mechanism:

pn =
Amount of energy sensitive to loss mechanism

Total energy stored
(6.25)

So in case the participation is close to 1, the system is particularly sensitive to this loss
mechanism.
The loss tangent is given by tan�n and expresses, how lossy a certain mechanism is.
Combining it with the participation ratio leads to the quality factor:

Qn =
1

pn tan�n
(6.26)

The participation is more a geometric e�ect. It gives information how much energy is
stored in a lossy volume, compared to the energy stored in total volume. It is dependent
on the geometric circuit design and can be modified, by a di�erent circuit layout [20].
The loss tangent is an intrinsic property of a certain medium and cannot be modified
without changing the material.
There are many di�erent loss mechanisms and in the first step we typically distinguish
between external and internal losses. These are also the ones expressed by the previously
derived quality factors for the notch and reflection configuration. The internal losses
arise from the resonator itself, thus they cannot be varied by using a di�erent setup. This
is in contrast to the external losses, which depend on the coupling between the resonator
and the transmission line. So Qc can be modified with a di�erent setup, by changing
the coupling between the resonator and the transmission line. We distinguish between
three di�erent regimes depending on the ratio between Qc and Qi , which are listed in
table 6.1. As the losses are inversely proportional to the quality factors, a resonator is

Qc ⇡Qi critically coupled
Qc >>Qi under-coupled
Qi >>Qc over-coupled

Table 6.1: Di�erent coupling regimes

under-coupled in case the majority of the losses happen internally and over-coupled if
it mainly loses to the transmission line. Consequently a resonator’s lifetime is generally
limited by the lower quality factor. In case losses to both mechanisms happen at a
similar rate, the system is said to be critically coupled.

6.3.2 External loss
To obtain the external (or coupling) quality factor using equation 6.20, the external

part of the admi�ance, Re(Yex t) has to be computed.
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Resonator coupled to TL - circuit, reflection

YEXTR E
XT

CEXT

(a) (b)

Figure 6.3: (a) Circuit model where coupling of the LC resonator to a transmission line is
sketched, illustrated with specific elements. (b) Coupling combined to parallel admi�ance YEX T .

Following [20], we assume that an LC oscillator is coupled to the transmission line,
depicted in figure 6.3. Yex t combines the coupling capacitor and the resistance of the
readout circuit, which leads to the following relation:

Yex t =
1

Rex t + 1/i!Cex t
(6.27)

In case of a weak coupling, where (!Cex t << Rex t), Yex t can be approximated to:

Yex t ⇡ i!Cex t +!2C2

ex tRex t (6.28)

Using this equation leads to a total admi�ance for the whole circuit, with L being the
inductance of the resonator:

Ytot =
1

i!L
+ i!C + i!Cex t +!2Rex t (6.29)

=
1

i!L
+ i!Ctot +!2Rex t (6.30)

Ctot has to be used for the resonance frequency,!r = 1/
p

LCtot , and the characteristic
impedance, which then becomes Z

0

=
p

L/Ctot .
The coupling quality factor is then given by:

Qc =
1

!2

r C2

ex tRex t Z0

(6.31)

6.3.3 Internal loss
There are several internal loss mechanisms which will be discussed briefly. A more

detailed description is given in [20], which is also the main source for the following con-
siderations.
On resonance the circuit stores its energy equally in the magnetic and in the electric
field. The energy stored in the electric field leads to dielectric losses. These losses occur
in substrates, which are used for holding artificial atoms or similar structures and store
electric energy. They also appear in oxide layers, which can form on the surface of the
metals and have a thickness of a few nm [23]. To find an estimation for this loss mech-
anism, the electric field stored in these dielectrics is compared to the total electric field
(illustrate in figure 6.4). This leads to a participation ratio. In the sketch, the light gray
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Losses - comparisons

∼10 µm

∼500µm

∼5000µm

(a) (b) (c)

∼1 µm

Figure 6.4: Sketches of di�erent resonator layouts and their approximate dimensions. �anti-
ties related to the loss, like the thickness of the oxide layer are in the range of a few nm. (a) Planar
resonator, the distance between the two conductors is in the range of 10µm, with a height of
1µm. The e�ective volume is highlighted in blue. (b) Stripline on top of a dielectric substrate,
around 0.5mm from the conductor. (c) 3D cavity, dimensions in the range of cm. The higher
the volume to surface ratio, the lower the participation ratio and thus the lower the losses. This
points out the advantages of 3D structures. In (a) participation ratios below 10−2 are expected,
in (b) 10−4 and in (c) below 10−6. The dielectrics are sketched in light gray, the metal surfaces in
red.

area depicts dielectrics, the areas contributing to losses are colored red. The e�ective
volume is highlighted in blue (a), or in case of (b) and (c) it is the volume inside the
structure.
Thus a participation ratio can be obtained, which leads in combination with the loss
tangent to the quality factor. The loss tangent for crystalline sapphire is for example
10

�6 [20].
Moving from 2D structures, similar to the one illustrated in figure 6.4(a), to 3D struc-
tures, illustrated in (c), can lead to participation ratios, which are several magnitudes
lower. A further advantage of a 3D cavity, next to the large volume, is the mode shape
itself, discussed in chapter 6.5.1. The electric field of the fundamental mode vanishes at
the walls, which prevents dielectric losses and can lead to high quality factors.
The magnetic field leads to a current, which is related to conductive losses. Conductor
losses are only a dominating loss source in case of normal conducting metals. The par-
ticipation ratio can be found comparing the magnetic leading to a wall current to the
total magnetic field, in combination with the resistance of the conductor. In case of su-
perconductors, they only play a minor role in comparison to the other loss mechanisms.
Another loss mechanism is the contact resistance. Most important for us, it occurs at
the seams of cavities, as they are typically bolted together. In there power is dissipated,
due to the current across the seam. The current across the seam can be estimated by
the magnetic field component along the seam. To obtain the participation ratio, the
energy of the total magnetic field is compared to this. Combining this with the limited
conductance across the seam leads to the quality factor.

6.4 The circle fit

A�er discussing the parameters characterising a resonator, these parameters have
to be extracted from the measurement data. To do this the circle fit was implemented.
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Notch Reflection
o� resonant
| f � fr |>> 0 S

21

! 1 S
11

!�1

on resonance S
21

! S
11

!
f = fr 1�Ql/|Qc| 2Ql/Qc � 1

Table 6.2: Extreme cases for notch and reflection configuration in the complex plane.

6.4.1 Ideal resonator in notch configuration and reflection con-
figuration

To get the parameters in notch and reflection configuration the circle fit was devel-
oped. At first an ideal resonator without the environment, which will be added at a later
point, will be discussed.
The resonance of both configurations forms a circle in the complex plane, with similar
properties, given in equations 6.15 and 6.19, respectively. To avoid confusion between
!0r and !r , from here on the resonance frequency will be labelled fr and the probe fre-
quency f .

Re

Im

1
f=∞ 

f=fr 

ɸ0

d

Circle fit - notch config vs refl config

Re

Im

-1
d

f=fr 

f=∞ 

(a) (b)

Figure 6.5: (a) S
21

( f ) parameter of an ideal resonator in notch configuration in the complex
plane. (b) S

11

( f ) parameter of an ideal resonator in reflection configuration in the complex
plane. The o� resonant point, for both configurations marked with a red dot, occurs at +1 in
case of notch and �1 in case of reflection. The resonance is opposite to the o� resonant point,
due to the ⇡ phase shi�. For the notch configuration the additional impedance mismatch can
be seen, rotating the circle about �

0

.

In figure 6.5 the resonance is shown for both configurations. For the notch configuration
(a), it is seen that the impedance mismatch rotates the circle around the o� resonant
point of the real axis. To get intuition for the model, it is helpful to check the extreme
cases, being on resonance or far away from the resonance frequency. This is stated in
table 6.2. It is seen, that the diameter of the circle gives the relation between Ql and Qc .
So in reflection configuration it is su�icient to know Ql and the radius to gain informa-
tion about the quality factors. In case of the notch configuration, as QRe

c is physically
relevant, the impedance mismatch has to be known additionally. However, in case we
know the circle, we also know the impedance mismatch �

0

. QRe
c then follows from:

QRe
c =

Qc

cos�
0

(6.32)

In figure 6.6 the circle for di�erent coupling regimes is plo�ed. The fraction between 1
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Circle fit - different coupling regime

Re

Im

ɸ0

0.50 1

Ql/Qc Ql/Qc Ql/Qc

24

Figure 6.6: Circle for di�erent coupling regimes in case of the notch configuration. All have
the same impedance mismatch, �

0

, for simplicity. The fraction between 1 and the intersection
of the circle with the real axis gives Ql/Qc , the remaining part to the origin Ql/Qi . The blue
circle depicts an under-coupled setup, the green circle a setup, which is critically coupled, the
red circle an over-coupled setup.

and the circle crossing the real axis gives the ratio Ql/Qc . The remaining part from the
intersection to the origin gives Ql/Qi . In case the setup is critically coupled, the circle
intersects with the real axis at 0.5. In case the intersection happens closer to the origin,
the system is over-coupled. In case the intersection is closer to 1, the system is under-
coupled. The circle fit works best for a critically coupled system. The circle cannot cross
the origin, as in that case Qc would be greater than Ql , which is physically not possible.
The circle can cross the imaginary axis (below or above the origin), which is illustrated in
the sketch (red configuration). The reason is, that for any impedance mismatch �

0

, any
coupling is possible. So also a configuration, in which the circle crosses the imaginary
axis.
In the reflection configuration the o� resonant point is at�1 and there is no impedance
mismatch. The resonator is coupled critically, for a circle crossing at the origin. In case
it is over-coupled, the radius of the circle increases. The maximum, where only coupling
losses exist, would be at +1.
The discussions in the next sections will be based on the notch configuration, as it is
the more complex one. The steps in the reflection configuration are similar, di�erences
will be given in chapter 6.4.4.

6.4.2 Adding the environment
The considerations in this and the next section are based on [24] and [25].

So far the model of the ideal resonator was discussed, not taking external e�ects like
an additional a�enuation, a phase shi� and the cable delay into account. Considering
these we arrive at the following model:

S
21

( f ) = (aei↵e�2⇡i f ⌧)Sideal
21

( f ), (6.33)

where Sideal
21

is the ideal model, discussed until now. a and ↵ describe the additional
a�enuation and phase shi�, ⌧ the cable delay. These e�ects are sketched in figure 6.7
and discussed below.
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Figure 6.7: Adding the environment. (a) The e�ect of the cable delay is shown. It adds a linear
dependency between the phase and frequency, leading to an e�ect shown in the plot. (b) E�ects
of the additional a�enuation and the phase shi�, a�er the delay is already subtracted. The circle
is rotated by ↵ and its diameter increases by a. The e�ects can be best seen at the o� resonant
point, as it is at +1 for the ideal resonator.

E�ects of the cable delay

Due to the cable delay the phase of the complex S parameters increases linearly
with frequency. The path the signal has to take, when a measurement is performed, is
the same for the whole measurement. The frequency is swept during the measurement
and so is the wavelength. This leads to a linear dependency between the phase and the
frequency, called the cable delay. The e�ect in the complex plane is sketched in figure
6.7(a).

E�ects of additional a�enuation and phase shi�

The e�ects of the a�enuation and phase shi�, represented by a and ↵ in the above
equation, can be best seen at the o� resonant point. It should be ideally free of any ef-
fects arising from the resonator. So it just shi�s and rotates the entire circle, as there is
no frequency dependence, which is depicted in figure 6.7(b). As imposed by the model,
the o� resonant point is at +1 on the real axis, a and ↵ can be evaluated combining this
information with the measurement data.
As it is an overall gain, the circle diameter increases by the factor a.

Ideally, this model would be fi�ed to the measured data. The paramaters could be ob-
tained and all the desired information gained. However, doing this would be not as
robust as required and would critically depend on adequate initial parameters. As in
a typical case the initial parameters are not known to the requested extent, it is not
possible to fit the model within one a�empt. Hence the fi�ing routine is divided into
several sub routines with a small number of free parameters, such that robustness of
the overall fit is guaranteed. The detailed steps of the fi�ing routine are described in
the following chapter. The code used in [24] was used as a basis and then modified and
improved.
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6.4.3 Steps of the fi�ing routine

The steps which are taken are shown in figure 6.8
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1
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(a) (b)
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Circle fit - all steps in oneFigure 6.8: Steps which are taken to subtract the environment. The details are explained in the
text.

Subtraction of the background

In the first step, the linear background of the amplitude is subtracted, which is useful
in case the resonator sits on a slope of the transmission line amplitude. This step is not
part of the circle fit itself, however it is supposed to lead to a more robust fi�ing routine.

Subtraction of the delay

In the first step of the circle fit routine, the delay is subtracted. The e�ect on the
circle is seen in (a) to (b) in figure 6.8. (a) illustrates a measurement, before any step
of the fi�ing routine is carried out. The delay is given as the slope of a linear fit to the
phase. The phase before and a�er the delay subtraction is sketched in figure 6.9. At
this point it is already possible to fit a circle, sketched with the do�ed line in figure 6.8
(b). This gives the radius and the center point of the not yet normalised circle. To fit
the circle, an algebraic fit is used, so no initial parameters are needed and the problem
is reduced to an eigenvalue problem, where the smallest not zero eigenvalue yields the
solution.
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f

θ

Circle fit - fit delay

θ

f

Figure 6.9: Le�: Phase versus frequency before subtraction of delay. The linear dependency
between frequency and phase is sketched. The resonance is, where the abrupt phase shi� oc-
curs. Linear fit (red dashed line) to identify and subtract the delay. Right: Phase a�er delay
subtraction. No dependence on phase versus frequency, except for the resonance.

