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Abstract

Reading out the state of a qubit faster than its decay time is crucial for reliable quantum
information processing while avoiding errors. Parametric amplifiers allow single-shot
measurements making them an indispensable tool in superconducting circuit architectures.
This thesis provides a comprehensive theoretical explanation of the general principles of
parametric amplification and introduces a special type of non-degenerate amplifiers based
on long dispersion engineered Josephson junction arrays called Dimer Josephson Junction
Array Amplifiers (DJJAAs). With the aid of superconducting quantum interference
devices (SQUIDs) their resonant frequencies can be tuned. The long chains create multiple
modes which further enchance the working range of these amplifiers.

A recipe for a standard two-step photolithography process has been developed from
scratch and utilized for the in-house fabrication of the amplifiers. Two devices are
assembled and fully characterized. Combining the observed flux tunability of 1.6GHz
and the multiple tunable eigenmodes where amplification has been demonstrated, these
amplifiers have the potential to cover the entire frequency band between 1− 12GHz. The
measured bandwidth of up to 13MHz for 20 dB allows fast operation. With its high
dynamic range reaching nearly −100 dBm, the amplifier proves its robustness regarding
strong signals. Moreover, for a moderate gain of 20 dB the measured added noise close
to the quantum limit, between 1.25 and 4 photons per unit bandwidth, outperforms any
available commercial cryogenic semiconductor amplifier.
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Chapter 1

Introduction

The idea for a quantum computer promising superiority over its classical counterpart dates
back to 1982[1]. With the effort of many scientists in the past several decades the final
goal of realizing such a machinery becomes feasible. Due to the recent developments in the
field[2], superconducting circuits were established as one of the most prominent platforms
for constructing a real multi-qubit quantum processor. Compared to other platforms
employing microscopic systems, such as ultracold atoms and trapped ions, which rely on
encoding the information in the naturally available energy levels, superconducting qubits
are macroscopic and easily tailored to the needs of the experiment. Circuit Quantum
ElectroDynamics (circuit QED), a study based on cavity quantum electrodynamics, was
developed to describe the interaction of these so-called artificial atoms with quantized
electromagnetic fields in the radio frequency domain.

However, due to the low energies of the microwave photons, their detection is a
complicated task. Many strove towards creating a photon multiplier[3], while others focused
on frequency conversion to the optical domain[4] but generally the preferred solution
remains the use of amplifiers. Any device introduced on the readout chain inevitably adds
noise, thus deteriorating the Signal-to-Noise Ratio (SNR). Although low-noise commercial
cryogenic amplifiers exist, they add noise which is far bigger than the usual signal power,
requiring averaging over several instances to allow extracting the information encoded in
the qubit. The noise floor is determined by the first amplification stage, meaning that we
need the first amplifier to add virtually close to no noise. Fortunately, superconducting
parametric amplifiers have the potential to amplify without adding any noise[5], thus
successfully conquering the limitation on the signal-to-noise ratio.

These amplifiers rely on their intrinsic non-linearity which under the influence
of a strong pump transfers energy to the signal via wave-mixing. Generally, parametric
amplifiers (paramps) are split in two types depending whether the non-linear elements
are embedded in a resonator or a transmission line. The former amplify within a close
vicinity of the eigenfrequency of the circuit with typical representatives being Josephson
Parametric Amplifiers (JPAs)[6, 7, 8, 9], Josephson Parametric Converters (JPCs)[10]
and Josephson Bifurcation Amplifiers (JBAs)[11, 12]. The later instead is the microwave
analogue of optical fibre amplifiers[13] where the tones interact along the transmission line
resulting in a much larger bandwidth usually covering several gigahertz. Those amplifiers
are usually referred to as Traveling Wave Parametric Amplifiers (TWPAs) and there are
many different ways to realize them[14, 15, 16, 17].

The amplifier presented in this thesis is a standing-wave paramp based on long
chains of Superconducting Interference QUantum Devices (SQUIDs) dispersion engineered
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by placing a capacitor in the center. As a consequence the pairs of modes hybridize into
doublets, denoted dimers, suitable for non-degenerate as well as degenerate amplification.
The advantages of this amplifier come from the large working range relying on multiple
modes which are flux-tunable in frequency, as well as its high saturation power due to the
use of long arrays. This device is called Dimer Josephson Junction Array Amplifier, or
shortly DJJAA, and was first realized in Karlsruhe by P. Winkel and I. Takmakov[18, 19]
inspired by the pioneering work of C. Eichler[20]. The design was also kindly provided by
the developers and completely adopted with small changes to fit the in-house fabrication
specifics.

This thesis is split in four main parts. Chapter 2 introduces the fundamentals of
parametric amplification needed for the understanding of the subjects later discussed in this
thesis. Once the basic building blocks of circuit QED are presented, the chapter continues
with input-output theory, a useful tool for predicting the behaviour of any amplifier,
including the Josephson Parametric Dimer, reviewed in the same section. Furthermore,
the whole concept of Josephson junction arrays is unraveled together with some details on
dispersion engineering. Half of the time spent on this work was dedicated on getting the
two-step optical lithography process running in the clean room facility of the Quantum-
Nano-Zentrum Tirol (QNZT), which is also the topic of Chapter 3. In Chapter 4, a brief
overview on the experimental apparatus is given including some calibrations. The results
from the detailed characterization of the amplifier are reported in Chapter 5, together
with a comprehensive discussion. Naturally, a conclusion and an outlook follow the four
main parts. For additional information the reader can refer to the appendices.



Chapter 2

Concepts

This chapter contains an introduction on the main concepts of parametric amplification.
Starting from the basic building blocks in circuit QED which are used throughout the
thesis, we focus on more relevant aspects to the DJJAA, namely input-output theory and
its implementation for dimer amplifiers. The theoretical model for Josephson junction
arrays is derived and later used together with the dispersion-engineering to describe the
device of interest.

2.1 Principles of quantum-limited parametric
amplification

Generally, amplifiers are two-port devices that use a power source to produce at its output
a version of the input signal with increased amplitude. The amount of this increase is
called the gain. If the output power Pout(ω) is proportional to the input Pin(ω)

Pout(ω) = G(ω)Pin(ω) (2.1.1)

the amplifiers is linear.

Figure 2.1.1: Basic operation principle of an amplifier. The signal (red) which
also carries some noise (gray) is amplified by the device. Additionally, the amplifier
deteriorates the signal by adding noise (blue).

Ideally, the amplifier is noiseless and has a gain which is time-stable and
independent of the frequency and power of the input signal. In reality, the situation is
generally different: the linear regime can break down due to the inherent non-linearity,
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6 2.1. Principles of quantum-limited parametric amplification

which is a trait of every amplifier; as seen in Eq. 2.1.1 the gain is frequency dependant;
adding noise is inevitable, resulting in reduced signal-to-noise ratio (SNR). The conceptual
drawing of a real device can be found in Fig. 2.1.1. A mix of coherent wave and noise
associated with the impedance of the wave source at the input is equally amplified by the
gain. Moreover, the device also adds noise. For a quantum-limited amplifier the amount
of added noise is determined by Heisenberg uncertainty principle, this situation will be
further discussed in Section 2.1.2.

Even linear amplifies will start behaving non-linearly once a certain total power
is exceeded. The linear regime determines the dynamic range of the device, while the onset
of non-linear effects is marked by the saturation power, often characterized by its 1-dB
compression point. This point is defined as the signal power at which the maximum gain is
reduced by one decibel. Another important parameter of an amplifier is its instantaneous
bandwidth, usually referred as simply the device bandwidth. This bandwidth is determined
by the frequency range where the gain doesn’t drop more than three decibels below the
maximum gain. The minimum required bandwidth in circuit QED equals the linewidth
of the readout resonator, typically a few megahertz. In order to increase the working
range of such a device satisfying just the minimum requirements, frequency tunability of
the bandwidth is desired. The last two properties determine the total frequency working
range of the device.

2.1.1 Parametric amplifier classification
The notion of parametric interaction as introduced in the field of optics[13] describes
the interaction between waves passing through a nonlinear passive medium. Precisely,
a strong coherent field (pump) modulates a parameter in the medium which stimulates
the population of the system modes detuned from the pump. At microwave frequencies,
the modulated parameter is the impedance of the circuit. The type of non-linearity
determines the predominant frequency mixing process as shown in Fig. 2.1.2. Second-
order nonlinearity χ(2) causes a pump photon with frequency ωp to split into a pair
of signal ωs and idler ωi obeying the energy relation ωp = ωs + ωi. This process is
called three-wave mixing. The third-order nonlinearity χ(3) governs the four-wave mixing
process by converting two pump photons into signal and idler photons with the frequency
matching condition 2ωp = ωs +ωi. In order to enhance the process and limit its frequency
range, similarly to lasers, the nonlinear medium is placed in a cavity. The conversion
is stimulated by the existing fields, i.e. stimulated emission takes place, resulting in
parametric amplification.

Once we introduced the phenomena behind amplification, we can proceed with
further classification of the devices. While the literature[21, 22] is not completely consistent
on the topic of degeneracy, the presented summary follows the definitions from [23, 24].
From this moment on, I will refer to degeneracy as either in space or frequency. Spatial
degeneracy is regulated by the mode separation in a way that if each mode can be addressed
via a separate port, the amplifier is spatially non-degenerate. This specific case is especially
relevant for the Josephson Parametric Converter (JPC)[10], where pump, signal and idler
are present at different ports. Otherwise, the device is spatially degenerate. Similarly for
frequency degeneracy, amplifiers utilizing a single mode in frequency are called degenerate,
while the amplifier is non-degenerate if two modes are employed.

Amplification schemes are phase-insensitive unless ωs ≈ ωi within the detected
band[6]. Phase sensitivity is determined by the response of the device to the input
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(a) (b)

Figure 2.1.2: Wave mixing. A schematic illustration of (b) three-wave mixing and
(b) four-wave mixing. Pump photons (purple) are converted to a pair of signal (red) and
idler (cyan) photons, obeying energy conservation laws. The phenomena are based on the
different order nonlinearity of the medium, namely second order χ(2) and third order χ(3),
respectively for (a) and (b). If a signal is present at the input, the conversion results in
signal amplification, while the excess energy is carried by the idler.

quadratures. A phase-sensitive amplifier treats the signal quadratures differently: one
preferred quadrature is amplified while the other one is deamplified. In a phase-insensitive
process both quadratures are equally amplified. Phase-sensitive amplification allows
achieving interesting non-classical states (squeezed states[7, 25]) due to the interference
between the signal and idler. To obtain more intuition about the possible types of
amplification several examples are presented in Fig. 2.1.3. Without loss of generality,
one can say that as long as the amplification is non-degenerate (right in Fig. 2.1.3), it is
always phase-insensitive. If the amplification is degenerate, the phase-sensitivity is only
manifested when the signal and idler are spaced within less than one detection bandwidth
and cannot be differentiated (left in Fig. 2.1.3). Otherwise, an idler component appears
(middle in Fig. 2.1.3) and it carries at least the vacuum noise.

s = i p = 2 s

Degenerate phase-sensitive

s i p

Degenerate phase-insensitive

s i p

3WM

Non-degenerate

s = i = p s ip s ip

4WM

Am
pl

itu
de

Frequency

Figure 2.1.3: Examples of different parametric amplification. The figures consists
of six separate plots, where the device response is colored in yellow, while the coherent
tones are illustrated as arrows in black (pump), red (signal) and blue (idler). The first row
always represents three-wave mixing (3WM) while the second - four-wave mixing (4WM).
Split in columns, one can see configurations for degenerate phase-sensitive, degenerate
phase-insensitive, and non-degenerate phase-insensitive amplification.
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More thorough explanation is indeed required for phase sensitivity, since it
directly influences the quantum limit of noise. For this purpose, the next part is dedicated
to quantum limits on noise depending on the phase-sensitivity. It follows the treatment
developed in the pioneering work of C. M. Caves [5].

2.1.2 Quantum limit of noise
Consider a single bosonic mode obeying the commutation relations [a, a†] = 1. The
annihilation operator can be expressed as a = X1 + iX2, where X1,2 are the amplitudes of
the mode quadratures oscillating 90° out of phase. They do not commute as [X1, X2] = i/2.
The commutation relation imposes an uncertainty principle on the square root of the
quadrature variances ∆X1∆X2 ≥ 1

4
which translates into mean square fluctuations for

the complex amplitude
〈
|∆a|2

〉
= 〈∆X2

1 〉+ 〈∆X2
2 〉 ≥ 1

2
, so zero-point fluctuations of half

a quantum. In phase-space, such a mode a is represented as a Fresnel lollypop, where the
noise disc corresponds to the fluctuations in the amplitudes as depicted in Fig. 2.1.4a.

At this point it’s suitable to define phase-insensitive noise as one which is
randomly distributed in phase, meaning that the noise fluctuations are equal and
uncorrelated in both quadratures or equivalently the mode is invariant under arbitrary
rotations in phase space. States with phase-insensitive noise are, for example, coherent
and thermal states[25].

Now we can proceed to the formal definitions. In order for an amplifier to be
called phase-insensitive, it must meet the following conditions

• If the input possesses phase-insensitive noise, then also the output shows no phase
preference;

• If the input phase is advanced by θ, the output is either advanced by the same
amount (phase-preserving), or retarded by θ (phase-conjugating).

If any of the two conditions are not satisfied, the amplifier is phase-sensitive. If we
introduce a linear amplifier with different quadrature gains G1,2 and define the state at
the input and output respectively as

ain = X1 + iX2 (2.1.2a)

bout = Y1 + iY2 (2.1.2b)

their quadratures will be connected as

Y1,2 =
√
G1,2X1,2 + F1,2 (2.1.3)

where F1,2 are the quadrature amplitudes of the operator responsible for the added noise
F . From here on, we choose to work in units of photon number. The number of quanta in
the input is connected to the power per unit bandwidth Pin(ω) via

〈
a†inain

〉
= Pin(ω)/~ω.

If we express Eq. 2.1.3 in terms of uncertainties〈
∆Y 2

1,2

〉
= G1,2

〈
∆X2

1,2

〉
+
〈
∆F2

1,2

〉
(2.1.4)

we can interpret the output as a mix of amplified input noise quanta and added noise
quanta by the amplifier. For a fair comparison of the noise performance of different
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(a)

(b) (c)

Figure 2.1.4: Phase-space representation of phase-sensitive and phase-
insensitive amplification schemes. (a) A bosonic mode â in the complex plane
is drawn as a disk with its center situated at (|â| cosφ, |â| sinφ), or in polar coordinates
at (|â|, φ). The size of the disc ∆X1,2 is interpreted as the intrinsic noise of the mode.
(b) A phase-insensitive scheme amplifies the amplitude and the noise of the input signal
âin (orange) equally in both quadratures. However, at least half a photon of noise (grey)
is added to the mode at the output b̂out (purple). (c) Phase-sensitive amplifiers have a
preferred quadrature (here X1) which is amplified, while the other is deamplified. The
commutation relation does not require the amplifier to add noise.

amplifiers regardless of the gain, the output is referred to the input, meaning simply
divided by the gain. Therefore, after referring to the input, Eq. 2.1.4 can be rewritten as〈

∆Y1,2
2
〉

= G1,2

〈
∆X1,2

′2
〉

= G1,2

[〈
∆X1,2

2
〉

+ A1,2

]
(2.1.5)

where we have defined A1,2 ≡
〈
∆F2

1,2

〉
/G1,2 as the added noise number. To find the

minimum for the noise number one should note that the input and output quadratures
must satisfy the same commutation relations. This implies the following inequality for
the added fluctuations √

A1A2 ≥
1

4

∣∣∣∣1− 1√
G1G2

∣∣∣∣ (2.1.6)

if [X1,F2] = 0 = [X2,F1] i.e. the input field and the internal amplifier mode are
uncorrelated.

The relation 2.1.6 sets the limits for both phase-sensitive and phase insensitive
amplification. However, it can be simplified for the phase-preserving (

√
G1 =

√
G =

√
G2)
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and phase-conjugating case (
√
G1 =

√
G = −

√
G2)

A ≥ 1

2

∣∣1∓G−1
∣∣ (2.1.7)

where the upper (lower) sign holds for the phase-preserving (phase-conjugating) case. In
this case, the minimum noise added by a high gain amplifier (G� 1) to both quadratures
of the signal (drawn in grey in Fig. 2.1.4b) is exactly half a quantum. Equations 2.1.6
and 2.1.7 are often referred in the literature[7] as Haus-Caves theorem. The amplifier is
said to be quantum-limited if the added noise equals exactly the quantum limit. An easier
way to understand this limit is by remembering the fundamental principle in quantum
mechanics that non-commuting variables cannot be measured simultaneously with infinite
accuracy. The only reason this is possible while not violating quantum mechanics is the
added noise by the amplifier, which forces the variables to commute.

For phase-sensitive amplification, one has the possibility for having the gains
connected as G1G2 = 1, which would result in a lower limit for the added photons being
A1A2 ≥ 0. If the input is tailored in a way that only one quadrature carries all information,
e.g. X1, one can design the amplifier such that G1 � 1 and A1 � 1/4, i.e. one quadrature
is amplified with added noise smaller than the vacuum fluctuations. The accuracy of such
measurement would be better than in the phase-insensitive case, but since the quadratures
are conjugate variables, this comes at a price of reduced precision for X2 (A2 � 1/4). It is
important to stress that adding no noise in a phase-sensitive process is only possible if the
initial internal-mode noise and input field noise are correlated. In such case, the output
state will be squeezed in one quadrature, e.g. 〈∆X2

2 〉 < 1/4 (as illustrated in Fig. 2.1.4c).
First experimental realization of squeezed states in the circuit QED field was done with a
Josephson Parametric Amplifier (JPA)[26]. Nowadays, JPAs are still used for generating
squeezed states[9], but the design of the device has evolved since the first implementation.