Intermezzo - to get the o� resonant point

A�er the circle is fi�ed, the o� resonant point has to be found. To achieve this, the
origin of the complex plane is shi�ed to the center of the circle (figure 6.8 (c), do�ed
coordinate system). A�erwards the following function [25] is fi�ed to the phase of the
centered circle. A sketch can be seen in figure 6.10:

✓( f ) = �✓
0

+ 2 arctan

Å
2Ql

Å
1� f

fr

ãã
(6.34)

In the above equation ✓
0

is the argument of the resonant point. fr , Ql and ✓0

are ob-
tained from the fit. fr and Ql found from this fit are not used further on, as they are
very sensitive to small variations of the measured data, and therefore to noise. They are
obtained by a fit to the magnitude.
The resonant point is opposite, or ⇡ in phase, to the o� resonant point. So knowing ✓

0

also gives the argument of the o� resonant point in the do�ed coordinate system. The
product a · r is the radius of the circle at this point, which is known from the circle fit,
done in figure 6.8(b). Knowing the shi� of the coordinate system (center of the circle),
the radius of the circle, and the argument of the o� resonant point, its absolute position
can be found. Thus a and ↵ (see (c)), which give the absolute position of the o� resonant
point, are obtained.

Normalisation using a and ↵

In this step the final parts of the environment being a and ↵ are subtracted, see
figure 6.8(d). What is le� is the ideal resonator described in equation 6.15. Thus it is not
required to fit the circle again, as this was already done previously. It only needs to be
normalised to the radius r by dividing with the a�enuation a.
With the normalised circle, �

0

can be found using:

�
0

= arcsin

⇣ yc

r

⌘
, (6.35)

where yc denotes the y coordinate of the center point of the circle.

Fit magnitude to get Ql and fr

Practically Ql and fr could be obtained from the phase fit, described in equation
6.34. As the width of the resonance, being the lifetime of a resonator, can be seen in
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Figure 6.10: Phase versus frequency of the circle translated to the origin. fr and ✓ = 0 are
obtained by fi�ing equation 6.34. ✓ = 0 is the phase of the resonant point, indicated in the plot.

the phase and is therefore related to the total quality factor. fr can be obtained as well
being the frequency at the resonant point. However, this fit is extremely sensitive to
ripples in the phase, and using it the overall robustness decreases.
It could be seen that the highest stability was achieved in case the magnitude of the
ideal model was fi�ed to the respective part of the data. There the influence from the
ripples away from the resonance is minor.
It would be ideal to obtain values for Ql and fr with a single fit, using both the real and
the imaginary part of the data. However, it is only possible to use either the magnitude
or the phase. The information they contain should be equal. So there is no preferred
option from an information content view. As the magnitude proved with example data
to be more robust, it was preferred over the phase fit.

Obtaining Qc and Qi using parameters of the circle

A�er obtainingQl it is possible to calculateQRe
c , as it is related toQl via the real part

of the diameter, such that:

QRe
c =

Ql

d cos�
0

, (6.36)

where d is the diameter of the normalised circle. Qi can be evaluated using relation 6.12.
At this point the circle fit routine is complete and all values describing the measured
data are known. Some further information about the error calculation, the weighting
and technical details are given in chapter A of the appendix.

6.4.4 Di�erences in the reflection configuration

So far the fit to a resonator, measured in notch configuration was discussed. Here,
fi�ing the model to the measurement data of a resonator in reflection configuration is
discussed. The idea is the same, as both measurements are similar. Some details are
di�erent, which are discussed in this section.
The model of a resonator in reflection configuration was presented in chapter 6.2.
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Adding the environment

The environment is taken care of in a similar fashion as before, the only di�erence
is that the o� resonant point is at -1, such that one obtains the following relation for
the full model:

S
11

= (aei(↵�⇡)e�2⇡i f ⌧)Sideal
11

( f ) (6.37)

So in case that ↵ = ⇡, there is no additional phase shi� and the o� resonant point is at
�1, as predicted by themodel. In figure 6.11 the normalisation of the circle is illustrated,
the delay is already subtracted at this point. The subtraction of the delay is identical to
the notch configuration.

a*d

Re

Im

1

a
π-α

-1
αd

Circle fit - reflection config

Figure 6.11: Sketch of the reflection configuration a�er the delay subtraction (circle upper
right). Circle gets normalised and rotated such that the o� resonant point is at -1 (circle on the
lower le�). As there is no impedance mismatch there is no additional rotation of the circle.

Di�erences in the fi�ing routine

The first two steps, described in chapter 6.4.3, where the circle is actually fit, are the
same as for the notch configuration. However, as � is equal to zero, it is easier to find
the o� resonant point. There is no additional rotation, such that the o� resonant point
can be immediately found, which can be seen in figure 6.5.
A�erwards Ql and fr are obtained similar to before with a fit to the magnitude, where
naturally the model for reflection, equation 6.19, is used. Furthermore, Qc is calculated
as in the notch configuration. The only di�erence is the factor of 2. Qi is obtained using
the known relation 6.12.
The error calculation and the weighting, details in chapter A of the appendix, are done
similarly.
To summarise, the circle fit was described, which is a fi�ing routine for a resonator mea-
sured in notch or reflection configuration. It fits the measured S parameter and gives
information about the resonance frequency, the internal and the coupling quality fac-
tor. The advantage compared to other fits is, that the complex nature of the measured S
parameter is not neglected. The magnitude, as well as the phase, is taken into account.
There are seven (six in case of reflection) free parameters describing the measurement.
Fi�ing them within one a�empt would reduce the robustness of the routine. To provide
overall robustness, the routine is split in several sub routines, fi�ing only a few param-
eters in each step.
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The circle fit works best for a setup being in the critically coupled regime. In a regime
of Qc to Qi being not more than 2 orders of magnitude apart, the circle fit still gives
reliable results. This gives an overall working regime of 4 orders of magnitude.

6.5 Measurement of a cavity in reflection

With measurements of 3D cavities made from copper and aluminium, the circle fit
was probed. A brief theoretical description of the cavity modes and the coupling to
the cavity will be given. A�erwards some example measurements are shown, and the
results will be discussed.
The measurements were performed by Elisa Brunori as part of her internship in summer
2016.

6.5.1 The rectangular cavity

A rectangular cavity is described similarly to a rectangular waveguide [20]. Instead
of being infinitely long it is shorted with 2 planes, at a distance of c (figure 6.15). Similar
to a cuto� frequency for the waveguide, resonance frequencies for a rectangular cavity
are found [9]:

fmnp =
1

2⇡
p
µ✏

vt⇣m⇡
a

⌘
2

+
⇣n⇡

b

⌘
2

+
⇣ p⇡

c

⌘
2

(6.38)

In contrast to the waveguide, resonance frequency does not only depend on a and b, but
also on c. Here the case c > a > b is considered. m, n, p are integers, with m, n� 0 and
p � 1. m and n cannot be simultaneously 0, which is seen in the equations describing
the fields. So the fundamental resonance is the TE

101

mode, which only depends on the
two longer sides. The resonance frequency and mode shape of the TE

101

mode does not
depen on which of the two sides is longer. It is given by:

f
101

=
1

2⇡
p
µ✏

vt⇣⇡
a

⌘
2

+
⇣⇡

c

⌘
2

(6.39)

The shape of the mode can be obtained using equations 3.21 and 3.22, which describe
the rectangular waveguide, where Ex is found to zero. The component of the electric
field is sinusoidal in the y direction:

Ey/ sin

⇡x
a

e�i�z (6.40)

Also the z dependence can be re-wri�en to a sine function, similar to the x dependence
of Ey . The magnetic field has similar components in the x and z direction, and vanishes
in the y direction.
A picture of the copper cavity is shown in figure 6.12. The two halves are bolted together.
The next step to consider is the coupling to the cavity, which is done by the SMA flanges
seen on top.
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Figure 6.12: Picture of a cavity, the two halves are bolted together. The SMA flanges on top are
required to connect the cavity to the outside.

6.5.2 Coupling to the cavity

To couple into the cavity, cylindrical copper pins are used, which are plugged into
SMA connectors and connected through a coaxial cable to the signal source.
The cavity walls have cylindrical holes to insert the pin, which makes the wave prop-
agate similarly to a circular waveguide. The wave propagation on and a�er the pin is
sketched in figure 6.13. In the first part two conductors, the pin and thewall, are present,

Cavity - pin insertion

TEM TE/TM

TE101

∆l

y

x

dD

Figure 6.13: Sketch of coupling between the pin and the cavity. The di�erent regimes of wave
types are discussed in the text. Similar to [20], figure 4.7.

which allow TEM waves to propagate. A�er the pin ends, only a single conductor, the
wall, is present and the situation is the same as in a circular waveguide. The frequen-
cies in our case are below 10GHz, while the diameter of the hole is around 3.5mm
(table 6.3). The cuto� for the cylindrical holes with this diameter is around 35GHz. So
the excitation happens below cuto� of the pin holes. Therefore the field is exponentially
a�enuated. The fraction of the wave, which makes it into the cavity, excites it then.
In addition the SMA connector has an impedance of 50�. To avoid reflections, the ratio
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Chapter 6 6. Resonator coupled to a feed line

of the diameter of the hole to the pin diameter should be such that it continues with
50�. The characteristic impedance of a coaxial cable is expressed with [26]:

Z =
1

2⇡

s
µ

✏
log

Å
D
d

ã
(6.41)

µ and ✏ are the material properties of the dielectric in between the conductors. In the
present case of vacuum,

p
µ/✏ reduces to the vacuum impedance of ⌘ = 377�. Calcu-

lating the impedance, using equation 6.41 and the given dimensions, table 6.3), results
in 51(4)�. So the 50� from the SMA connector are continued.
Due to the exponential a�enuation of the signal, the shorter the pin is, the weaker the
coupling. This should be seen in the coupling quality factor. So for the pin not reaching
into the cavity, which is in case �l being negative, we expect an exponential relation
between the pin length and Qc .
There is also the case, that the pin reaches into the cavity. Thus TEM waves are present
throughout the hole and besides losses no a�enuation is expected. The excitation should
then in a first approximation scale linearly with the fraction of the pin length inside the
cavity, as the mean electric field strength is the same all over the pin on average.
This transition is smooth and with a pin barely reaching into the cavity, the coupling
can be described by the exponential a�enuation with the pin length until a certain point
is reached. This point is expected to in the same range as the pin hole radius.

6.5.3 Experimental setup
The measurements are performed using a vector network analyser (VNA). It can

measure complex S parameters versus frequency ranging from 300 kHz to 18GHz.

VNA(1)

ba

c

VNA(1) VNA(2)

(1) (2)

(3)

VNA(1) VNA(2)

-60-20

ba

c

ba

c

(a) (b) (c)

Cavity - reflection measurement configurations

24

Figure 6.14: Di�erent setups to measure a microwave cavity in reflection. In (a) the reflection
configuration is sketched, in (b) the setup with the T-connector and in (c) the directional coupler
setup. VNA(1) and (2) are the ports of the VNA.

Di�erent options exist to measure a cavity in reflection configuration. It is possible to

50



Chapter 6 6.5. Measurement of a cavity in reflection

measure directly the S
11

using the VNA. Such a setup is sketched in figure 6.14(a). The
main concern with this setup is that this is not possible in our cryostat. The reason is
that the microwave lines used for the input cannot be used for the output. Therefore
di�erent lines have to be used, which makes a reflection measurement impossible. This
can be circumvented by using a T-connector, sketched in figure 6.14(b). A T-connector
is a part connecting three cables together, having the standard impedance of 50⌦ for
each port. Two of these cables are connected with port 1 and 2 of the VNA, the third
port connects to the cavity. Thus it is possible to measure a cavity in reflection by per-
forming a S

21

measurement. A part of the signal coming from the VNA, port 1 in case
of S

21

, goes into the cavity, while the other part continues to the second port of the
VNA. The signal coming from the cavity sees two options, (1) or (2) of the T-connector.
The part continuing to (2) goes to the VNA port 2 and is subsequently measured. This
configuration is of notch type, so the part of the signal directly continuing to the second
port of the VNA is required within the model. The signal coming from the cavity faces
two ports, both with 50⌦, which makes the e�ective impedance it sees lower, which
leads to an impedance mismatch.
To circumvent this behaviour, a directional coupler (figure 6.14) was used. A S

21

mea-
surement is performed, but the direct path is strongly suppressed, which practically
makes it a reflection measurement.

Cavity - dimensions

VNA

ba

c

∅ pin hole

w

∅ pin

∆l

24

Figure 6.15: Sketch of the cavity with the dimensions listed in table 6.3. �l is the e�ective pin
length, w the e�ective width of the wall on top (wall thickness at the SMA connector). The pin
hole continues outer the diameter from the SMA, the pin itself the diameter of the inner SMA
conductor to avoid an impedance change and keep reflections to a minimum.

Two di�erent cavities were measured, one made from copper and another one from alu-
minium. Their dimensions are listed in table 6.3. Such a cavity is illustrate in figure 6.15,
including the dimensions.
In total six di�erent measurement setups exist with the two di�erent cavities and the
three di�erent methods to measure them. Pins of di�erent lengths were used to check
the previously discussed behaviour regarding the dependency with Qc .
All of these measurements were performed under room temperature.
Using the dimensions given in table 6.3 the first resonance frequency of the cavities can
be found with equation 6.39.

f Cu
r = 9.66(5) GHz

f Al
r = 8.19(4) GHz

51



Chapter 6 6. Resonator coupled to a feed line

Copper aluminium
a 21.9(1)mm 26.9(1)mm
b 9.9(1)mm 10.0(1)mm
c 22.0(2)mm 25.0(2)mm
e�ective wall thickness 5.84(5)mm 4.06(5)mm
pin hole diameter 3.5(2)mm 3.5(2)mm
pin diameter 1.50(5)mm 1.50(5)mm

Table 6.3: Dimensions of the measured cavities, corresponding sketch with labels in figure 6.15.
E�ective wall thickness corresponds to the additional length a pin has to have, to enter the
cavity.