2.2 Superconducting quantum circuits
The principles introduced in the previous section are fundamental to all implementations
with small exceptions regarding the amplifier classification. In order to relate them to the
field of microwave physics, we introduce the basic building components used for designing
the complex circuitry needed for quantum-limited amplification. The big advantage of the
circuit QED field is that most of the elements for building elaborate systems are already
familiar from electronics, but dissipation has vanished in the superconducting state. The
simple circuit elements and the vast diversity of superconductors are the reason for the
high flexibility for designing the system parameters.

For a brief reminder of Bardeen-Cooper-Schrieffer (BCS) theory[27], in
conventional superconductors the electrons condensate below certain temperature into
Cooper pairs which are described by a common wavefunction Φ(r, t) =

√
N(r, t)eiφ(r,t).

The amplitude of this macroscopic wavefunction is proportional to the number of pairs N̂ ,
while the phase determines the phase coherence within the superconductor. These variables
are conjugate [N̂ , φ̂] = −i and they are generally related to the material properties and the
topology of the superconductor. The collection of Cooper pairs is called superconducting
condensate and its motion is described by currents and voltages. Since they are related to
N̂ and φ̂, current and voltage do not commute and cannot be measured simultaneously.
This leads to the discreteness of the energy levels in the circuits.
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We will begin with the realization of a harmonic oscillator with superconducting
circuits and later introduce the non-linear element which is the reason why we can use
superconductors for encoding quantum information.

2.2.1 LC oscillator
The harmonic oscillator is an extremely important building block in circuit QED, realized
as an LC resonator. A lumped element representation of the circuit is shown in Fig.
2.2.1a. The lumped element approximation[28] is relevant in this case since the spatial
dimensions of our circuit components (typically a few hundred microns) are much smaller
than the wavelengths in the microwave range. The energy oscillates between magnetic
energy in the inductor L and the electric energy in the capacitor C with the resonance
appearing exactly when the energies stored in both fields are equal. In order to determine
the degrees of freedom (DOF) for this circuit, we will be following the method of nodes
(Appendix A). Purely classically, the node flux is defined from Faraday’s induction law:

Φ(t) =

∫ t

−∞
v(t′)dt′ (2.2.1)

where the lower time limit is taken sufficiently far in the past when current and voltage were
zero. The node flux becomes the position coordinate in the system. The instantaneous
time-dependent energy in each element is given by

E(t) =

∫ t

−∞
i(t′)v(t′)dt′. (2.2.2)

L

i
C

+

−
v

Φ̂

(a) 2 0 2
Superconducting phase 

r

En

(b)

Figure 2.2.1: LC oscillator. (a) Lumped-element representation of the resonator, (b)
Energy spectrum of the harmonic oscillator with resonance frequency ωr = (LC)−1/2.

Knowing the current-voltage relations for inductors and capacitors v =
L(di/dt), i = C(dv/dt), we can derive the Lagrangian of the system:

L =
1

2
CΦ̇− 1

2L
Φ2. (2.2.3)
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The momentum conjugate of the flux is the charge through the capacitor

Q =
∂L
∂Φ̇

= CΦ̇. (2.2.4)

Finally, via Legendre transformation we derive the Hamiltonian of the system

HLC = QΦ̇− L =
Q2

2C
+

Φ2

2L
. (2.2.5)

Up to this point the whole treatment was purely classical. We proceed with
canonical quantization by promoting the charge and flux to non-commuting operators
satisfying the commutation relation

[Φ̂, Q̂] = i~. (2.2.6)

In order for these variables to be treated quantum-mechanically, the energy levels
of the oscillator must be well separated. Only then, the node flux and charge observables
can be expressed in terms of creation and annihilation operators

Φ̂ = ΦZPF (â+ â†) , Q̂ = −iQZPF (â− â†) (2.2.7)

where ΦZPF and QZPF are the zero-point fluctuations of the observables. They are
dependant on the characteristic impedance Zr =

√
L/C of the LC circuit

ΦZPF =

√
~Zr

2
, QZPF =

√
~

2Zr
. (2.2.8)

The operator â† creates excitation in the system which is equivalent to creating
a photon of frequency ωr because of the underlying electromagnetic field. Together with
the annihilation operator â they satisfy the bosonic commutation relation [â, â†] = 1.
Inserting the equations from 2.2.7 in the Hamiltonian 2.2.5 yields the more compact form
of the quantum harmonic oscillator Hamiltonian in second quantization

ĤLC = ~ωr
(
â†â+

1

2

)
(2.2.9)

where ωr = 1/
√
LC is the resonance frequency. The eigenstates are the Fock states

satisfying â†â |n〉 = n |n〉, where n = 0, 1, 2, . . . represents the number of photons in the
states. The resulting energy spectrum consists of equidistant levels as shown in Fig.
2.2.1b.

2.2.2 Josephson junction
Even though harmonic oscillators are extremely relevant circuits used for the readout of
quantum bits (qubits), in order to encode information or amplify a signal, a non-linearity
is required. The most successful candidate providing this nonlinearity for our circuits is
the Josephson junction[29]. Its flexibility regarding design and fabrication, as well as the
lack of dissipation make it an irreplaceable part in our experiments.

In its core, the Josephson junction consists of two superconducting islands
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(S) connected by a weak link (I), see Fig. 2.2.2. This connection locally weakens the
superconducting condensate, meaning that the critical current Ic of the junction, which is
the maximum current that can be carried before resistance appears, is lower than that of
the two superconducting regions alone, hence the name. Depending on the type of weak
link we can distinguish several types of junctions, e.g. tunnel junctions (Fig. 2.2.2a) where
the superconducting regions are separated by a thin insulating layer, and constriction
junctions (Fig. 2.2.2b) with the weak coupling achieved via a narrow superconducting
bridge. In each type, the non-linearity has a different origin and the equations describing
them are generally very different. Since the amplifier in this thesis is built with tunnel
junctions, a treatment of the other types is beyond the scope of this thesis.

(a) (b)

Figure 2.2.2: Josephson junction: Illustration and images. In the upper part
of (a) and (b) one can see conceptual drawings of a tunnel (a) and a constriction (b)
Josephson junctions, consisting of two superconducting regions (S) connected with a weak
link (I). In the lower part of the figures false-colored Scanning Electron Microscopy (SEM)
pictures of the respective junction types are shown. The tunnel junction (a) is fabricated
with optical lithography on a silicon wafer, while the constriction junction (b) is fabricated
with electron beam lithography on a sapphire wafer. Both samples from (a) and (b) were
fabricated in the Quanten-Nano-Zentrum Tirol (QNZT).

The reason why these elements are lossless is that when two superconductors
are placed close to each other, their phases become related. Due to the macroscopic
phase difference in the islands φ̂ = φ̂1 − φ̂2, supercurrent flows by means of Cooper pairs
tunneling through the barrier. The first Josephson equation gives the relation between
the supercurrent and the phase difference

Î(φ̂) = Ic sin φ̂. (2.2.10)

The time-evolution of the phase difference given by the second Josephson equation

V̂ (t) =
~
2e

dφ̂

dt
(2.2.11)
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where V̂ is the voltage drop across the junction. The first equation is a direct consequence
of the current dependence on the time derivative of the Cooper pair number[30].

It is useful to rewrite expression 2.2.11 in terms of the node flux as defined in
Eq. 2.2.1

φ̂(t) =
Φ̂(t)

φ0

(mod 2π) (2.2.12)

where we introduce the reduced magnetic flux quantum φ0 = ~/2e. The mod 2π reflects
the periodicity of the phase, while allowing the flux variable to take arbitrary real values.
This is equivalent to adding a 2πk term to the equation, where k is a non-negative integer.

We can precisely see how this element shifts the energy levels forming an non-
uniform spectrum. By inserting the first and second Josephson equations in Eq. (2.2.2)
one can derive the energy associated with the Josephson junction

Epot = −φ0Ic cos φ̂ = −EJ cos φ̂. (2.2.13)

The energy EJ is called Josephson energy and it is a measure of the tunnelling rate across
the barrier. For small phase differences φ̂ � 1 we can expand the Josephson potential
energy

− EJ cos φ̂ = −EJ +
EJ
2
φ̂2 − EJ

24
φ̂4 +O(φ̂6). (2.2.14)

The second term represents a harmonic potential associated with a linear inductor with
LJ = φ0/Ic, often referred to as Josephson inductance. The non-linearity comes from the
higher terms in the expansion. For this reason, the Josephson element is often treated as
a non-linear inductor.