6.5.4 Simulation data
Simulations using HFSS were performed. In this case the eigenmode type was used,

as the resonance of the cavity itself was of interest. The material assigned to the cavities

(a) (b)

(c) (d)

Figure 6.16: Electric field of a rectangular cavity on resonance. (a)Magnitude plot of the electric
field inside the cavity. It vanishes at the walls and has a its maximum in the center. (b) Same
as (a), using vectors. In both plots red corresponds to a strong field, blue to a weak field (in
comparison), the scale is linear.

was vacuum, as they are empty, or filled with air. The resonance frequencies foundwere:

f Cu, simulated
r = 9.66GHz

f Al, simulated
r = 8.19GHz

These are identical to the calculated resonance frequencies. The field is plo�ed for a
cavity with the dimensions of the aluminium one. In figure 6.16 the electric field of the
cavity is plo�ed. In figure 6.17, the surface current and the magnetic field inside the
cavity are plo�ed. The electric field (a,b) has its maximum in the center and vanishes
on the walls. This is expected for the TE

101

mode as given in equation 6.40. In (a) the
magnitude of the field is plo�ed, in (b) the field is plo�ed with vectors. The surface
current is plo�ed in (c) for three of the walls. It is strongest in the middle of the walls,
and exactly cancels out at the center of the top wall. From the flow of the current
distribution it becomes clear, why it is not possible to cut the two halves of the cavity,
necessary for fabrication, parallel to the x , y plane. In (d) the magnetic field is plo�ed,
where it can be seen that, as expected, the rotation of the magnetic field leads to the
current.
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Chapter 6 6.5. Measurement of a cavity in reflection

(a) (b)

(c) (d)

Figure 6.17: Surface current and magnetic field of a rectangular cavity on resonance. (c) Sur-
face current plo�ed on three walls with a ⇡/2 phase shi� compared to the electric field. The
maximum is in the middle of the wall and it exactly cancels out in the middle of the top wall.
(d) Magnetic field also with a ⇡/2 phase shi� compared to the electric field. It can be seen that
the rotation of the magnetic field leads to the current. In each of the plots red corresponds to a
strong field, blue to a weak field (in comparison), the scale is linear.

6.5.5 Example measurement

In figure 6.18(a) a measurement of the copper cavity is shown, being in the under-
coupled regime, using the T-connector. In the top le� the raw measurement data and
the respective fit is plo�ed in terms of real vs. imaginary. On the top right the absolute
magnitude is shown and on the bo�om le� the phase. From the relatively small magni-
tude and phase change at the resonance, we can already obtain that this was measured
in the under-coupled regime.
In the constant slope of the phase, besides the resonance, one sees the e�ect of the
phase delay.
In the bo�om right the normalised circle is shown, where the o� resonant point is at +1
and all the e�ects of the environment are subtracted. The under-coupled regime can be
recognised here as the diameter, giving the relation Qc/Ql , which is much smaller than
1. Therefore Qc >>Ql , so this setup is dominated by internal losses.
In addition, there is some noise in the measurement. This is here more visible than mea-
suring over-coupled configurations. The reason is that the magnitude of the resonance
is smaller, which makes the influence of the noise relatively stronger.
In figure 6.18(b) a measurement of the aluminium cavity in reflection is shown. In con-
trast to the other measurement the resonance is more defined, which is due to the
critical coupling for this measurement. The previously seen noise cannot be recognised
any more.
This is a reflection measurement, so the o� resonant point, seen for the normalised cir-
cle on the bo�om right, is at -1. The size of the circle indicates, that the setup is in the
regime of being critically coupled.
Measurements like this were performed for all available pins, using both cavities in the
three possible setups. The summarised results are discussed in the next section.

6.5.6 Results

The measurements results of the aluminium and copper cavity using the di�erent
setups (discussed in 6.5.3) with di�erent coupling pins are discussed here. Results forQi

53



Chapter 6 6. Resonator coupled to a feed line

�0.885�0.880�0.875�0.870
Re (V)

0.24

0.26

0.28

Im
(V

)

Real and Imaginary

9.62 9.64 9.66 9.68 9.70
Frequency (GHz)

�0.80

�0.75

�0.70

M
ag

ni
tu

de
(d

B
)

Magnitude

9.62 9.64 9.66 9.68 9.70
Frequency (GHz)

162

163

164

165

P
ha

se
(d

eg
)

Phase

0.990 0.995 1.000
Re (V)

�0.005

0.000

Im
(V

)

Normalized Circle

Power: -5.00 dBm — Span = 100.000 MHz —

�0.8 �0.6 �0.4
Re (V)

0.0

0.2

0.4

0.6

Im
(V

)

Real and Imaginary

8.14 8.16 8.18 8.20 8.22
Frequency (GHz)

�8

�6

�4

�2

M
ag

ni
tu

de
(d

B
)

Magnitude

8.14 8.16 8.18 8.20 8.22
Frequency (GHz)

�220

�200

�180

P
ha

se
(d

eg
)

Phase

�1.00 �0.75 �0.50
Re (V)

�0.2

0.0

0.2

Im
(V

)

Normalized Circle

Power: -5.00 dBm — Span = 100.000 MHz —

(a) (b)

Figure 6.18: (a) Measurement of a copper cavity with the T-connector, in the under-coupled
regime. Blue dots are the measurement data, red line is the fit, calculated from the parameters.
The e�ective pin length was −1.41mm. (b) Measurement of an aluminium cavity in reflection
configuration, which is approximately critically coupled. The e�ective pin length was 0.44mm.
Top le�: Raw measurement data with the final fit, imaginary vs. real part of the S parameter
is plo�ed. Top right: Magnitude of the S parameter in decibel scale versus frequency. Bo�om
le�: Phase versus frequency. The cable delay is seen and the abrupt phase change, where the
resonance occurs. Bo�om right: Normalised circle (a�er all e�ects from the environment are
subtracted) with the circle fi�ed to the data.

and the resonance frequency show no (or only a minor) dependency on the pin length,
and are therefore discussed briefly. The dependency between the coupling quality factor
and the pin length are discussed in more detail, the expectations from theory were
discussed in chapter 6.5.2.
For Qi and the resonance frequency, fr , only a minor correlation with the pin length
is seen in the measurements. This is in line with the expectations, as the pin reaching
into the cavity should barely influence the field inside the cavity. Also possible losses
to the pin should be completely dominated by losses to the cavity walls. The results
are combined in table 6.4. The resonance frequencies coincide with the calculated ones

Qi fr

Copper 7500(500) 9.66(2) GHz
Aluminium 4500(500) 8.18(2) GHz

Table 6.4: Measured Qi and fr for the cavities. The measured values had some variance, the
errors give a range, in which they were found.

using equation 6.39 and also with the simulated ones. Thus the discussed model seems
to apply.
The reason for the higher Qi of the copper cavity is the be�er conductivity of copper
at room temperature. According to [27] the specific resistance of copper at 300 K is
approximately 16.6 n�, for aluminium it is 27.5 n�. This is similar to the ratio seen in
the internal quality factor and therefore a possible explanation.
The results for the coupling quality factor of the copper cavity are plo�ed in figure 6.19,
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Chapter 6 6.5. Measurement of a cavity in reflection

against the e�ective pin length. So for the e�ective length 0, the pin is flush, for positive
values it reaches into the cavity.
An exponential curve:

Qfit
c (l) = Ae�l b (6.42)

is fi�ed to the data points and plo�ed on top. To get an equal weighting of all data
points, the logarithm of the data was fi�ed with a linear function. From this the ex-
ponential was calculated. This was also done for the aluminium cavity. In panel (a) of
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Figure 6.19: Coupling quality factor for di�erent pin lengths and corresponding fit, for the
copper cavity. The whole range is plo�ed in (a) linear scale and (b) logarithmic scale. In (c) a
zoom on the lower Q’s is plo�ed. The cavity was measured in reflection, with a T-connector and
with a directional coupler. The coupling simulated with HFSS is also plo�ed. The two options,
eigenmode and driven (labelled with S

11

), agree. The measured data is in the same range as the
simulation results. Also the slope is similar.

figure 6.19 the whole range is depicted in linear scale. The measurement data shows
the expected exponential dependency. Also in the logarithmic plot (b) the exponential
dependency is obtained and the fit seems to describe the data well. In (c) the low Q0s
are shown and also these values are in good agreement with the exponential fit. This
means that the exponential dependency is still given for the pin being slightly inside
the cavity.
The values for the T-connector are above the others throughout the whole range of pin
lengths. The reason could be the previously discussed impedance mismatch at the T-
connector itself and thus a reduced coupling to the outside. Due to that impedance
mismatch reflections occur between the 50� SMA connector from the cavity and the
T-connector. This could e�ectively increases the life time of the cavity, seen in a higher
Qc .
The coupling was also simulated using HFSS, this is also shown in figure 6.19. The cou-
pler was modelled as a cylinder with a hole (representing the pin in the experimental
setup), matching the dimensions of the measurement setup, giving 50�. Simulations in
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Chapter 6 6. Resonator coupled to a feed line

eigenmode were run and HFSS gives the quality factor directly in the solution data. Also
driven simulations, labelled with S

11

were run, fi�ing the resonance using the circle fit.
The values agree with the ones obtained using eigenmode solutions. Simulations were
run in steps of 0.1mm, for both solution types. The solid line, showing the simulation
data, is a straight connection of the data points. To save computation time, the driven
simulations were only performed for some values of the pin length, to see if they agree,
which they do. The simulated configuration with the highest Qc (not plo�ed here) also
shows agreement with the data from the eigenmode simulations.
The simulation data is throughout above the measurement data, but always in the same
range showing a similar slope. The di�erence to the measurement data is within a dif-
ferent pin length of half a millimeter. A possible reason for the di�erence is that the
pins were not flat at the bo�om, as they were shortened using sand paper. In addition,
the edges of the cavity (and sometimes the pin) are rounded, also giving an uncertainty.
Within these considerations the simulated data is within the expected agreement.
For these measurements no distinction between the two ranges with the pin sticking
out into the cavity or being shorter than flush was made. As discussed, the transition
should be smooth, furthermore part of the pin, which sticks into the cavity, is far below
the pin hole radius.
The fit parameters are given in table 6.5. The exponential constant b is, within the er-

A b
Reflection 1.07⇥ 104 2.38(3)
T-connector 2.01(12)⇥ 104 2.36(6)
Direc. coupler 1.34(13)⇥ 104 2.26(9)
Simulation 2.41(3)⇥ 104 2.54(3)

Table 6.5: Fit parameters with their errors for the copper cavity in the three di�erent configu-
rations and for the data simulated with HFSS. The model is given in equation 6.42.

rors, the same for all measured configurations. This is expected, because the data should
have the same dependency on the pin length, independent on the measurement con-
figuration. The simulated data is a bit o�, but still in the same range. The o�set, A, is
similar for the reflection configuration and the directional coupler. This is expected, as
using the directional coupler is similar to the reflection configuration. The parameter A
for the T-connector is above the others, which makes sense as all the values are higher,
due to the discussed impedance mismatch at the T-connector itself. Again it is a bit
o� for the simulated case, which was already seen in the plot, as the values from the
simulation are in the whole range above the other ones.
In figure 6.20 the measurement results from the aluminium cavity are shown. The wall
is thinner for this cavity, so the pins are sticking further into the cavity compared to the
copper cavity. Therefore the fit was divided into two parts, the exponential part, as for
the copper cavity, and from 1mm onwards a linear fit was used:

Qlinear
c (l) = �k · l + d (6.43)

The reason to use an exponential fit until 1mm is, that formore than 1mm the behaviour
seems to be di�erent. It was not sure before, where exactly this transition between ex-
ponential and linear dependency would occur, only the range was known. So the best
agreement with the data was the goal, which was achieved by assuming the transition
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Figure 6.20: Change of coupling quality factor for di�erent pin length and corresponding fit,
for the aluminium cavity. The whole range, besides one measurement of the reflection configu-
ration, is plo�ed, in (a) linear scale and (b) exponential scale. In (c) a zoom on the lower Q’s is
plo�ed. The transition to the linear dependency can be seen. In (d) the part showing an approxi-
mate linear dependence is plo�ed. The vertical line indicates the transition between exponential
and linear fi�ing range. The data form HFSS is also plo�ed, it generally agrees with the mea-
sured results. The data was taken every 0.1mm, except for (d), a solid line connecting them is
shown. In (d) they are depicted as points.

to be around 1mm. In figure 6.20(a) the whole range is plo�ed. For one measurement in
the reflection configuration the shortest pin was used, leading to Qc being a magnitude
above the other measurement points, around 8⇥ 105. This data point is not plo�ed in
here, but is also described by the fit. In 6.20(b) the same data is shown in a logarithmic
plot. The exponential dependency can be obtained and the transition to another depen-
dency around 1mm is seen.
In 6.20(c) a zoomed segment is shown, and the exponential fits seem to describe the
measurement points well. Some measurements showed many ripples, which caused
some trouble for the fi�ing routine, still the values show overall agreement. The results
for the T-configuration are similar to the others and not decisively higher, as it was the
case in the copper configuration. The reason for this is not clear at this point.
Also in 6.20(c) the transition between the exponential and the linear part is seen. The
exponential fit describes the measured values su�iciently well. The linear fit, 6.20(d),
seems to be a good enough description for the points. However, especially for the T-
connector it is not clear, if a linear dependence is present.
The simulation data is close to the measurement points. In this case only eigenmode
simulations were run, as agreement between driven and eigenmode was seen already
for the copper cavity. The exponential part has a very similar dependency on pin length
compared to the fit. The linear part, already seen in 6.20(b) and more clearly seen in
6.20(d), has a di�erent dependency. The values themselves are still very similar. Given
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the di�erent dependency no linear fit to to the simulation data was performed. Simula-
tions were performed every 0.1mm and except for 6.20(d) they are depicted with a solid
line, connecting them. In 6.20(d) the single data points are plo�ed.
The fit parameters are given in table 6.6. Looking at the exponential part and comparing

Exponential fit Linear fit
A b k d

Reflection 3.09(48)⇥ 104 2.50(13) 2.13(22)⇥ 103 5.36(41)⇥ 103
T-connector 2.26(29)⇥ 104 2.17(16) 1.84(44)⇥ 103 4.98(81)⇥ 103
Direc. coupler 2.60(51)⇥ 104 2.38(22) 1.76(18)⇥ 103 4.47(34)⇥ 103
Simulation 2.43(7)⇥ 104 2.53(3)

Table 6.6: Fit parameters with their errors for the aluminium cavity in the three di�erent con-
figurations and for the data from the HFSS simulation. The model is given in equation 6.42.

the values to the copper cavity, they are in the same range, but the errors are higher. To
some extent this is due to the inferior measurement data, leading to more variance in
the obtained data. As already seen in the plot, the di�erence for the T-connector is not
obtained any more. The values obtained from the simulations are close to the measure-
ment, especially the exponential constant is close to the one measured in the reflection
configuration.
For the linear part, the values are still within the errors, which are, especially for the
case of the T-connector, big. The overall agreement tells that similar data is acquired
using the di�erent setups. The simulation data was not fit, as the values do not seem
to depend linearly.
Testing the circle fit to check, if the di�erent measurement configurations agree was a
main motivation for doing these experiments. In addition, a goal was to investigate the
dependency between the pin length and the coupling.
To conclude, for the copper as well as for the aluminium cavity, the values agree and it
does not critically depend which measurement setup is used. Due to the higher values
for the T-connector measuring the copper cavity, the directional coupler might be the
be�er choice in case the goal is to reproduce a reflection measurement. The exponential
correlation between the pin length and Qc was obtained for a pin not sticking into the
cavity. This is in agreement with the theory.
For the measurements with the pin sticking inside the cavity, which were only available
for the aluminium cavity, it is not entirely clear, if a linear correlation is given. The main
reason is that too few data points of poor quality exist.
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Chapter 7

Stripline resonator in a 3D waveguide

U-shaped stripline resonators (SLR) made from aluminium and niobium, si�ing on
a silicon substrate were placed in a rectangular waveguide, to be able to analyse them.
This represents a resonator in notch configuration. The assembly was put into the cryo-
stat and cooled down to around 20mK, to achieve superconductivity. This is required
to measure them and reach high quality factors.
Di�erent input powers, down to the single photon limit, as well as di�erent tempera-
tures up to about 1 K were investigated, to gain knowledge about their behaviour.

7.1 Layout

1 mm

3.65 m
m

3.1 mm

18 m
m

0.1 
mm

Maßstab: 50px =1mm Detail measurements SLR
(a) (b)

Figure 7.1: (a) Sketch of the stripline resonator with a resonance frequency of around 8GHz,
si�ing on a Silicon substrate. (b) Picture of a symmetric stripline, already in the sample holder,
which is necessary to place the sample in the aluminium waveguide. The mounting process is
explained in chapter C of the appendix.

In figure 7.1(a) the layout, including dimensions, of such a U-shaped stripline res-
onator is sketched. The resonance frequency is about 8GHz. Striplines with a frequency
of 7.5 GHz were also measured, having an extended leg length. In (b) a picture of the
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stripline is shown, already placed in the sample holder, necessary to put it in the waveg-
uide. The thickness of the stripline on the substrate is about 200 nm.
This stripline was placed in a rectangular waveguide in the plane of the transverse field.
For the frequencies we used, only the fundamental TE

10

has to be taken into account,
as the others have a cuto� at much higher frequencies, around 13GHz and above. A
typical setup is shown in figure 7.2. In (a) a sketch, also showing the electric field shape
is plo�ed, in (b) a picture of the waveguide with the stripline is shown. The transverse

Waveguide with slr and coupling between SLR legs

(a) (b)

Figure 7.2: (a) Sketch of typical setup including. SLR in the waveguide, electric field gradient
over the stripline. (b) Picture of the stripline in the aluminium waveguide.

field follows a sine, such that a voltage di�erence between the two legs arises, leading
to a current. Driving the waveguide on the resonance frequency of the stripline leads
to a drop in the transmi�ed signal, S

21

. As stated before, the waveguide in combination
with the stripline represents a resonator in notch configuration. Thus it is analysed with
the circle fit, discussed in chapter 6.4.
A higher field gradient over the stripline, leads to a higher voltage di�erence between
the two legs of the stripline, leading to a stronger coupling. Close to the walls the field
gradient is the highest and therefore the coupling is the strongest. Exactly in the center,
there is no gradient of the electric field, thus the stripline does not couple to the waveg-
uide, the coupling quality factor is infinite.
The reason for the U-shape is the compact architecture with a still low resonance fre-
quency, which depends on the overall length. The coupling to the waveguide is defined
by the top section of the stripline, as the electric field di�erence occurs there. This
part is around a factor of 20 smaller than the total width of the waveguide, allowing to
place the stripline at various positions within the waveguide. This gives flexibility in the
coupling to the waveguide. It is also of similar size compared to the transmon qubits,
which can be advantageous, as striplines should serve as qubit readout resonators in
future experiments.

7.2 Circuit model

To develop a theoretical description for the setup, the input impedance of a termi-
nated transmission line with a load impedance ZL (equation 2.17) was considered. A
similar approach is made in [28], described in their supplementary material.
The stripline itself is modeled as a transmission line, the second conductor is the waveg-
uide wall acting as a ground. For the occurrence of a resonance, the input impedance
has to become infinite. Moreover, the voltage should have its maxima on the end of
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the legs, the current is expected to have its maximum in the center. This behaviour is
exactly the one of an open transmission line with a length of �/2, plo�ed in figure 2.3.
The di�erence here is, that it is not an open, as coupling between the legs takes place,
due to the shape of the stripline. This leads to a finite load impedance, ZL 6=1. In
an approximation, the load is modeled as the capacitive coupling taking place at the
end of the legs, leading to a shunt capacitance. This is sketched in figure 7.3. The cou-
pling is only considered at the end of the legs. The reason is, that the highest voltage
occurs there, which leads to a maximum coupling. Therefore ZL can be replaced by the
impedance of the shunt capacitance, which is 1/(i!Cs).

Waveguide with slr and coupling between SLR legs

Figure 7.3: Coupling between the legs of the stripline is modeled as capacitve coupling between
their ends, similar to a shunt capacitance.

Taking Zin =1, which is a condition for a resonance, equation 2.17 simplifies to:

�!CsZ0

= tan�l (7.1)

In the above equation Cs is the shunt capacitance and Z
0

the characteristic impedance
of the transmission line, given by

p
L/C . l is the total length of the stripline, � can be

rewri�en as !/vp (equation 2.12). The phase velocity vp is expressed by c/
p
✏e�, where

c is the speed of light and ✏e� the e�ective dielectric constant.
This is a transcendent equation for the resonance frequency, which has to be solved nu-
merically. Before doing this, values for L, C , Cs and ✏e�. have to be found, which is done
by using Maxwell, a so�ware similar to HFSS for the electrostatic and magnetostatic
case. Details about performing simulations with Maxwell are given in chapter B of the
appendix.
The stripline is modelled in there and a magnetostatic simulation is performed, to get
the characteristic inductance. To obtain a value for the characteristic capacitance, the
coupling between the wall and the stripline is simulated in the electrostatic case. To get
an estimate for the shunt capacitance, the middle part of the stripline, which connects
the legs, is excluded and the capacitance between the legs is simulated. All of these
simulations are done with the stripline on top of the silicon substrate. The e�ective ✏e�
is obtained by comparing the capacitance between the outer wall and the stripline with
and without the silicon substrate. The parameters from the simulations are stated in ta-
ble 7.1. Using these parameters and solving the transcendent equation for its resonance

L C Z
0

Cs ✏e�
Maxwell simulations 5.76 nH 201.8 fF 168.9 125.6 fF 2.57

Table 7.1: Values for stripline parameters obtained from Maxwell simulations.

frequency leads to:
fr = 8.27GHz
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Figure 7.4: Plot of the le� and the right part of equation 7.1. Their intersection gives us the
solution of the transcendental equation, which is the resonance frequency, marked by the black
do�ed line. For the case with no shunt, the resonance frequency would be higher.

The two sides of the equation are plo�ed in figure 7.4, the solution is found where
the two curves intersect. So the shunt capacitance leads to an e�ective shi� to lower
resonance frequencies.

7.3 Internal loss mechanisms

In chapter 6.3 external and internal loss mechanisms of a resonator were discussed
in general. This theory still applies here.
In this chapter amore detailed discussion of the internal lossmechanisms of the stripline
resonator is presented. The discussion is based on [21].

7.3.1 Basics
Following equation 6.21 the internal quality factor can be calculated from:

Qi =!rRint C (7.2)

C is the capacitance of the resonator and Rint the internal resistance related to the
losses, which supposedly, can be wri�en as:

Rint =
Z

0

↵ls
(7.3)

ls is the length of the resonator, in this case of the stripline and ↵ refers to the real part
of the propagation constant �, given in equation 2.7. Assuming that the specific losses
of the transmission line Gl , Rl are small, the propagation constant can be approximated
as:

�⇡ i!
p

Ll Cl

Å
1� i

2

Å
Rl

!Ll
+

Gl

!Cl

ãã
(7.4)

Ll relates to the conductance per unit length, Cl to the capacitance per unit length of
the resonator. Using equation 7.4 the real part of the propagation constant, ↵, being the
a�enuation, is found to:

↵ ⇡ 1

2

Å
Rl

Z
0

+ Gl Z0

ã
, (7.5)

with Z
0

being the characteristic impedance. So twomain loss mechanisms are obtained.
Rl/Z0

is related to the conductive losses, Gl Z0

is related to losses to two level systems
on the substrate, which the stripline sits on.
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7.3.2 Conductive loss
For the probed resonators superconductivity is a requirement to achieve high quality

factors. Due to the temperature being finite, there are still normal conducting electrons,
which lead to losses. An approximate surface resistance of an infinitely thick bulk su-
perconductor below its critical temperature is given by [21]:

Rs ⇡ A�3

e�
!2

T
e�

�
kB T (7.6)

A is a factor which can be calculated or fi�ed, �e� is the e�ective penetration depth,
which is explained as a skin depth for the Cooper pairs. � relates to the superconduct-
ing energy gap, T is the temperature. The equation has good agreement until 1/2TC

[21]. The exponential term comes from quasi particle generation.
So the conductive losses mainly depend on the temperature. This emphasises the im-
portance of achieving an as low temperature as possible, to prevent conductive losses.

7.3.3 Losses to two level systems
The stripline can excite two level systems on the substrate. These are impurities,

which can be depicted as dipoles, interacting with the field of the stripline. This leads
to losses, known as losses to two level systems. Those losses are related to the second
part of equation 7.5. Following [21] they can be estimated:

↵TLS =
Gl Z0

2

=
⇡2c
!

✏rp
✏e�

tan�TLS (7.7)

In this expression the ✏’s relate to the dielectric constants, c is the speed of light. �TLS
refers to the loss tangent, known from chapter 6.3. It is expected, that for a high input
power more two level systems get saturated. Therefore the measured quality factor is
higher, as less losses from the stripline to the substrate are possible. For a lower input
power, especially around the single photon limit and lower, the internal quality factor
should converge to a finite value. With such a low input power, the two level system
are not saturated any more and maximum losses to the substrate are present.
The loss tangent for silicon is about 10

�4 at 6GHz for low temperatures [29], which is
about 2 orders of magnitude higher than for sapphire [20].
Also in the case of a higher temperature more two level systems should be saturated,
leading to fewer losses. On the other hand conductor losses will increase with a rising
temperature. So two processes take place, leading to opposite e�ects. Depending on
which lossmechanism is dominating, the quality factor will increase, decrease or remain
constant if they compensate each other.

7.4 Simulation data

7.4.1 Overview
Simulations with HFSS were performed. The results were compared to the measure-

ments and di�erent configurations were tested to find the best configuration for the
measurements (e.g. to have the stripline critically coupled). Comparing the measure-
ments to the simulation results also gives an indication, to which extent the simulation

63



Chapter 7 7. Stripline resonator in a 3D waveguide

results can be trusted. This is an important outcome for designing future setups.
The waveguide was modelled several wavelengths long, to avoid e�ects from the ports.
Accurate dimensions were used for width and height. Vacuum was chosen for the in-
side material. The stripline, si�ing on the silicon substrate, was chosen to be a perfect
electric conductor.
A waveport without any special constraints was used to excite the waveguide. A fine,
length based mesh was assigned to the stripline, to achieve the required accuracy. A
length based mesh was also assigned to the silicon, but not as fine as for the stripline.
The dielectric constant of the silicon was set to ✏r = 11.5 for all the simulations, as the
exact dielectric constant of our substrate is unknown and 11.5 replicated the obtained
resonance frequencies most accurately.
For the majority of the simulations an interpolating sweep was performed, to save com-
putation time. For most configurations HFSS had no trouble in finding the resonance.
The obtained quantities from the simulations are the resonance frequency and the cou-
pling, expressed by Qc , which are obtained by exporting the complex values of the S
parameters from HFSS and performing a circle fit.
The goal of the simulations was to see the behaviour of the stripline for di�erent config-
urations and also to get some intuition for its behaviour in the waveguide. Furthermore
the simulations were used to probe di�erent setups for the actual experiments and find
the most suitable one to measure.
The goal is to have a setup, which is in the order of being critically coupled, as the cir-
cle fit works most reliable in that regime. The internal quality factors of the stripline,
obtained by the first measurements, are in the range of 1⇥ 105 to 1⇥ 106, so the goal is
to have Qc in the same range.
In addition a new waveguide was designed and the simulations were crucial to get the
demanded specification. The waveguide is described in chapter C of the appendix.

7.4.2 Symmetric stripline
In this part the simulation results for the symmetric stripline are discussed. Sym-

metric means in this context, that the leg length is equal on both sides. The dimensions
of the stripline were the ones from figure 7.1(a).