CJ LJ ⇔

(a)

2 0 2
Superconducting phase 

En

01

12

(b)

Figure 2.2.3: Josephson junction: Lumped-element representation and energy
spectrum. (a) The Josephson junction consists of a capacitive CJ and a non-linear
inductive LJ(φ) contribution in parallel (left). The square with a cross (right) is the
equivalent circuit symbol for a junction. (b) The Josephson potential shown as a full
cosine function (black) and expanded up to third order (purple). For a truncated Taylor
expansion to the third order, the first few energy levels are shown in magenta.

The superconducting islands with insulator in between form an effective capacitor
CJ , creating the circuit from Fig. 2.2.3a. Notably, it resembles the resonant circuit from
Fig. 2.2.1a, where the linear inductor has been replaced by a Josephson element. Therefore,
we can define the resonant frequency of the Josephson junction as ωp = 1/

√
LJCJ , which
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is called the plasma frequency. At higher frequencies the circuit behaves as a normal
LC resonator. Including the capacitive contribution, the Hamiltonian of the Josephson
junction reads

ĤJ =
Q̂2

2CJ
− EJ cos φ̂ = 4ECN̂

2 − EJ cos φ̂ (2.2.15)

where for the kinetic term we have used the charge operator Q̂ = 2eN̂ in units of Cooper
pairs and defined the charging energy EC = e2/2CJ .

The diagonalization of this Hamiltonian is analytically possible but this task is
not a subject of this thesis. For some insight, the expansion up to second order (harmonic
approximation) results in equidistant levels, similar to the harmonic oscillator with CJ
and LJ . The quadratic term carries the non-linearity which shifts the spectral lines in
a way that each energy level is individually addressable, see Fig. 2.2.3b. The charging
energy determines the frequency difference between the ground and first excited states.

Superconducting Quantum Interference Device (SQUID)

As already mentioned, tunability is a desired property not only in amplifiers but also in
qubits. For this purpose, a single Josephson junction is replaced by a loop interrupted
by two junctions (see Fig. 2.2.4), forming a DC Superconducting QUantum Interference
Device (SQUID). If an external magnetic field is applied to the DC-SQUID, the effective
critical current will be decreased due to the interference between the arms of the device.
Just the magnetic field of the Earth passing through the area of a typical SQUID (a few
µm2) is enough to achieve several flux quanta, justifying the need of magnetic shielding.

Φ̂ext

(a) (b)

Figure 2.2.4: DC-SQUID. (a) Lumped-element representation consisting of two
Josephson junctions connected by superconducting leads. The inductance of the device
is regulated via the external flux Φ̂ext threading the loop. (b) False-colored SEM image
of a DC SQUID fabricated in QNZT with optical lithography on silicon. The overlaps
between the first (blue) and the second (red) layers form two tunnel junctions in parallel.

Note that superconducting leads also act as inductors and an external magnetic
field induces circulating (screening) current in the loop. This current creates a magnetic
field to counteract the external influence so the total enclosed magnetic flux remains zero.
In the limit of negligible geometric inductance from the loop compared to the Josephson
inductance, the external magnetic field is approximately equivalent to the total flux. Once
the external field exceeds half a flux quantum, it becomes more favourable for the screening
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currents to inverse direction and compensate the difference to one flux quantum. This
periodicity is a manifestation of the flux quantization.

In order to emphasise the flux tunability, we write the Hamiltonian for the
DC-SQUID by employing the Hamiltonian 2.2.15

ĤSQUID = 4ECN̂
2 − EJ1 cos φ̂1 − EJ2 cos φ̂2 (2.2.16)

where we include the energy contributions from the two junctions EJ i and their phase
differences φ̂i. The flux quantization requires that the flux sum over all branches along a
superconducting ring must be an integer number of flux quanta, imposing the relation
φ̂1 − φ̂2 = φ̂ext (mod 2π), where φ̂ext = Φ̂ext/φ0 with Φ̂ext being the total external flux
including offsets due to stray fields. This condition eliminates one DOF and by using the
average phase difference φ̂ = (φ̂1 + φ̂2)/2, we can rewrite the SQUID Hamiltonian[31]

ĤSQUID = 4ECN̂
2 − E ′J(φ̂ext) cos

[
φ̂− d tan (φ̂ext/2)

]
. (2.2.17)

The parameter d = (EJ2 − EJ,1)/(EJ1 + EJ,2) is a measure of how symmetric the SQUID
is. We can neglect the terms proportional to it in case the two junctions are completely
identical d = 0.

As can be seen from the Hamiltonian above, a SQUID can be treated as a single
junction with flux-dependant energy

E ′J(φ̂ext) = EJ,Σ cos
(
φ̂ext/2

)√
1 + d2 tan2 (φ̂ext/2) (2.2.18)

where EJ,Σ = EJ1 + EJ2 . Therefore, we can tune the resonance frequencies of devices
which utilize DC-SQUIDs. For a symmetric device, we have a flux-tunable inductor with
inductance

L(φ̂ext) =
φ0

2Ic

∣∣∣cos
(
φ̂ext/2

)∣∣∣ (2.2.19)

where Ic is the critical current for a single junction in the SQUID. However, the price is
paid by being susceptible to flux noise. With this in mind, it is worth noticing that a
larger asymmetry d leads to continuous tunability in a smaller frequency range, which in
turn reduces the sensitivity to flux noise[32]. Another option for reducing the flux noise
without compromising with the tunability range is to optimize the geometric design[33].

Wave mixing

Josephson junctions and SQUIDs are the main nonlinear elements used in circuit QED.
As mentioned in Subsection 2.1.1, in order to achieve amplification via wave-mixing, the
non-linearity needs to be placed in a resonant circuit. In the circuit context, this would
be equivalent to placing a Josephson element or a DC SQUID into a resonant circuit,
forming a non-linear resonator with frequency ωr = 1/

√
CL(t). Due to the non-linear

inductance, we can modulate the effective impedance and achieve wave-mixing. Notably,
varying the capacitive elements in time would lead to the same effect.

To gain some insight how to vary the Josephson inductance in time, we investigate
the behaviour under different drives[34, 35]. By simply applying an AC current I(t) << Ic
through a junction around its resonance frequency, the inductance is modulated as
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L ≈ LJ

[
1 + 1

6

(
I(t)
Ic

)2
]
. If we have a monochromatic pump I(t) ≈ cosωpt, up to the first

non-linear term the inductance will be modulated at twice the pump frequency. Because
of this quadratic dependence, four-wave mixing can be achieved. Similarly to the Duffing
oscillator, the Hamiltonian consists of a harmonic term and a forth-order non-linear term

ĤRWA
JJ ≈ ~ωrâ†â+ ~K(â†)2â2 (2.2.20)

where K is known as Kerr coefficient.
On the other hand, by varying the magnetic field enclosed by the SQUID

loop the inductance in the unit is modulated proportionally to the screening current
L ≈ LJ

(
1 + I(t)

I0

)
, where I0 depends on the DC flux bias through the SQUID. As a

consequence, under the same drive used for the current pumping, the first non-linear order
is proportional to the pump frequency, meaning that three-wave mixing takes place. For a
flux-pumped system, the first non-linear term is of third order, yielding the Hamiltonian

ĤRWA
SQUID ≈ ~ωrâ†â+ ~K[p̂(â†)2 + p̂†â2] (2.2.21)

where p̂ represents the pump mode. For both Hamiltonians we have used the rotating-wave
approximation (RWA) which is valid for weakly non-linear devices, namely for |K|/ωr � 1.

The current pumping scheme is widely used in most amplifiers. However, it comes
with some disadvantages: in most cases there is no spectral or spatial separation between
pump and signal, making it hard for the pump to be filtered. In a flux-driven SQUID, the
pump is well separated from the signal. Another main difference is the pump-induced
frequency shift regarding the bare resonance which is low in the flux-pumped case while
for a current drive the shift increases with the photon population. For three-wave mixing
and a λ/4 resonator, there is no resonance at ωp reducing the spurious population in
higher modes which usually leads to saturation.

2.3 Input-Output Theory
Up to this point, every system was described assuming they were completely decoupled from
the environment. In fact, controlled coupling to external DOFs allows us to manipulate
as well as read the system state. At the same time, the system couples uncontrollably
to other degrees of freedom (losses), which results in noise and decoherence. In order to
capture all these aspects, the Hamiltonian needs to be expanded with the terms describing
the external baths and the coupling to them. There are different ways to describe this
interplay between the internal and external DOFs: either from the point of an external
observer sending in a signal and analyzing the reflected output (input-output theory[36]),
or through the evolution of the system itself under the influence of the bath (master
equation formulation[25]). While they all have their advantages depending on the desired
information to be extracted, here the focus falls on the first treatment, namely input-
output theory (IOT). The results directly give the response of the system under strong
(classical) pump and weak (quantum) signals used in the amplification process.