Maßstab: 10px =1mm Different simulation setups

x 12.6 m
m

21 mm 10.5 mm

x

(a) (b)

Figure 7.5: In (a) the position of the SLR within the waveguide was shi�ed. In (b) the sapphire
substrate was shi�ed, while the position of the SLR was fixed one time to the center and second
time to 0.95mm o� center, towards the le� wall (and the sapphire).

At first the stripline was shi�ed along the y axis through the waveguide, see figure
7.5(a). Only the fundamental mode of the waveguide was excited given by the fre-
quency range, having its cuto� around 7.2GHz. The electric field follows a sine and the
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stripline couples to the waveguide mode due to its gradient over y . So for the central
position no coupling corresponding to Qc =1 is expected, while for the closest posi-
tion to the wall, the lowest values for Qc are expected.
The results are plo�ed in figure 7.6(a), x is the distance from the stripline to the center.
Qc is plo�ed in a logarithmic scale and shows the expected behaviour for the extreme
cases.
The actual waveguide, used for the experiments, has dedicated slots to put the samples,
so they cannot be placed arbitrary close to the center, which is required to get a Qc ,
being of the same magnitude as the expected Qi . As a workaround a sapphire substrate
was placed in a neighbouring slot of the sample si�ing in the center. The sapphire shi�s
the field, due its high dielectric constant. This is sketched in figure 7.5(b). So for such a
configuration it is possible to place the stripline in the center of the waveguide and have
a finite Qc . The simulation results are shown in figure 7.6(b). One time the stripline was

0 2 4 6 8
o� center = x (mm)
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1e+03

1e+04
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Q
c

(a)

2.0 3.0 4.0 5.0 6.0
distance to sapphire = x (mm)

1e+04

1e+05

1e+06

Q
c o� c.
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Figure 7.6: Coupling quality factor of the stripline resonator in di�erent configurations. (a) The
position of the stripline was swept, illustrated in figure 7.5(a). The highest coupling was seen,
when the stripline was closest to the center. The reason is that the electric field gradient is the
smallest in this case. (b) A piece of sapphirewas placed in thewaveguide, which shi�s the electric
field of the waveguide mode. The coupling quality factor is plo�ed versus the distance between
the sapphire and the substrate holding the SLR. One time the stripline fixed to the center, one
time 0.95mm from the center, illustrated in 7.5(b). In case the stripline was in the center, the
highest coupling quality factor occurs, when the sapphire is far away from the stripline.

placed exactly at the center, the other time the substrate holding it was placed 0.95mm
o� center. On the x axis the distance between the substrate with the stripline and the
sapphire is plo�ed. For the stripline placed in the center (blue squares) the highest Qc

is obtained when the sapphire is as far from the stripline as possible. This is expected
as the least influence on the field is given, but still enough that the stripline couples
to it. For the sapphire moving closer to the center, Qc decreases due to the stronger
perturbation of the otherwise symmetric field.
The values of Qc for the stripline being 0.95mm o� center are plo�ed using diamond
symbols in figure 7.6(b). The maximum is reached for the sapphire being away from the
wall and closest to the sample. This perturbs the field in a way, that it is nearly sym-
metric over the stripline. These results can be compared with 7.6(a) were in one case the
stripline holder was also placed 8mm from the wall. The coupling quality factor with
the additional sapphire are always above the values without the sapphire.
So we see by using a sapphire and placing the stripline in the center, the required values
for Qc can be achieved using the accessable waveguide slots.
The resonance frequencies were found to 7.94GHz and changed by a fewMHz for all the
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di�erent setups. So this result is a li�le more than 300MHz away from the frequency ex-
pected by the discussed model. As there were some assumptions taken, especially that
the capacitive coupling between the legs takes only place at their end, this is within the
expected accuracy. Compared to the measurements results, which will be discussed in
chapter 7.5.7, the HFSS results are closer, being accurate within around 50MHz. So the
circuit model should be taken to get a rough estimate for the resonance frequency and
then HFSS should be taken for a more precise prediction.

7.4.3 Symmetric stripline - field analysis
HFSS also allows to plot the fields, which are discussed in this section. To obtain

the fields, a port has to be driven, which is done with a wa� of power. All the fields are
plo�ed at the resonance frequency of the stripline. The silicon holding the stripline is
placed 4mm away from the le� wall.
In figure 7.7 the magnitude of the electric field inside the waveguide is shown. First

SLR+ 
Substrate

Figure 7.7: Magnitude of the electric field in the waveguide with stripline on a silicon substrate.
The stripline can be found close to the coordinate system’s origin, at a local field maximum, le�
from the waveguide center. Red corresponds to a strong field, blue to a weak field (in compari-
son), the scale is linear.

of all the wavelength, as the distance between two field minima along the propagating
direction, coincides with the wavelength of the excitation, which is expected. One has
to keep in mind, that the speed of light inside the waveguide is reduced due to an in-
creased wave impedance close to the cuto� frequency of the mode (equation 3.15).
Second we find that the field is lowest at the walls and maximum at the center of the
waveguide, moving along the y axis. This is expected, as theory predicts (equation 3.22),
that the field follows a sine function, with its maxium in the center.
In addition, the deformation of the field from the silicon and the stripline is seen. The
silicon a�racts the field due to the higher dielectric constant and this can be perceived
in here. Looking at the time evolution, the field would propagate through the waveg-
uide along the propagation direction. In the time evolution animation, the a�raction of
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the field around the silicon substrate is clearly obtained.

Fields on symmetric SLR, V, I

V

I(90°)

(a)Fields on symmetric SLR, V, I

V

I(90°)

(b) SLR - fields inside WG (c)

Figure 7.8: Magnitude of the electric field (a), surface current (b) (⇡/2 out of phase) and vec-
torial depiction (c) of the electric field in the plane of the the symmetric SLR, placed o� center
in the waveguide. The electric field has a maximum at the end of the legs and a minimum in
the center, opposite to the current. This is expected for the stripline being the predicted �/2
resonator. Red corresponds to a strong field, blue to a weak field (in comparison), the scale is
linear.

In figure 7.8(a) the magnitude of the electric field over the stripline is plo�ed. As ex-
pected from the discussed model, see figure 2.3, the electric field has its maximum at
the end of the legs and a node in the center. Thus the stripline represents a �/2 res-
onator. A (small) di�erence can be recognised between the le� and the right leg. On
the le� leg the field is slightly stronger than on the right leg, which occurs due to the
coupling to the waveguide. For the symmetric stripline, the node would be expected to
be exactly at the center of the stripline, but due to the electric field, which is higher on
the right side, the node is shi�ed to right, leading to the asymmetry.
Only the magnitude of the field is plo�ed, so the di�erence between negative and pos-
itive is not obtained. To induce a current flow, one leg has to be charged positive, while
the other one is charged negative.
In (b) the magnitude of the surface current is shown, plo�ed ⇡/2 out of phase in com-
parison to the electric field. The current is exactly opposite to the electric field, such
that the maximum current is at the center of the stripline and the current is zero at the
end of the legs, which again coincides with the expectations.
In (c) the vectorial electric field is plo�ed in the plane of the stripline. The stripline
couples to the waveguide walls which act as a ground. This is a further indication, that
the derived model describing the stripline as a transmission line is valid. The waveguide
wall is the required second conductor. Moreover the electric field is perpendicular to the
waveguide walls and to the stripline. It is strongest in the middle and gets weaker to-
wards the walls. Also the concentration of the field around the stripline is seen and fur-
thermore the perturbation arising from the stripline in combination with the substrate.
For a phase being ⇡ di�erent, the electric field is reversed, obtained by the electric field
vectors pointing in the opposite direction.
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7.4.4 Asymmetric stripline

Simulation setup for asymmetric SLR

12
.6
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(a) (b)

x

Figure 7.9: (a) The asymmetric stripline was shi�ed within the waveguide. The asymmetry of
the stripline (length di�erence between the legs) remained the same. (b) For the stripline, placed
in the center of the waveguide, the asymmetry was changed. One leg was extended by the same
length the other leg was shortened.

Simulationswith an asymmetric striplinewere performed. The length of one stripline
leg was reduced, while the other one was extended about the same length, illustrated
in figure 7.9. The length di�erence of each leg to the symmetric position is referred
to as the asymmetry in the following. The total length of the stripline remained the
same. Two di�erent sets of simulations were performed. Illustrated in figure 7.9(a), the
asymmetric stripline was shi�ed through the waveguide, indicated by x in the plot. In
this simulation the asymmetry remained constant, being 2mm. In the second set of
simulations, the asymmetry itself was swept for the stripline placed in the center of the
waveguide, figure 7.9(b). The results are depicted in figure 7.10.
Close to the wall the highest quality factors are obtained, due to the fact that the asym-
metry itself partially cancels the gradient of the field. This leads to a weaker coupling.
Around the center Qc fla�ens out and the decrease of Qc is still given, but hard to see in
the logarithmic plot. Reaching the other side of thewaveguide, the coupling is strongest,
there the asymmetry has the same e�ect as the gradient of the field. For the last data
point, where the stripline is close to the waveguide wall, Qc seems to increase again.
There are two e�ects, which might explain this shi� and were not present to that ex-
tent for the other data points. The stripline is closest to the wall of the waveguide, so
increased coupling to the wall takes place. This might reduce the gradient, and further
on increase Qc . In addition, the substrate holding the stripline is very close to the wall,
which might influence the gradient over the stripline. So also this can lead to an in-
crease in Qc .
In (b) the coupling quality factor against the asymmetry is plo�ed, this is illustrated in
figure 7.9(b). The stripline itself is placed in the center of the waveguide. For the sym-
metric case an infinite Qc is expected, assumed to decrease with an increasing asym-
metry. The higher the asymmetry, the stronger the stripline couples to the waveguide.
The node of the voltage on the stripline is supposed to be in the middle in terms of the
stripline length. With a rising asymmetry it shi�s towards the longer leg, leading to a
higher gradient and a stronger coupling.
In (c) the resonance frequency of the stripline is plo�ed versus the asymmetry. Com-
pared to the prior sweeps, where the resonance frequency remained nearly constant,
a change of more than 10% is observed. This can be explained by a lower shunt ca-
pacitance. Comparing the results to the derived model (equation 7.1), the slope of the
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Figure 7.10: Coupling and resonance frequency for di�erent configurations of the asymmetric
stripline, sketched in figure 7.9. (a) Coupling quality factor of the asymmetric stripline with an
asymmetry of 2mm for di�erent position within the waveguide. The coupling is the weakest far
away from the center, where the asymmetry is similar to the gradient. This reduces the e�ective
gradient over the stripline. (b) Asymmetry of the stripline was swept, for the stripline placed in
the center. The higher the asymmetry, the be�er the coupling, as this leads to a higher e�ective
gradient. (c) Resonance frequency for a swept asymmetry. The higher the asymmetry, the higher
the resonance frequency. The reason is, that the shunt capacity gets reduced, related to an
increased resonance frequency. The data is compared to the data obtained by the circuit model
(chapter 7.2). The data from the circuit model also shows an increasing resonance frequency
with asymmetry, but the e�ect is weaker. Reasons are discussed in the text.

linear (le�) part in the equation decreases which leads to higher resonance frequency.
In the model the shunt capacitance is the capacitive coupling between the ends of the
legs. For the asymmetric stripline the coupling takes place between the end of one, and
the middle of the other leg. So this pushes the model to a limit, where the solutions
only predict the frequency change partially. This explains the disagreement in the slope
between the HFSS data and the data from the circuit model. It still gives the correct
picture, but is o� in absolute numbers.
In this chapter the HFSS simulation results for a number of di�erent configurations
were discussed. The next chapter is about the setups, which were measured, and the
results, which will be compared to the simulation data.

7.5 Experimental results

In this chapter the experimental setups and the measurement results of the stripline
resonators are discussed. As far as possible the results are compared to the theoretical
predictions and the outcomes from the simulations.
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7.5.1 Measurement overview
To achieve high internal quality factors the stripline resonators were cooled to a

temperature of 20mK. The samples were put into waveguides fabricated from copper
or aluminium, then placed in a dilution refrigerator.
Measurements using the same VNA as for the cavity measurements, described earlier,
were performed for di�erent input powers and temperatures. The input power was at-
tenuated around 69 dB by the cables themselves and a series of a�enuators. This number
was directly measured. The complete measurement setup is discussed and illustrated
in chapter D of the appendix.
An important quantity for determining the quality factors is the number of photons in
the resonator. It can be estimated using the input power, Pin, and the measured quality
factors. The following estimation from [30] was used:

< nph >=
2

~h!2

Q2

l

Qc
Pin (7.8)

So it is dominated by the input power. For the temperature ramp up measurements a
heater inside the fridge was used, regulated by a PID controller. A�er a certain temper-
ature was reached the samples was given su�icient time to thermalise.
The measured data was fi�ed, using the described circle fit routine, to gain knowledge
about the quality factors and the resonance frequency.

7.5.2 Fabrication process
The stripline resonators were fabricated by the Fachhochschule Vorarlberg in two

di�erent batches. The first batch consisted of aluminium striplines, the second batch
additionally contained ones made from niobium.
In contrast to the first batch, in the second batch the aluminium stripline got exposed
to an oxygen plasma a�er the structures themselves were fabricated. The purpose is to
form a controlled, uniform dielectric layer on top of the sample.

7.5.3 Di�erent setups
In figure 7.11 the configurations, which were cooled down in the cryostat and mea-

sured are sketched. Details are given in table 7.2. In (a)-(d) the striplines were put in the
same waveguide made from copper. One stripline was measured in each cool down. In
(e) another waveguide fabricated from copper was used, which was 2mm wider than
the other one.
In (f) the samples were put in an aluminium waveguide, designed in a way that three
samples can be measured at the same time. Details about this waveguide, which was
fabricated within this thesis, are described in chapter C of the appendix. To measure
three samples simultaneously, they were put along the propagation direction in the
waveguide. To have their resonance frequency su�iciently far apart, an additional piece
of silicon substrate was put at the back of two of the substrates holding the stripline.
Additionally one of the striplines backed with a silicon substrate had a designed reso-
nance frequency of 7.5 GHz, due to 0.2mm longer legs. The additional silicon substrate
at the back increases the e�ective dielectric constant, leading to a decreased resonance
frequency.
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Maßstab: 10px =1mm Measurement setup SLR
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Figure 7.11: Actual setups, which were cooled down in the cryostat and measured. In (f) three
striplines were put in the same configuration in the same aluminium waveguide along the prop-
agation direction. In (a)-(e) the waveguides were fabricated from copper (illustrated with colored
wall). Details are given in table 7.2. The dimension of the stripline and the substrate are given
in figure 7.1.