The approach is valid for any system but for simplicity let’s consider the harmonic
oscillator, as already quantized in Subsection 2.2.1. The total Hamiltonian is a sum of all
contributions

Ĥ = Ĥsys + Ĥbath + Ĥint. (2.3.1)
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Figure 2.3.1: Input-Output theory: open-system sketch. The system couples to
an external bath (or a port) with a rate κ. With input-output theory, the output can be
predicted for a known input.

Typically the bath is realized as a semi-infinite transmission line. Therefore, we can
express the bath and interaction Hamiltonians respectively as

Ĥbath = ~
∫
ωb̂†(ω)b̂(ω)dω (2.3.2a)

Ĥint = i~
∫
κ̄(ω)

[
b̂†(ω)â+ b̂(ω)â†

]
dω (2.3.2b)

Here, rotating-wave approximation is used allowing us to neglect counter-rotating terms
such as â†b̂†(ω). The bath operators obey the bosonic commutation relation [b̂(ω), b̂†(ω′)] =
δ(ω − ω′). Similarly, one can introduce different ports for losses and input signals. Two-
photon loss channels can also be included in the treatment, for more details refer to
[37].

Another simplification appears if the coupling rate is frequency independent
κ̄(ω) ≡

√
κ
2π

and small κ << ωr, meaning that the input modes interact with the system
only in a small region around the resonant frequency ωr and the interaction is localized in
space around the end of the transmission line at x = 0. This approximation is known as
first Markov approximation. In Heisenberg picture, the equations of motion for the bath
and system field operators b̂(ω) and â read

˙̂
b(ω) = −iωb̂(ω) +

√
κ

2π
â (2.3.3)

˙̂a = − i
~

[â, Ĥsys]−
√

κ

2π

∫
b̂(ω)[â, â†]dω (2.3.4)

respectively. We solve the equation of motion for the bath modes by simply integrating
Eq. 2.3.3, which gives

b̂(ω) = e−iω(t−t0)b̂0(ω) +

√
κ

2π

∫ t

t0

e−iω(t−t′)â(t′)dt′ (2.3.5)

where b̂0(ω) = b̂(ω, t = t0) is the initial state of the bath mode at time t0 < t assumed to
be in the remote past. The first term of the equation describes the free evolution of the
operator, while the second term describes the evolution due to the interaction with the
system.

Inserting this solution in Eq. 2.3.4 yields the Langevin equation for driven and
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damped harmonic oscillator

˙̂a(t) = − i
~

[â, Ĥsys]−
κ

2
â(t)−

√
κb̂in(t) (2.3.6)

where we have defined the input field as

b̂in(t) =
1√
2π

∫
e−iω(t−t0)b̂0(ω)dω. (2.3.7)

Normally, this input field is connected to a forward travelling field operator Âin(t−x/vp) ∼∫
dω[e−iω(t−t0)e−ix/vp b̂0(ω) + h.c.] defined by the initial conditions b0(ω), where vp is the

phase velocity in the transmission line. At the point of interaction x = 0, namely the
interface between the end of the transmission line and the system, and after employing
RWA the field reduces to the expression above[38, 24].

The forward Langevin equation 2.3.6 describes the evolution of the quantum
system in a presence of an external drive. Moreover, as mentioned before one can see that
coupling to any port, regardless of the type (input or loss), always results in damping of
the system modes. Similar considerations apply to the output field, which is linked to an
outward travelling field operator Âout(t+ x/vp). If we define the output field as

b̂out(t) =
1√
2π

∫
e−iω(t−t1)b̂1(ω)dω (2.3.8)

where b̂1(ω) = b̂(ω, t = t1) is the final state of the bath operator at time t1 > t in the
remote future. This yields another Langevin equation for the intra-cavity mode in terms of
the output field. By comparing the two, we reach the main equation in the IOT connecting
the incident to the outgoing field via the system modes

b̂out(t)− b̂in(t) =
√
κâ(t). (2.3.9)

This relation holds for all incident fields, regardless of the source. Causality is preserved,
meaning that only the future state of the system is affected by the present input and that
only the future output is influenced by the present state of the system.

2.3.1 Driven coupled non-linear resonators: Bose-
Hubbard dimer

The amplifier in this thesis can be treated effectively as two coupled non-linear oscillators
as depicted in Fig. 2.3.2. Such a system is very intuitive to understand the phenomena
behind the amplification, while avoiding the complex lengthy mathematical expressions.
Qualitatively, the results apply to the DJJAA case.

The system is described by the so-called Bose-Hubbard Hamiltonian

H = ~ωRa†RaR + ~ωLa†LaL + ~J(aRa
†
L + aLa

†
R) + ~

U

2

[
(a†R)2a2

R + (a†L)2a2
L

]
(2.3.10)

where we assume that the on-site interaction is of the same strength for both modes
UR = UL = U . Because the cavities are identical, their resonant frequencies are also the
same ωL = ωR = ω0. We limit the description to the case where only the left resonator is
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Figure 2.3.2: Optical representation of two coupled anharmonic resonators. A
first dimer from the amplifier in its core is similar to two cavities with on-site interaction
UL, UR and hopping rate J . Only the left cavity is coupled to the input field with rate κ
while both cavities are characterized by the loss rates γL, γR. Figure is adopted from [20].

coupled to the input port, while the right cavity is only coupled to the left. In order to
achieve amplification, we choose to work in the regime where the hopping rate is of the
same order as the input coupling, while the non-linearity is weak, namely |U | � J . κ.
The last approximation involved is that the loss rates are identical and much smaller than
the coupling rate to the input port γL = γR = γ � κ, therefore, we can neglect the losses
in the left cavity.

With all aforementioned consideration, we can proceed to the Langevin equations

ȧL =
[
−i(ω0 + Ua†LaL)− κ

2

]
aL − iJaR +

√
κain (2.3.11a)

ȧR =
[
−i(ω0 + Ua†RaR)− γ

2

]
aR − iJaL (2.3.11b)

For amplification a strong coherent pump is required. We decompose the fields into a
classical part α and a weak quantum signal b

ai = (αi + bi)e
−iωpt (2.3.12a)

ain = (αin + bin)e−iωpt (2.3.12b)

where we chose to work in a frame rotating at the pump frequency ωp.
First we solve the stationary equations for the classical field part, neglecting

the quantum corrections, obtaining a single or many steady state solutions depending on
the pump parameters 〈αL, αR〉 = f(ωp, αin). To determine the stability of the solutions,
one needs to take into account the quantum fluctuations around the classical stationary
solutions. If we replace the classical fields in Eq. 2.3.12a and 2.3.12b with their steady
state solutions and insert the expressions in Eq. 2.3.11a and 2.3.11b, we can derive the
forward Langevin equations for the quantum fluctuations yielding the following linear
system of equations

~̇b = M̃~b+
√
κ~bin (2.3.13)

where we introduced the vectors ~b = (bL, b
†
L, bR, b

†
R)T and ~bin

γ�κ
≈ (bin, b

†
in, 0, 0)T . The

terms which are only proportional to the classic fields are omitted in the derivation. The
exact form of the matrix M̃ [20] is irrelevant for the understanding of the stability problem.

This matrix M̃ is sometimes referred as stability matrix. If the real parts of all
its eigenvalues are negative, i.e. Re(Eβ) < 0, β = 1, . . . , 4, the fluctuations are damped
out and the steady state is unique and stable (S). On the other hand, if at least one is non-
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Figure 2.3.3: Phase diagram of driven coupled non-linear resonators for J =
0.7κ and U < 0. The graph is plotted as a function of the pump detuning from the
bare cavity frequency δ = ωp − ω0 and the pump induced frequency shift −|αin|2U , both
normalized to the coupling. The quantum fluctuations around the steady states determine
the stability of the solutions: S - unique and stable, P - unique, but parametrically
unstable, and M - multiple stable solutions. For phase-sensitive amplification, the pump
parameters follow the blue dashed lines, while phase-insensitive amplification occurs for
pump parameters tracking the solid red line. Taken from [20].

negative Re(Eβ) ≥ 0, the solution is unstable. The latter case is split in two, depending
on the imaginary part of the eigenstates: for Im(Eβ) = 0 we enter into one-mode unstable
solution (M), while for Im(Eβ) > 0 the solution is parametrically unstable (P). With this
information, the phase-diagram of the system can be extracted as seen in Fig. 2.3.3.