From (d) on the second batch of striplines was measured, in (e) the stripline was fabri-
cated from niobium, in (f) two of the three striplines were made from niobium, setup
(f2) and (f3). The stripline measured in (f1) was exactly the same as measured in (d),
otherwise di�erent striplines were used in every measurement.
To shi� the field, required for the central striplines in (c)-(e), a substrate of sapphire was
used. The dimensions of the sapphire substrate were similar to the dimensions of the
silicon substrate containing the sample. For (f) silicon substrates, instead of sapphire
ones, were used to shi� the field inside the waveguide. Due to their similar dielectric
constant the influence on the field is comparable to the one of the sapphire substrate.
The use of silicon was required due to the modified sample mounting system in the
aluminium waveguide.

7.5.4 Coupling in di�erent setups

In figure 7.12 the coupling quality factors for all the di�erent configurations with
respect to the number of photons in the resonator are plo�ed. The simulation results,
which were obtained by simulating S

21

and using the circle fit, are plo�ed as lines, the
measured data is depicted by points. Overall agreement is observed between the mea-
surements and the simulation data. There is no strong dependency, which is expected,
as the coupling should not depend on the input power.
The stripline si�ing closest to the wall (a) has the lowestQc , followed by the setup where
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Setup WG WG width SLR Wall - SLR Sapphire - SLR
(a) Copper 21mm Al 8GHz 2.75mm -
(b) Copper 21mm Al 8GHz 5.75mm -
(c) Copper 21mm Al 8GHz 8.95mm 0mm
(d) Copper 21mm Al 8GHz 8.95mm 3.1mm
(e) Copper 23mm Nb 8GHz 9.95mm 3.1mm
(f1) Aluminium 23mm Al 8GHz 9.95mm 4.3mm
(f2) Aluminium 23mm Nb 8GHz 9.95mm 4.3mm
(f3) Aluminium 23mm Nb 7.5GHz 9.95mm 4.3mm

Table 7.2: Di�erent setups in which the striplines were measured. The setups are sketched in
figure 7.11. ’Wall - SLR’ is the distance from the wall to the substrate with the stripline. The
distance sapphire to SLR gives the di�erence between the neighbouring substrates, if present. In
configuration (f), instead of the sapphire, silicon was used to shi� the field, which has a similar
dielectric constant and therefore a similar influence on the field. The exact same stripline was
used in setup (d) and (f1). Otherwise the measured stripline was always a new one. In setups
(a)-(c) striplines from the first batch, in (d)-(f) striplines from the the second batch were used.
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Figure 7.12: Coupling quality factor in di�erent configurations (see 7.11). The lines depict the
simulated data, the points are the measurements. Details are discussed in the text.

the stripline was moved closer to the center, (b), in line with the expectations. The next
higher Qc is measured for the stripline in the center with the sapphire substrate right
next to it. The di�erence between the quality factors, observed from the measurements
as well as the simulation data, is more than a magnitude for this configuration.
It is surprising, that the coupling is stronger for configuration (d) than for (e). The rela-
tive influence from the sapphire on the waveguide field should be higher in (e) than in
(d), leading to a stronger coupling. The reason is that the sapphire remains at the same
distance, while the waveguide is narrower, thus the influence on the field is stronger.
Also according to the simulations the quality factors should be the other way around.
A possible explanation is the critical influence of the stripline position on the coupling.
Especially when the gradient of the electric field is low, which is the case for a centrally
positioned stripline. In (e) the slot to put the substrate was shorter than in the other
waveguide. This leads to a possible bigger deviation in the position of the stripline.
Performing simulations it was seen, that a di�erent position of 0.8mm can lead to a
di�erence of the coupling quality by a factor of 7.
In (f) the silicon substrate shi�ing the field was further away from the centrally placed
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stripline. The quality factors there are the highest, in line with the expectations. The
stripline (f1), which is not backed with an empty silicon substrate has a higher Qc than
(f2), backed with a substrate. It is not possible to explain this with the variance of the
substrate position. The aluminium waveguide used here has fixed slots for the samples
(see appendix). A possible reason is, that the stripline itself was not in the center of the
substrate. Another possible reason can be a slightly asymmetric stripline, which would
also lead to a di�erent coupling (see figure 7.10c). Still the quality factor is in the ex-
pected range from the simulations.
Comparing simulation and measurement shows reasonable agreement. Especially for
higher Qc’s the deviation is bigger for some measurements. A possible reason, as dis-
cussed, is variance of the stripline position and the leg length.

7.5.5 Internal quality factor dependence on the circulating power

Aluminium stripline
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Figure 7.13: Internal quality factors of aluminium striplines against the number of photons in
the resonator. The coupling quality factors were around 2⇥ 103 for (b), 2⇥ 104 for (c), 1⇥ 106 for
(d) and 1.5⇥ 106 for (f1), see figure 7.12. (a) Internal quality factor is the highest for the stripline
in the aluminium waveguide (f1), which was exactly the same stripline as measured in (d). The
highest internal quality factor measured in the copper waveguide was slightly above 3⇥ 105. For
all striplines a decreasing internal quality factor with lower power is obtained. In (b) the results
of the aluminium stripline in setup (d) are plo�ed in detail.

The internal quality factors of the aluminium striplines are plo�ed in figure 7.13.
The measurement of setup (a), where the stripline was closest to the wall is not plo�ed.
This was measured in the highly over coupled regime and no useful information about
Qi could be extracted. In addition to the poor regime, it was only measured under low
input power, below the single photon limit (see for example figure 7.12), where the error
is naturally higher.
In the configurations (b)-(d) the striplines were measured in a copper waveguide, while
configuration (f1) was measured in an aluminium one. The advantage there is, that alu-
minium gets superconducting below 1.1 K [31]. This prevents losses in the waveguide
walls and the formation of vortices due to trapped flux by shielding the external mag-
netic field.
In (b) a stripline from the first batch, was placed o� center. A slight trend, for a decreas-
ing Qi with photon number is observed. At the single photon limit the internal quality
factor is around 2⇥ 105. The error is still substantial, due to a coupling quality factor
being a factor of 100 lower than the internal one. In (c) a di�erent stripline with the

73



Chapter 7 7. Stripline resonator in a 3D waveguide

same dimensions was measured, placed in the central slot of the waveguide. It is still
in the over coupled regime with the ratio Qi to Qc being 10:1. This is su�icient for the
circle fit to give reliable data. A trend of a decreasing quality factor with the photon
number in the resonator is observed, still it is in the same range for low and for higher
power.
In configuration (d) results for the internal quality factor of a stripline from the second
batch, placed in the same copper waveguide as used in (b) and (c) is plo�ed. The field
shi�ing sapphire is now placed one slot further away from the stripline being in the
center, which makes the stripline critically coupled. The internal quality factor is lower
compared to the others, being around 1⇥ 105. In 7.13(b) this quality factor is plo�ed in
detail, where it is seen that it increases with photon number. The relative di�erence is
below 10%. The reason for the lower internal quality factor could arise from some frozen
fluxoids or vortices, caused by a high magnetic field from a neighbouring lab during the
cool down process. A higher photon number in the stripline was reached due to the
higher total quality factor. Near the maximum photon number, a decrease in the qual-
ity factor is obtained, which could be due to a higher current leading to conductor losses
dominating over the reduced losses to two level systems.
The exact same striplinewas put in the aluminiumwaveguide in a similar setup, sketched
in figure 7.11. The data points are labelled with (f1) in 7.13(a). The internal quality fac-
tor in the single photon limit is around 6 times higher as compared to before. To some
extend this can be explained with the reduced losses in the waveguide wall. As seen
for the niobium striplines in the following section, the di�erence seems to be around a
factor of 1.5, so this does not account for all the improvement. A possible explanation
is, that there was no magnetic field present during the cool down process, due to the
shielding from the aluminium waveguide, which probably was the reason for the low
Qi before (see earlier discussion).
The di�erence between the internal quality factor for low and high power is around a
factor of 2. This is more than measured for the other aluminium striplines. Again for the
highest photon numbers a maximum in the quality factor is reached, and the quality
factor seems to decrease for higher input power.
To conclude, for the aluminium stripline in the copper waveguide a maximum quality
factor of around 3⇥ 105 is achieved at the single photon limit. In the aluminium waveg-
uide this is about two times higher. The quality factor has a decreasing trend for lower
photon numbers, which can be seen to a di�erent extent in the di�erent setups. This
can be explained with the increasing losses to the two level systems of the substrate.

Niobium stripline

In figure 7.14 the quality factor of the niobium stripline versus the number of photons
in the resonator is plo�ed. Setup (e) was the only one in the copper waveguide, while
for the other two measurements the striplines were inside the aluminium waveguide.
For the stripline in the copper waveguide quality factors of around 7⇥ 105 are observed
at the single photon limit, which is higher than the quality factor of every measured
aluminium stripline in the single photon limit. Again the quality factor increases with
increasing photon number and its measured maximum is around 3 times as high as
compared to the single photon limit. In comparison to the aluminium stripline there is
no plateau for high photon numbers.
The results of the 8GHz niobium stripline in the aluminium waveguide are labeled as
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Figure 7.14: Internal quality factor of the Nb stripline for di�erent number of photons in the
resonator. In (a) the whole range of measured Qi ’s is plo�ed and in (b) a zoom to see the single
photon limit is plo�ed. The coupling quality factors were between around 5⇥ 105 and 2⇥ 106
(figure 7.12), which made a good range for the circle fit, given the internal quality factors. The
internal quality factor for the stripline in the copper waveguide was around 7⇥ 105 and 1⇥ 106
for the striplines in the aluminiumwaveguide. A clear dependency on increasingQi with photon
number is observed.

(f2) in 7.14. The quality factor for low power is around one million, which is around 50%
higher than for the stripline in the copper waveguide. The di�erence here is lower than
for the aluminium stripline measured in (d) and (f1). A possible reason was discussed in
the previous section. For high power, the increase is around 4 times, which is similar to
the copper waveguide.
In (f3) the internal quality factor of the niobium stripline with a nominal resonance
frequency of around 7.5GHz is plo�ed. In the low power limit its internal quality factor
around a million, which is similar to the other stripline. For high photon numbers the
quality factor is around twice as high, compared to the other stripline.
To conclude a clear trend for a rising quality factor with increasing photon number was
obtained, which is higher than for the aluminium stripline. The quality factor for low
photon numbers is around twice as high as for the aluminium stripline, also no plateau
is reached for high photon numbers. An explanation is that the critical temperature for
niobium is higher with around 8K [32] compared to 1.2 K [31] for aluminium. So the
conductor losses are minor for the measurement regime and the saturation of two level
systems, leading to fewer losses, is still dominating.

7.5.6 Internal quality factor dependence on the temperature
The temperature of the cryostat was increased using the previously described heater

until around 1.2 K. In steps of a around 100mK measurements were performed for low
input powers around the single photon limit and high input powers (magnitudes above
single photon limit).
We expect two e�ects. On one hand an increasing saturation of the two level systems on
the substrate, with rising temperature, leading to an increased Qi . On the other hand a
decrease of Qi due to an increase of normal conducting electrons in the striplines them-
selves, leading to losses. Temperature ramps were done for the aluminium stripline in
configurations (c) and (d), in the copper waveguide and configuration (f1) in the alu-
minium waveguide and for all the measured niobium striplines, setups (e), (f1) and (f2).
In the aluminiumwaveguide a further e�ect is expected, as the superconductivity of the
aluminium breaks down around 1K. So an additional decrease in the internal quality
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factor is expected due to increasing losses in the waveguide walls.

Aluminium stripline
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Figure 7.15: Internal quality factor dependence of aluminium striplines on the temperature.
Stripline in the copper waveguide (c), (d) and in the aluminium waveguide (f1).

In figure 7.15 the results for the aluminium striplines are plo�ed. High power mea-
surements were performed before and a�er the low power measurement, to see if the
stripline had thermalised. In configuration (d) the internal quality factor was barley
power dependent (figure 7.13), so only the low input power values are plo�ed.
Independent of the configuration, all striplines showed a decreasing quality factor from
around 400mK onwards. The measured values are similar for each temperature, inde-
pendent of the configuration. The decrease seems to have approximately the behaviour
expected from conductive losses, equation 7.6. However some additional e�ects have to
be taken into account, as the stripline is just a thin film, compared to the model, which
assumes bulk aluminium. So the model gives an estimate to the losses, but does not
describe the measurement data in full extent.
The critical temperature for aluminium is around 1.2 K, so at around this temperature a
quality factory, related to the normal state resistance of aluminium is expected. Simu-
lations with HFSS were performed, where aluminium, instead of a perfect electric con-
ductor, was used for the stripline material. The values measured for around 1K are in
the same range as as thos. This meets the expectations, and the quality factor is then
also expected to converge around this value.
Measurements above 1.1 K were not possible, as the resonance vanished within the rip-
ples of the transmission spectrum, since the coupling quality factor being a lot higher
than the internal one. The striplines were measured in the then under-coupled regime,
since critical coupling was required for low temperatures. Especially in (f1) having the
weakest coupling, measurements for above 750mK were not possible.
Investigating the data at low temperatures, the quality factors stay approximately con-
stant until 200mK - 300mK.
The results show the same behaviour as in [20], where an aluminium cavity was mea-
sured.
For the stripline in the aluminium waveguide, measured around the single photon limit,
a small increase in the quality factor is seen up to 200mK. This can be explainedwith the
reduced losses to two level systems dominating over increasing conductor losses. Af-
terwards a decrease is measured, probably slightly earlier than for the other striplines.
The most likely reason is the increasing resistance of the aluminium waveguide walls.
The stripline is also closer to the waveguide walls in this setup.
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Niobium stripline
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Figure 7.16: Internal quality factor of the niobium stripline in dependence of the temperatures.
(e) in the copper, (f2), (f3) in the aluminium waveguide.