In Fig. 2.3.4 examples are given for each solution at moderate pump amplitude
(Uj|αj|2 < J, γ) depending only on the pump frequency. A brief introduction to the
notation: because of the linear coupling, the two oscillators hybridize into symmetric a+

and antisymmetric a− modes with the energy splitting depending linearly on the hopping
rate ω+ − ω− = 2J . In a real device, this splitting is not constant but depends on the
mode number. Since in our case U < 0, the resonances are red-shifted, a drive would
shift down the resonance frequencies with an amount proportional to the drive strength.
If the pump is applied above the resonances (Fig. 2.3.4a), the energy levels are pushed
further off resonance and the solution remains stable no matter the power. When the
pump is just below the higher frequency resonance (Fig. 2.3.4b), the red shift pushes
the level into resonance and gives rise to one-mode instability, analogous to a driven
anharmonic oscillator. This phase shows bistabilities[39, 20], hence the multiple classical
solutions. For a pump in between the resonances (Fig. 2.3.4c), because of the red shift of
the symmetric mode combined with the linewidth increase of the antisymmetric one, the
field becomes resonant to both modes. The quantum fluctuations create entangled signal
and idler photons as soon as the amplitude overcomes the losses, i.e. Uj|αj|2 > γ. This
regime corresponds to phase-insensitive parametric amplification. From this point on, the
focus will be on this regime. For a more thorough analysis on the stability, the reader
should refer to [39].

The gain can also be inferred from input-output theory after utilizing the Fourier
transform for all fields[20]

bj(t) =
1√
2π

∫
bj(∆)e−i∆td∆ (2.3.14)
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(a) (b) (c)

Figure 2.3.4: Energy level scheme under continuous monochromatic drive. (a)
Stable: The pump frequency is above the modes and never comes into resonance for any
power, (b) One-mode unstable: the pump comes in resonance with the mode above a
certain threshold due to the non-linear red shift, (c) Parametrically unstable: starting
from stable solution once the losses are surpassed, the pump comes in resonance with the
red-shifted anti-symmetric and broadened symmetric mode, generating entangled photon
pairs in the resonator modes. Figure adopted from [39].

where ∆ = ωp − ωi is the detuning between the pump and the signal. If we insert this
expression in Eq. 2.3.13, we get a new set of equations

~̇b(∆) =
√
κ(−i∆1− M̃)−1~bin(∆) =

√
κG̃(∆)~bin(∆) (2.3.15)

where we define G̃(∆) as the gain matrix.
The input-output relation 2.3.9 links the quantum part of the output to the

input such that
bout(∆) = gs(∆)bin(∆) + gi(∆)b†in(−∆) (2.3.16)

meaning that the output is a mix of amplified input waves with equal and opposite
detunings from the pump. The gains are respectively

gs(∆) = κG̃11(∆)− 1 (2.3.17a)

gi(∆) = κG̃22(∆) (2.3.17b)

where G̃11,22 are the diagonal components from the gain matrix G̃. Thus, if pump and
system parameters are known, the gain can be predicted.

2.4 Dimer Josephson Junction Array
Amplifier (DJJAA)

The Dimer Josephson Junction Array Amplifier, or shortly DJJAA, is based on a dispersion-
engineered array of SQUIDs. The device can be operated in both degenerate and non-
degenerate mode offering a broad horizon for various applications. In contrast to the
travelling wave amplifiers, amplification in DJJAA is only possible within a small vicinity
around the eigenfrequencies of the circuit due to the standing-wave character. This
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drawback is minimized by utilizing long SQUID arrays on the order of 103 units. Hence,
we get a multi-mode tunable amplifier in the frequency domain up to the plasma frequency
which has an increased dynamic range in contrast to the single-junction case.

As we already know, the SQUID can be thought of as a single Josephson junction
with tunable energy. In this context, the terms Josephson junction array and SQUID
array will be used interchangeably in this section. In order to get insight in the working
principle of the DJJAA, we first derive the Hamiltonian for Josephson junction arrays
which is easily generalized for the DJJAA case once dispersion engineering is included.

2.4.1 Josephson junction arrays (JJAs)
Josephson junction arrays by definition are two-dimensional lattices consisting of multiple
(N ≥ 3) Josephson elements connected by superconducting leads[40]. When expanded to
three dimensions, the model becomes suitable for describing granular superconductors, such
as granular aluminum (grAl[41]). In the span of this thesis, we will limit the description
to the one-dimensional chain of Josephson junctions and use the name interchangeably.

The number of unit elements N determines the number of eigenmodes, while
the dependence of the eigenfrequencies ωk(k) on the mode number k is called dispersion
relation. In general, the dispersion relation is influenced mainly by the circuit parameters
and the boundary conditions, which depend on the type of coupling: galvanic or capacitive.
Notably, the boundary conditions also determine the standing wave pattern. For galvanic
coupling, the current exhibits antinodes at both ends of the array, while in a capacitively
coupled array the voltage antinodes are located at the end of the array.

Φ0 Φ1

C0

Φ2

C0

ΦN−1

C0

ΦN+1ΦN

C0

Figure 2.4.1: Josephson junction array: Lumped-element representation.
Circuit diagram of a one-dimensional chain of N Josephson junctions coupled galvanically
to a transmission line for controlling the system. The superconducting islands connecting
the junctions possess a capacitance to ground C0.

Let us consider the galvanically coupled array from Fig. 2.4.1, consisting of N
junction connected in series. SQUIDs are usually the preferred unit element since they
allow frequency tunability of the device. The boundary conditions impose Φ0 = 0 = ΦN+1

since the voltage, related to the time derivative of the node flux, has to vanish at the
galvanic connection in the absence of drives. The stray capacitances C0 between the
superconducting leads connecting the units and the ground are taken into account. For
simplicity the inductive contributions from the superconducting islands are neglected.

In order to find the eigenfrequencies for the dispersion relation, we write the
Lagrangian by using the method of nodes

L =
N−1∑
i=1

C0

2
Φ̇2
i +

N−1∑
i=0

[
CJ
2

(
Φ̇i+1 − Φ̇i

)2

− EJ cos(φi+1 − φi)
]

(2.4.1)
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where we have assumed all units are perfectly identical. The first two terms are related to
the kinetic energies from the superconducting leads and the junctions, while the last term
represents the potential energy from the Josephson elements. The conversion to SQUIDs
can be executed by taking into account the flux dependence of the Josephson energies
EJ → EJ(φext). The sums run up to N − 1 because the boundary conditions eliminate
two DOFs.

In the limit of small currents I � Ic we can expand the cosine EJ cos(φi+1 − φi) ≈
EJ − 1

2LJ
(Φi+1 − Φi)

2. If we can neglect the constant energy offset from the expansion
and introduce the node flux vector ~Φ = (Φ0,Φ1, ...,ΦN)T , the Lagrangian is simplified to
the matrix form

L =
1

2
~̇ΦT C̃ ~̇Φ− 1

2
~ΦT L̃−1~Φ (2.4.2)

where the capacitance and inverse inductance matrices read respectively

C̃ =


2CJ + C0 −CJ 0 . . .
−CJ 2CJ + C0 −CJ 0 . . .

0 −CJ 2CJ + C0 −CJ 0 . . .
...

...
...

...
... . . .

 (2.4.3a)

L̃−1 =


2
LJ

− 1
LJ

0 . . .

− 1
LJ

2
LJ

− 1
LJ

0 . . .

0 − 1
LJ

2
LJ

− 1
LJ

0 . . .
...

...
...

...
... . . .

 . (2.4.3b)

In this treatment we neglect the long-range Coulomb interactions mediated via the
substrate[42]. This would give a model fitting the experimental results better, but leading
to more intricate expressions for the capacitance matrix.

We follow the recipe from [43] and use the following transformation in order to
diagonalize the Lagrangian

~ξ = C̃1/2~Φ (2.4.4)

where we introduces the square root of the capacitance matrix in a way that C̃1/2C̃1/2 = C̃.
If we solve the following eigenvalue problem

C̃−1/2L̃−1C̃−1/2~Ψk = ω2
k
~Ψk (2.4.5)

we find the needed information for the standing wave pattern and the dispersion relation.
The eigenvectors are related to the node flux vectors in the following way

~Φk =

√
~

2ωk
C̃1/2~Ψk (2.4.6)

where the link to the flux vector ~Φ from the Lagrangian in Eq. 2.4.2 is simply given by
~Φ =

∑
k
~Φk.
With this information and plugging in realistic values, the standing-wave pattern

and the dispersion relation for a JJA with N = 800 are plotted for the first six modes
in Fig. 2.4.2. From the coupling type, we expect the current to reach its maximum at
both ends of the array. With the current being proportional to the gradient of the node
flux, our expectations are fulfilled since the standing waves are zero at these points. In
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fact, the current and voltage behaviour along the array is a direct consequence of the
standing-wave pattern. It is worth mentioning that the amplitudes always reduce with
increasing the mode number.