The results of the niobium stripline are plo�ed in figure 7.16. The behaviour is
strongly dependent on the waveguide material.
For the stripline in the copper waveguide, figure 7.16(a), at first a slight decrease of the
quality factor is measured, followed by an increase, continuing for the whole measure-
ment range (up to 1.2 K). The losses around 1.2 K appear to be mostly independent of
the input power. The increased temperature saturates the two level systems, leading to
fewer losses. The critical temperature, being around 8K, does not play a major role in
the region below and around 1K, in contrast to the aluminium stripline.
In 7.16(b) the results for the 7.5GHz and 8GHz stripline in the aluminium waveguide
are plo�ed. The results are similar to the ones in the copper waveguide until around
300mK. Above this temperature, the quality factor for the stripline using high power
begins to decrease. For the low input power this takes place around 400mK. This might
be explained with increasing losses in the waveguide walls. For the low input power the
increased saturation of the two level systems seems to be still dominating. A�er about
550mK the quality factors for high and low power are similar and remain constant. The
losses to the walls seem to have a bigger influence in the aluminium than in the copper
waveguide, which arises from the higher resistivity of aluminium. HFSS simulations,
where a finite conductivity was assigned to the waveguide walls, were performed. For
the waveguide 5083 aluminium was used, so the value for its conductivity, found in
[33], was taken. The simulation gave a value for the internal quality factor of around
1.2⇥ 106. Compared to the measurement, giving a quality factor around 1⇥ 106, the
losses to the wall seem to be the dominating loss mechanism. The di�erence to the sim-
ulation results, can be explained with further imperfections, and other loss mechanism,
like two level systems, which are not taken into account in the simulations.
The coupling quality factor does not change significantly for the aluminium and the
niobium striplines in the measured configurations. It remains at the value, measured at
base temperature, figure 7.12. This is the reason for the values not being plo�ed.

7.5.7 Resonance frequencies in di�erent setups
In figure 7.17 the resonance frequencies against the number of photons in the res-

onator are plo�ed. In (a) the resonance frequencies of all the measured setups are plot-
ted, in (b) only the ones with the same nominally resonance frequency. The resonance
frequencies remained constant for the whole range of input powers, which is expected.
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In the setup (f2) the intention was to shi� the frequency of an 8GHz SLR by backing the
substrate holding the stripline with an empty substrate, which increases the e�ective
✏r . This leads to a decrease of the resonance frequency of around 200MHz, which is
around 100MHz less than expected from the simulations. Also in (f3) where a 7.5GHz
stripline was put in a similar setup, the empty substrate seems to shi� the resonance
frequency around 200MHz. This is again not as much as expected from the simulations.
A possible explanation for the deviation of the simulations is that the two substrates are
not completely touching, as they are in the simulations. Also ✏r can be di�erent form
the assumed value in the simulations. Still the simulations are in the same order of
magnitude.
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Figure 7.17: Resonance frequency for the di�erent setups. Simulated data from HFSS plo�ed
as lines to compare with measurement data (points). In (a) all configurations are plo�ed, in (b)
only the ones with the same nominal resonance frequency.

In figure 7.17(b) the resonance frequencies of the striplines having nominally a reso-
nance frequency of 8GHz are plo�ed. The setups without a neighbouring sapphire
have a higher resonance frequency than the one with a sapphire placed next to them.
An additional sapphire leads to a slightly increased capacitance of the stripline, leading
to a lower resonance frequency, due to the additional dielectric between the stripline
and the waveguide wall. This can be obtained in the discussed circuit model, equation
7.1.
The simulated data did not predict the obtained variance for the given setups, but was
still within around 50MHz of the measured frequency. Even though it is not exactly
accurate this should be su�icient to plan setups using the simulations.
A possible reason for the di�erent resonance frequency, can be found in a slightly dif-
ferent length of the stripline. According to simulations a length di�erence of 0.05mm
(both legs shortened about 0.05mm) leads to a shi� of 100MHz in resonance frequency.
Also a di�erent ✏r leads to a di�erent resonance frequency.
Comparing to the circuit model, which predicts a resonance frequency of 8.27GHz, the
measurement results are within 400MHz. Still the simulation results are closer. So the
circuit model can be taken to get a rough estimate for the resonance frequency. To get
a more exact value for the resonance frequency, finite element simulations should be
performed.
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7.5.8 Resonance frequency dependence on the temperature
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Figure 7.18: Shi� of the resonance frequency under ramping up of the temperature.

In figure 7.18 the resonance frequency with respect to the temperature of the alu-
minium stripline is plo�ed. As it is not power dependent, it is not necessary to distin-
guish between low and high input power.
The behaviour is similar for all measured striplines. Up to around 600mK the resonance
frequencies remain constant and decrease a�erwards. The decrease is in the regime
of 10’s of MHz. Compared to [34], where an aluminium cavity was measured, the be-
haviour is similar. In this paper the frequency drop is explained with BCS theory and
the rising surface impedance for an increasing temperature.
It is expected that for temperatures above the critical temperature this decrease does
not continue, which could not be measured.

Niobium stripline

The results for the niobium striplines are plo�ed in figure 7.19, relative to the the res-
onance frequency at 50mK. The di�erence is in the range of a few kHz, furthermore the
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Figure 7.19: Relative shi� of the resonance frequency in comparison to its value at 50mK, which
was the first data point.

behaviour is similar to the one of the internal quality factor. For the values until 300mK,
before the influence of the aluminium waveguide walls starts, the trend is similar for all
the measured striplines. In [35] a coplanar waveguide, also fabricated from niobium is
measured. A similar trend to setup (e) for increasing temperature is observed. In there
the frequency shi� is explained with the two level systems leading to a variation in the
dielectric constant of the substrate, being related to a shi� in resonance frequency. This
explains the behaviour for the whole measured range.
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To conclude, measurements of stripline resonators in a waveguide were presented
in this chapter. A circuit model allowing to calculate the resonance frequency was de-
veloped. The calculated values agree with the measured data in the expected accuracy,
being around 5% o�. More exact results were obtained with HFSS simulations. Also the
coupling between the stripline and the waveguide could be estimated using the simu-
lations.
The measurement data showed a maximum internal quality factor of around 6⇥ 105 for
the aluminium stripline and one million in case of the niobium stripline in the single
photon limit. This was measured for the stripline in the aluminium waveguide. In the
copper waveguide the internal quality factors were a factor 1.5 (niobium) and 2 (alu-
minium) lower. For higher input powers an increase in quality factor was measured, to
a di�erent extent, depending on the setup.
Doingmeasurementswith an increasing temperature up to about 1 K, a general decrease
in quality factor for the aluminium stripline was seen. This is due the critical tempera-
ture, being around 1.2 K. For the niobium striplines a general increase in quality factor
was seen. The critical temperature for niobium is around 8K, so its influence could not
be measured. When it was placed in the aluminium waveguide, around 400mK a drop
in the quality factor was observed. This can explained with losses in the waveguide
walls.
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Conclusion and outlook

In the first part of this thesis the development of a circular chiral waveguide was pre-
sented, which did not leave the simulation stage. The waveguide was the first step in
building a system with directionality, such that communication between qubits is only
possible in one direction. Simulations showed that right circular polarised waves could
propagate nearly lossless, while le� polarised signals were a�enuated by around 99%.
Combining the waveguide with spiral antennas, which were developed for the feed, an
overall symmetry was obtained and the directionality was li�ed. This can be explained
by the antenna theorem.
Microwave resonators in notch and reflection configuration were discussed. Under this
thesis, the circle fit was implemented. It makes use of the complex nature of the S-
parameters to extract information about the internal and coupling quality factor of a
resonator, as well as its resonance frequency. Reflection measurements of microwave
cavities made from aluminium and copper are presented. They were performed using
di�erent measurement setups and the cavities were investigated in the over- and under
coupled regimes. Similar results were found, independent on the overall setup outside.
This implies, that the cavities themselves can be measured independent of the setup.
Furthermore the behaviour between the coupling pin and the coupling quality factor is
within the expectations. The measurements also agree with HFSS simulations. Impor-
tant information for assembling future setups can be extracted from this work.
U-shaped striplines fabricated from aluminium and niobium were put in a 3D rectan-
gular waveguide and cooled down in the cryostat to its base temperature, being around
20mK. They were measured for di�erent input powers, while low input powers, around
and below the single photon limit, were of special interest. In addition, they were mea-
sured under increasing temperature up to around 1K. The analysis was done using
the developed circle fit routine. An aluminium waveguide was designed and fabricated,
which allowed to measure the samples more e�iciently, replacing the copper waveguide
used for the earlier measurements.
In order to obtain knowledge about their quality factors, a configuration with critical
coupling was required. Internal quality factors for niobium striplines were found to
be around 7⇥ 105 and 1⇥ 106, depending on the waveguide material (copper or alu-
minium), in the single photon limit. The quality factor of the aluminium stripline was
measured to be between 1⇥ 105 and 6⇥ 105. Both striplines showed an increasing in-
ternal quality factor for increasing input power, expected due to the saturation of two
level systems.
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With increasing temperature, the niobium stripline showed improvements, most likely
again due to saturation of two level systems. In the aluminium waveguide, a decrease
was seen for temperatures above 400mK, explained by losses in the waveguide wall.
The aluminium stripline showed a decrease from around 300mK onwards, independent
of the waveguide material. This can be explained by increasing conductive losses, as the
critical temperature from aluminium is around 1.2 K.
Simulations performed with HFSS give similar values of the coupling and the resonance
frequency, compared to the measurements. A circuit model was developed, modelling
the stripline as a transmission line with a shunt capacitance. Its results for the reso-
nance frequency are within the expectations, compared to the measurements.
In a next step, the stripline should be coupled to qubits and serve as a readout resonator.
The qubits will be placed in the waveguide in a way, they strongly couple to the stripline,
but not to the waveguide mode. The striplines furthermore will be strongly coupled to
the waveguide, which can be achieved by placing them o� center or using asymmetric
ones. In that case (nearly) all losses are coupling losses and the internal losses are highly
suppressed.
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Appendix A

Circle fit

In this chapter additional details about the circle fit (chapter 6.4) are given.

A.1 Error calculation

An estimation for the fi�ing error is given for each parameter. This chapter describes,
how this fit error is computed.
To obtain the errors, the Jacobian matrix is calculated. In addition the squared standard
deviation, �2, is evaluated using the following relation:

�2 =
1

N � n

NX

fi

data( fi)� S21

( fi)
�i

(A.1)

Where data( fi) refers to the measured data point at the given frequency fi , N is the
total number of measured points, while n denotes the number of degrees of freedom,
being 7 in the case of the circle fit (6 for reflection). S

21

refers to the data calculated
from the model. In reflection S

11

is used.
The above equation is set equal to 1, meaning that � = 1 and in addition � = �i

such that � is equal for all the measured data points. Using the Jacobian and �, it is
then possible to give an estimate fi�ing error for every parameter in the model. For
the parameters, which are not directly in the model, such as Qi , Gaussian uncertainty
propagation is applied.

A.2 Weighting

In the case of ripples, we encountered that the fit of the circle looses accuracy, as
data away from the resonance frequency had too much influence. Hence a weighting
was introduced, where a weight is assigned to each measurement point. Data points
near the resonance are set to weight 1, whereas for data far away from the resonance
(around the full width half maximum and further, in the following formula called wid th)
the weight of each data point is reduced. The following formula is used for the reduced
weighting:

weight( fi) =
wid th
| fi � fr |

(A.2)
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An example of a possible weighting is plo�ed in figure A.1.

7.4 7.6 7.8 8.0 8.2 8.4 8.6
0.0

0.25

0.5

0.75

1.0

Figure A.1: Possible weighting function. In that example the resonance frequency is set to
8GHz, and the width with constants weights to 40MHz.

A.3 Technical remarks

Some technical details are given to the fi�ing routine, which are not important for
the method of the general circle fit. However they give some input of how certain steps
within the fit are implemented.
For the fi�ing of the delay, as well as for the background slope, the first 1/8 and last
1/8 of the data is taken. The slope is obtained with a linear fit to both parts simultane-
ously. Especially if the resonance has an undesired influence on the phase, for example
a lasting 2⇡ shi�, a wrong value for the delay is obtained. However there is an option
implemented to fit both parts independently, which can be set when calling the circle
fit routine. More details are given in the help.
Within the final fit of Ql to the magnitude, there is a positive magnitude, which might
be counter intuitive for a resonance measured in transmission. The reason for this is
that the actual calculation goes like [1� (Sideal

21

)], shi�ing the o� resonant point to the
origin. Otherwise it would lead to a more complex equation for the magnitude, leading
to a less robust fi�ing routine.
For the comparison with the originally measured data, which is shown in the final plots,
the model is calculated with the data obtained from the fits.
The circle fit typically works satisfactorily for Qc/Qi being between 0.01 and 100. In
the over coupled case, the normalised circle passes close to the origin, leading to high
uncertainties in Qi . As Qi is given by the distance between the circle crossing the real
axis and the origin. In that case Ql is still obtained accurately.
In the under coupled case, the resonance gets fla�er, making it more di�icult to perform
the fit. Especially if the resonance is in the same order of magnitude as the ripples, the
fi�ing routine might not work any more. This was an issue when doing measurements
for increasing temperature with the aluminium stripline. As the temperature increases,
Qi decreases, whileQc remains constant, leading to an increasingly over coupled setup.
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Appendix B

Maxwell

Maxwell is a finite element simulation so�ware, solving 2D and 3D structures in the
electric, magnetostatic, eddy current and transient problem case [36]. It is similar to
HFSS (see chapter 5.5) and also provided by Ansys. The di�erence is that Maxwell is fo-
cused on the static cases, whereas HFSS is a high frequency electromagnetic solver. In
this thesis Maxwell was used to find values for the electrical properties of the stripline,
discussed in chapter 7. For the work presented here, only the electrostatic and magne-
tostatic solutions in 3D were required, the discussion will only include these two. The
chapter is based on [36] and [37].

B.1 Basics

The first steps, in doing simulations, are identical to the steps done in HFSS. The
way a model is drawn, is exactly the same and the mesh is obtained in a similar style.
Also the constraints for the mesh (like maximum length) can be assigned identical to
HFSS.
The assignment of the ports, here called excitations, depends on the type of the required
solutions, and is di�erent to HFSS.
The solution process is similar to some extent, the solution itself is di�erent again, as
other quantities are of interest in Maxwell.
The following two chapters give detailed information on how to perform simulations for
the magnetostatic and the electrostatic case. In the magnetostatic case, the inductance
of a certain structure is computed, whereas the electrostatic case is used to obtain a
value for the capacitance.

B.2 Magnetostatic simulations

To obtain values for the inductance of a structure, the magnetostatic solution type
is chosen. A DC current is applied through the structure, therefore it has to be a con-
ductor. In addition, it was found, that using PEC (Perfect Electric Conductor) as the
material for the conductor, it did not work due to an occurring error. The reason for
that is not clear. So it is advised to chose a material with high conductivity (like copper)
for the conductor. There should be no impact on the result for the inductance. Typically
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the current excitation is assigned to a surface of the conductor. The amount of current
can be chosen as a parameter. The surface, where it is assigned, has to coincide with
the surface of the region confining the structure (see figure B.1). The region is explained
in the next paragraph. The same amount of current has to leave and enter the conduc-
tor, so at least two ports have to be assigned. Through one port the current enters and
through the other one it leaves the conductor. The current direction can be chosen in
the assignment process. For linear systems the amount of current does not influence
the value obtained for the inductance.

Maxwell - excitation
Figure B.1: Stripline in Maxwell to simulate the inductance. The two ports are shown (red
arrows), one for the input, one for the output. The box around the stripline is the region confining
the solution area.

To confine the structure to a certain area in space, a so called ’region’ is drawn around
the structure. This is done by selecting ’Draw’ > ’Region’. A padding around the struc-
ture can be chosen. It was seen that the exact amount of padding does not have a
critical influence. The only requirement is, that the current ports have to coincide with
the surface of the region, so the padding for this surface is chosen to be 0. It is advis-
able to make the padding around the remaining structure on the order of the maximum
dimension of the structure.
To obtain a value for the inductance, the current excitation has to be included in the
inductance matrix. This is done in the project manager, under parameters, where the
current source can be included (tick box). Otherwise Maxwell does not calculate (or at
least give) a value for the inductance.
The solution can be found via the data table in the results of the project. The solution is
given as a matrix of the inductances, which has a single entry in the case of two ports.

B.3 Electrostatic simulations

To get values for the capacitance, the chosen solution type is electrostatic. Voltage
excitations are assigned and the whole object has to be on the same voltage, in contrast
to the magnetostatic case, where the excitation is only assigned to a surface.
In the electrostatic case, the objects are completely inside the confining region, again
in contrast to the magnetostatic case, where one surface has to be touching. A region,
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confining the area to be solved, has to be drawn. The capacitance is then obtained be-
tween the objects, where a voltage is assigned.
Similar to the magnetostatic case, a matrix has to be assigned, where the voltage exci-
tations have to be included to obtain a solution.
A�er doing this, the setup is solved and the capacitance matrix can be found in the
solution data. It has an entry for every voltage excitation, giving the self capacitance
and additional entries for the capacitance between the objects. More information about
capacitance matrices is given in [38].
For a linear system the absolute amount of voltage does not influence the results, how-
ever di�erent voltages may be used for the di�erent objects.
In case of the stripline, two di�erent sets of simulations were performed. In one case
the capacitance between the waveguide and the stripline was of interest. Therefore the
stripline was modelled as a single element. The confining region was chosen to have
the same dimensions as the waveguide and a voltage was assigned to its surfaces. In
this case, the size of the confining region ma�ers, because the coupling between the
stripline and the waveguide wall takes place, which is dependent on the distance.

Figure B.2: Two rods of the stripline to simulate the capacitance between them. A voltage
excitation is assigned to both of them. The sapphire substrate, which they are placed on, can be
seen. The confining region (not shown) has the dimension of the waveguide.

In the second case, the shunt capacitance was of interest. In order to examine that, the
top part of the stripline was excluded and both legs were set to a di�erent voltage (see
figure B.2). In addition, the wall was also set to a voltage, since the waveguide wall is a
conductor, acting as a ground for the stripline. In both cases the silicon substrate was
modelled accurately, identical to the HFSS simulations, as it influences the capacitance
with its dielectric properties.
This chapter presented the basic tools on how to perform electrostatic and magneto-
static simulations using Maxwell. These are su�icient to obtain values for capacitance
and inductance of a structure. Further information can be found in the sources, named
in the beginning.
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Multiple sample waveguide

A waveguide allowing to measure multiple samples was designed and fabricated. In
the previous design, figure C.1, it was only possible to fit the samples in a single layer,
which was exactly at the seam of the waveguide. To achieve critical coupling for the
striplines, as described in chapter 7, they had to be placed in the center. So it was only
possible to measure a single sample per cool down. This was ine�icient and in addition,
this design carried some di�iculties in aligning the samples. Moreover, there were five
slots symmetrical around the center, which resulted in a net of three di�erent positions
in the waveguide, due to the symmetric field of the fundamental mode.

Figure C.1: Picture of the previous waveguide design with one sample placed in the center. Two
identical halves are bolted together.

The new waveguide was fabricated from 5083 aluminium, in contrast to the previous
one, where copper was used. Aluminium is superconducting [31] at the base tempera-
ture of the fridge, which prevents losses to the walls.
In the following section, the design considerations and the dimensions are given. The
newmounting system is presented in the section a�er that. In the final part of this chap-
ter, measurements at room temperature are shown, giving an insight on the waveguide’s
bandwidth.

C.1 General design considerations

Several considerations were taken into account designing this waveguide. They will
be illustrated in this section, which gives some insight, why we ended up with the final
design.
A sketch, where the inner dimensions are illustrated can be found in figure C.5 (le�).
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Additionally the sample holder is shown, which is discussed in the next section. The
cuto� was designed to be around 6.5GHz, required for the qubit frequency to be below
cuto�. This is still well below the frequency of the stripline resonators, such that they
can serve as readout resonators in future experiments. Based on equation 3.24, giving
the cuto� frequency, the width was chosen to be 23mm.
The height was chosen to be 11mm. On the one hand, the waveguide should be high
enough not to be limited by e�ects from the wall, therefore a higher waveguide is
favourable. On the other hand the mounting system (described in the next section)
takes some space, and the samples themselves should preferably be in the middle of the
waveguide. Furthermore, we want to operate the waveguide on the fundamental mode,
so the length of the shorter edge should be well below the length of the longer one. So
the cuto� frequency of the TE

10

mode should be several GHz below the cuto� of the
TE

01

mode.
The substrates holding the samples could not be modified, as they were already fabri-
cated and are 18mm long, with the stripline si�ing in the middle. Taking the mounting
system and the wall thickness into account, which adds up to around 5mm, 11mmwas
a decent choice. Furthermore to improve the mounting in terms of position accuracy,
the substrates came through the waveguide on the bo�om, also giving a constraint on
the height.

Figure C.2: Picture of the total assembled waveguide. Two identical parts in the beginning and
in the end, to launch and receive signal. The SMA connector is seen on top. The samples are
placed in the middle section of the waveguide. For one of the set of slots, a sample holder is
placed, the other two a are le� open for illustration purposes.

The waveguide consists out of three parts. There is the middle part containing the sam-
ples, one part to launch and another identical one on the other end to receive the signal.
This gives flexibility in future setups, as the middle section can be exchanged, with the
couplers remaining the same. In addition, this prevents losses to the seam (discussed in
6.3) at the position of the samples, as the seam is further away.
The waveguide consisting out of the three parts is seen in figure C.2. A picture of the
opened up waveguide, with the begin/end part in front is seen in figure C.3. On top of
the the middle part, before and a�er the slots for the samples, there are two indenta-
tions, which can be used for coils to apply a magnetic field. Aluminium becomes su-
perconducting, hence this is only useful for a copper waveguide. The distance between
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Figure C.3: The waveguide opened up. In the foreground the begin/end part is seen, with a
coupler inside. The middle section is placed in the background.

di�erent sets of sample slots was chosen to be 15mm, to have around �/2 in between
them. A design with three sets of slots was chosen, to test three samples during the
same cool down, which was su�icient for the first layout. Three sets of sample slots
were also chosen to limit the overall length of the waveguide.
Themounts for the substrates themselves were then screwed from top, with the samples
mounted to them. This is explained in the next section.

C.2 The mounting system

In this section, the mounting system for the samples is described.

3.2
1.6

4

1

WG 3s - sample holder

Figure C.4: Le�: Sketch of the sample holder. The screw holes to fix the samples are illus-
trated. 1mm distance to the top is due to a lid with 1mm counter parts, shi�ing the substrates
down. The given dimensions are accurate, as it is a sketch the drawing is only approximate. All
dimensions in mm. Right: Picture of the sample holder with a substrate.

Themounting is done with the component illustrated in figure C.4 on the le� (picture on
the right). It can be slided in from top, already containing the samples (see figure C.6).
The whole assembly, composed of the waveguide in combination with the mounted
samples is illustrated in C.5 on the le�. A picture of the waveguide with the slided in
sample is shown in C.5 on the right. The advantage is, that samples can be switched
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without opening up the whole waveguide, which was necessary in the old design. Fur-
thermore the alignment is more precise, as the substrate goes through the waveguide
into the slot on the bo�om.

WG 3s - assembly, wall

23

3.2
1.6

11

4
2

1

Figure C.5: Le�: Sketch of the sample holder, slided in the waveguide. The wall thickness of
2mm is only sketched at the top. It is also seen, that the substrates goes through the entire
waveguide. All dimensions in mm. Right: Picture of the middle section of the waveguide with
the sample inside.

The slots are situated around a central one. Two are as close as possible, with a sepa-
ration of 0.5mm. The other two are optimised to use all the space. This results in an
asymmetric design, which gives slots at a di�erent field strength in total five. The sub-
strates were measured to be 3.1mm, so the sample holders were chosen to have slits
with 3.2mm. The substrates themselves are fixed with screws.
The slits for the samples were required to have sharp edges, therefore they were fabri-
cated using a wire erosion machine. This requires to have a slit through the hole sample
holder and the waveguide. To close the sample holder, lids were constructed, which got
screwed on top. To shi� the sample down, the lids had a counter part of 1mm coming
from top. This was necessary to move the striplines further into the waveguide.

Figure C.6: Image of the sample mounting. The sample holder with a stripline is shi�ed in from
the top. Two metal rods are used as guidance, which prevent the sample form being scratched.

In addition, there is also a lid from the bo�om. This allows to check, if the sample is
aligned properly before closing it.
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To prevent the samples from being scratched, two guiding metal rods at the sides were
used, which guide the sample holder when sliding in. A�erwards the metal rods can be
removed. A picture of the assembly process is shown in figure C.6.

C.3 Room temperature measurement

Before the samples themselves are mounted, the bandwidth of the waveguide has
to be tuned. The reason for this is impedance matching. The cable from the VNA has an
impedance of 50�, while the waveguide itself has, depending on the frequency, 377�
or above (equation 3.15). Two components are used for the matching.
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Figure C.7: S parameter measurements of the tuned waveguide at room temperature. The
waveguide has a cuto� around 6.6GHz. It works well in a range from 7GHz to 8.2GHz. It still
works to some extent till 10.8 GHz

Screws from the bo�om are screwed to di�erent lengths inside the waveguide, displac-
ing the field inside and improving the transmi�ed signal.
The coupler pin itself is such, that the diameter of the inner SMA conductor contin-
ues and is terminated by a wider cylinder of several mm length. This enhances the
impedance matching.
Typically the bandwidth is given for the S

11

parameter to be below −20 dB, with the S
21

parameter showing transmission. In figure C.7 the S parameters a�er tuning with the
best working coupler is presented.
The waveguide has the cuto� around 6.6GHz, which is within the expectations of the
designed cuto�. The bandwidth where it works well is between 7GHz and 8.2GHz. It
still can be used as a waveguide up to 10.8GHz. In this case the waveguide was not
tuned for maximal bandwidth, but such that the striplines, having their resonances be-
tween 7.3GHz and 8GHz are well in the band. This requirement was full filled.
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Complete measurement setup

In this part of the appendix the full measurement setup is shown and briefly de-
scribed. In figure D.1 the measurement setup is illustrated. The microwave signal prob-

Measurement setup

VNA out VNA in

DC 
block

-20 dB
-30 dB

WG with SLR

DC 
block

Isolator (2x)

HEMT 
+40dB

300 K

4 K

20 mK

∼

Figure D.1: Full measurement setup. Details are explained in the text.

ing the sample, in this case the stripline, is generated by a VNA, indicated with ’VNA
out’. This is followed by a DC block, which prevents DC currents to flow. The black
lines represent the microwave lines.
A�er the DC block the signal enters the fridge and is a�enuated at 4 K by 20 dB. At
the base plate, which is at a temperature of around 20mK, the signal is a�enuated ad-
ditionally with 30 dB. Then it enters the waveguide, where the stripline is placed. The
microwave propagates through the waveguide and leaves it on the other end.
A�er the waveguide two isolators are placed, which prevent the signal being reflected
back into the waveguide. At the 4 K stage the signal is amplified by 40 dB, using a
HEMT (high electron mobility transistor) amplifier. A�er the HEMT another DC block
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is placed, again to prevent a DC current flow.
Finally the microwave signal enters the VNA and gets measured.
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