In the dispersion relation, the linear regime is prominent up to the third mode
where the frequencies are approximately equally detuned from each other. Once the
wavelength of the modes approaches the distance between circuit elements the dispersion
becomes non-linear as the eigenfrequencies start bunching below the plasma frequency.
The range of the linear regime is controlled by the ratio CJ/C0, in a way that increasing it
results in a higher slope and hence smaller linear range. For more junctions the dispersion
flattens and the linear regime extends over a bigger range. Moreover, the number of units
is inversely proportional to the frequency difference between two adjacent modes. Notably,
because of the additional capacitive contribution to ground C0, the plasma frequency is
altered ωpl = 1√

LJ (CJ+C0/4)
but the parameter regime we are in (CJ � C0) allows us to

neglect this modification.
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Figure 2.4.2: Standing-wave pattern and dispersion relation for a Josephson
junction array with N = 800. Left plot illustrates the standing-wave pattern of the first
six magnetic flux eigenvectors normalized by the reduced flux quantum φ0 as a function
of the node number. The corresponding eigenfrequencies are plotted on the right with the
color legend for the respective mode number. The higher modes are colored in gray up
to k = 18 where the dispersion relation is truncated for clarity purposes. The first three
modes are fitted linearly (red).

In order to quantize the system, we express the coordinate ξ in terms of its
Fourier components ~Ψk

~ξ(t) =
∑
k

~Ψk

(
ψ∗ke

iωkt + ψke
−iωkt

)
(2.4.7)

where each pair ~Ψk, ωk corresponds to the solutions from the eigenvalue problem 2.4.5.
Then we introduce bosonic single mode annihilation operator as âk =

√
2ωk

~ ψk, which
allows us to express the linear Hamiltonian in second quantization

ĤL =
N−1∑
k=0

~ωk
(
â†kâk +

1

2

)
. (2.4.8)

Note that all classical vectors have been promoted to quantum operators with the inherent
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uncertainty relations.

Kerr-nonlinearity as perturbation

So far in the treatment all non-linearities have been neglected by taking just the harmonic
approximation, resulting in equations describing a chain of linear oscillators. However,
while sufficient for extracting the standing wave pattern and the frequencies for low input
powers, the harmonic approximation fails to capture the intrinsic nonlinearity of the
Josephson junctions present in the chain. The higher orders in the expansion of the cosine
term in Eq. 2.4.1 allow us to treat this non-linearity perturbatively[43, 42]. Hence, we
can expand the Hamiltonian in the following way

ĤJJA = ĤL + ĤNL (2.4.9)

where the second term can be expressed as

ĤNL =
EJ
24

N−1∑
i=0

(
φ̂i+1 − φ̂i

)4

(2.4.10)

This additional term gives rise to the following second quantization Hamiltonian:

ĤJJA =
N−1∑
k=0

[
~ω′kâ

†
kâk −

~
2
Kkk

(
â†kâk

)2
]
− ~

2

N−1∑
k,l=0
k 6=l

Kklâ
†
kâkâ

†
l âl (2.4.11)

where the rotating-wave approximation has been utilized and the higher terms describing
interaction between more than two modes, even a pairwise interaction via a third mode,
have been neglected.

The coefficient Kkk is called self-Kerr coefficient and gives the frequency shift
of the k-th mode depending on its photon population. This is the main culprit for the
bistability in resonators[44, 45] but it is also responsible for the gain in these devices. The
so-called cross-Kerr coefficient Kkl causes a frequency shift in the k-th mode, which scales
linearly with the photon number in mode l. The cross-Kerr shifts is the main ingredient
of two-tone spectroscopy[46, 45]. The exact expressions for Kkk and Kkl can be found in
Appendix B.

In general, the Kerr shifts grow with increasing the mode number but similarly
to the dispersion relation they saturate once the plasma frequency is approached. However,
because of the perturbative nature of those shifts they are small compared to the
eigenfrequencies, i.e. |

∑
lKkl| � ωk. Moreover, in a chain of N junctions they are

reduced by a factor of N compared to the single junction case since the wave function
amplitude scales as N−1/2[6]. Therefore, the total nonlinearity is reduced and we profit in
higher saturation powers[47]. Finally, the renormalized eigenfrequencies are given by

ω′k = ωk −
Kkk

2
− 1

4

N−1∑
l=0

Kkl. (2.4.12)

Due the non-linear nature of JJAs, they are commonly used in a class
of degenerate amplifiers called Josephson Parametric Amplifiers (JPAs)[9, 8]. The
implementation usually includes embedded JJA in a coplanar waveguide and when
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a pump tone is applied on resonance with an array mode, degenerate amplification is
achieved. Bear in mind that there are JPAs, consisting of a single DC SQUID[48]. For
non-degenerate amplification, we need dispersion engineering as explained in the following
section.

2.4.2 Dispersion engineering: Coupled JJAs
We have worked through all ingredients required for building a tunable amplifier with
high 1-dB compression point and optimized for non-degenerate operation. As already
mentioned in Subsection 2.3.1, an easy way to do that is by using a system similar to
the Bose-Hubbard dimer and achieve the same phenomena. If we have to make a link
between the platforms, a single JJA can be thought of a non-linear resonator, where the
self-Kerr is equivalent to the effective on-site interaction and depends on the charging
energy EC and the number of SQUIDs. In order to build a dimer amplifier, we need to
couple two arrays, where the coupling J between the resonators can be achieved via the
central capacitor Cc.

Φ0 Φ2
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ΦN−1

C0

ΦN
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ΦN+1

?
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0
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ΦN
2
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Figure 2.4.3: Dispersion engineered Josephson junction arrays. If we take a JJA
of size N (a), interrupt it effectively creating two smaller arrays of size N/2 and couple
them via a capacitor Cc we can engineer the dispersion relation. In fact, this coupling can
implemented by either connecting the capacitor in series (b) or introducing a big capacitor
to ground (c). Note that due to the big capacitor plates of Cc in (b), the neighbouring
capacitors to ground are C ′0 enhanced as well.

Consider the JJA from the previous section. If a capacitor is placed in the center
of the array (see Fig. 2.4.3), it is effectively split in two shorter arrays coupled capacitively.
There are two ways to engineer the arrays: either placing the capacitor in series with the
JJAs or coupling them through the ground. The two cases are displayed in figures 2.4.3b
and 2.4.3c, respectively, where the modified parts are highlighted in blue. In Fig. 2.4.3b
the neighbouring capacitive contributions to the ground are coming from the plates in the
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central capacitor Cc, they are denoted C ′0 due to the bigger size compared to the rest of
the superconducting leads creating C0.

Since the devices used in the thesis are based on the engineering technique
from Fig. 2.4.3b, the theoretical treatment for only this case will be brought into focus.
Analogous to the treatment of a galvanically coupled JJA, from the method of nodes we
can write the Lagrangian of the system

L =

N
2
−1∑

i=1

C0

2
Φ̇2
i +

N∑
i=N

2
+2

C0

2
Φ̇2
i +

C ′0
2

(
Φ̇2

N
2

+ Φ̇2
N
2

+1

)

+
Cc
2

(
Φ̇N

2
+1 − Φ̇N

2

)2

+

N
2
−1∑

i=0

CJ
2

(
Φ̇i+1 − Φ̇i

)2

+
N∑

i=N
2

+1

CJ
2

(
Φ̇i+1 − Φ̇i

)2

−
N
2
−1∑

i=0

EJ cos (φi+1 − φi)−
N∑

i=N
2

+1

EJ cos (φi+1 − φi). (2.4.13)

The first line contains terms related to the stray capacitances from the superconducting
leads and center capacitor plates to the ground, while the second one contains the
contributions from the junction capacitances and the coupling capacitor, and the last line
accounts for the inductive part of the junctions.

In the limit of small currents in the circuit I � Ic we can use the harmonic
approximation for the cosine term. The Lagrangian can be rewritten in the matrix form
from Eq. 2.4.2, where the only difference will come from the capacitance and inverse
inductance matrices, which now read respectively

C̃ =



C ′J −CJ 0 . . .
−CJ C ′J −CJ 0 . . .
... . . . . . . . . . . . . . . .

0 −CJ CJ + Cc + C ′0 −Cc 0
0 −Cc CJ + Cc + C ′0 −CJ 0
. . . . . . . . . . . . . . . . . .

. . . 0 −CJ C ′J −CJ
. . . 0 −CJ C ′J


(2.4.14a)

L̃−1 =



2
LJ

− 1
LJ

0 . . .

− 1
LJ

2
LJ

− 1
LJ

0 . . .
... . . . . . . . . . . . . . . .

0 − 1
LJ
− 1
LJ

0 0

0 0 − 1
LJ
− 1
LJ

0
. . . . . . . . . . . . . . . . . .

. . . 0 − 1
LJ

2
LJ

− 1
LJ

. . . 0 − 1
LJ

2
LJ


(2.4.14b)

where C ′J = 2CJ + C0 is introduced for shortening the matrix expression. The modified



2.4. Dimer Josephson Junction Array Amplifier (DJJAA) 29

matrix entries due to the dispersion engineering are highlighted in blue consistent with
the coloring in the circuit diagram from Fig. 2.4.3b, while the rest has the same shape as
in the case for a simple Josephson junction array.

Solving the eigenvalue problem from before (Eq. 2.4.5) but using instead the
newly introduced matrices, one can obtain the new standing wave pattern together with
the eigenfrequencies of the modes in the low-power regime as seen in Fig. 2.4.4 (left).
Analogous to two coupled oscillators in classical mechanics, the arrays hybridize into
symmetric (even) and anti-symmetric (odd) modes. Notably, the charge distribution is
altered owing to the big capacitor in the center, causing discontinuities in the odd flux
modes at that point. Compared to the simple JJA, the odd modes have their maxima at
the central node position, which is the reason why they are influenced the most by the
interruption through the capacitor.
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Figure 2.4.4: Standing-wave pattern and dispersion relation for a dimer
Josephson junction array with N = 800. Left plot illustrates the standing-wave
pattern of the first six magnetic flux eigenvectors normalized by the reduced flux quantum
φ0 as a function of the node number. The odd modes experience a jump at the center
because of the central capacitor. Because of that, the eigenfrequencies hybridize in pairs
as plotted in the dispersion relation on the right. The higher modes are colored in gray
up to k = 18 where the dispersion relation is truncated for clarity.

As a consequence of this symmetry breaking, each pair of neighbouring modes
hybridizes into a so-called dimer (see Fig. 2.4.4, right). Each dimer obeys similar physics
as the Bose-Hubbard model from Subsection 2.3.1 but the frequency splitting between the
dimer modes now depends on the mode number and the coupling capacitance J(k, Cc)
which we can engineer as wished. The small detuning within one dimer allows the two
modes to couple to a single monochromatic drive, leading to non-degenerate amplification.

In the harmonic approximation we obtain the linear Hamiltonian as a sum of
linear oscillators ĤL =

∑N−1
k=0 ~ωk

(
â†kâk + 1

2

)
. We can again introduce the non-linearity

as a perturbation. The jump experienced by the odd modes at the center causes artificially
large values for the Kerr coefficients due to numerical instabilities. We can evade this
problem if instead we use a symmetrized version of the flux eigenvectors only for the odd
modes, namely

~Φ
(s)
k = ~ΦT

m.diag(1, 1, . . . , 1, 1,−1,−1, . . . ,−1,−1) (2.4.15)

where the sign change in the diagonal matrix appears at the index N
2

+ 1. Consequently,
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the symmetrized phase eigenvectors ~Ψk are calculated from

~Ψ
(s)
k =

√
2ωk
~
C̃1/2~Φ

(s)
k (2.4.16)

With the quantum symmetrized flux vectors, we can express the Hamiltonian in second
quantization language

ĤDJJAA =
N−1∑
k=0

[
~ω′kâ

†
kâk −

~
2
Kkk

(
â†kâk

)2
]
− ~

2

N−1∑
k,l=0
k 6=l

Kklâ
†
kâkâ

†
l âl (2.4.17)

where the resonant frequencies are shifted by the non-linearity in the same way as for
the Josephson junction array (Eq. 2.4.12). The Kerr coefficients, although given by the
same equations, are entirely different from the ones of the JJA enhancing the cross-Kerr
interaction, which is the reason why non-degenerate amplification is possible.

Each dimer can be exploited for non-degenerate amplification if a pump is
applied between the two modes comprising the dimer. Moreover, degenerate amplification
is attainable in the same way as for JPAs, i.e. by pumping at the mode frequency
itself. Potentially, breaking the symmetries in a similar manner can lead to other
interesting applications different than non-degenerate amplification, e.g. single-shot
readout circumventing the need of a quantum-limited amplifier[45].



Chapter 3

Fabrication

The amplifiers characterized in this thesis are fabricated with optical lithography. In fact,
more than half of the time spent on this project was dedicated to getting the optical
lithography running in the QNTZ clean room. This chapter starts with a short introduction
on the photo-lithography process and emphasizes the main differences between the two
systems used for patterning the circuits, namely laser writer and mask aligner. Since
the fabrication process for the in-house amplifier production has been developed from
scratch, we proceed with all required calibrations which were executed to reach a reliable
recipe. Because of the complications that appeared constantly throughout the process
development, the fabrication was prolonged and in the end the devices were fabricated
at the place where they were originally developed: Karlsruhe Institute for Technologies
(KIT). However, the problems are worth mentioning, together with some ways how to
possibly combat them.

3.1 Optical lithography
The light-sensitivity of some materials is the foundation of photo-lithography[49]. Such
materials are called photoresists, which consist of long-chained polymers. Upon exposure
to a certain wavelenght, usually in the near-UV spectrum, the resists changes its chemical
composition, resulting in different solubility of the exposed and unexposed parts in a
specific chemical called developer. Depending on that, we can distinguish between two
types of resist: negative and positive. In the positive resist the exposed part is developed
while in the negative resist the exposed part stays on the wafer. One should note the
existence of an image-reversal resist, which can be used as both positive and negative.
This allows us to pattern an arbitrary structure onto the resist.

The fabrication of the amplifiers involved the use of a positive resist and the basic
process is shown in Fig. 3.1.1. From left to right, the substrate of choice is spin-coated
with the resist and then baked to evaporate the solvent contained in the resist. The
sample is then exposed with the wavelength the resist is sensitive to with a proper energy
dose. Usually, a dose test is required and the doses vary significantly for different patterns.
As a last step, the sample is put into a developer, where the exact type of developer, the
dilution rates (if required) and the development times are usually taken from the data
sheet and sightly altered according to the required results. In this way, we obtain a certain
design created by the resist on the substrate which can be further processed.

31
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Figure 3.1.1: Optical lithography with positive resist. From left to right: a
substrate is coated with resist and baked, the sample is then partially exposed with
near-UV light. The exposed areas are then dissolved while the unexposed areas remain.

Two main systems are usually exploited in research clean rooms to expose the
photoresist: laser writer and mask aligner. We will now discuss their working principle
and specificities. The laser writer uses the on/off state of a focused laser, usually a diode
laser[13]. The laser goes through the substrate area pixel by pixel and creates the pattern
loaded in the software. The mask aligner uses transparent materials with opaque patterns
on top, called masks, which can be produced with laser writer technologies. The provided
mask is placed onto the sample and a parallel light from a mercury vapor lamp exposes
the whole area at once with the light going through only the transparent parts of the
mask. Both technologies have their advantages and disadvantages, e.g. the mask aligner
is fast and reliable, but the laser writer is flexible regarding designs.

The fabrication in the clean room facility of QNTZ utilizes a laser writer from
Microtech equipped with a 405nm laser with a maximum resolution of 0.8µm or better
depending on the resist. The resist chosen for the process is AR-P 5350 [50] from Allresists.
The profile of the resist as exposed by the laser writer can be seen in Fig. 3.1.2. We can
observe that this resist possesses a undercut profile suited for lift-off processes. The choice
of the resist was made to fit the exposure technology since the required flood exposure[51]
for image-reversal resists is not supported by the laser writer and inverting the design to
be suitable for negative resists would prolong the exposure time leading to probable stage
drifts. Another advantage is that the recommended developer barely etches aluminum, in
contrast to TMAH-containing developers.

Figure 3.1.2: Resist with undercut profile: expectations vs. reality. A schematic
of a resist with undercut profile (left), where the developed area looks like a trapezoid.
Instead, a real undercut profile (right) has rounder edges. The SEM picture shows a
cleaved sample viewed under a 90◦ angle with silicon substrate and AR-P 5350 resist,
whose profile is false colored in orange for clarity.



3.2. Lift-off 33

3.2 Lift-off
There are two ways to proceed after the lithography: either with etching into the substrate
or a metal film deposited before the lithography, or with lift-off. Only the lift-off will
be discussed here as a main step in the amplifier fabrication. The basic lift-off process
is shown in Fig. 3.2.1. A metal is evaporated on top of the developed resist. In the
subsequent actual lift-off the resist is removed by putting the sample in a solvent. This
strips away the resist from the substrate leaving behind metal structures covering the
parts that were unprotected by the resist.

Figure 3.2.1: Lift-off. After the resist has been developed, a thin film of metal is
evaporated on top (left). During the lift-off the leftover resist is removed leaving just the
patterned metal structures of the substrate (right).

The illustration makes it obvious to see why undercut resists are favoured for
reliable lift-off processes. The metal deposition via evaporation is very directional but the
sidewalls will be always coated in case other resists are used. This could lead to problems
during the lift-off, leaving the structures from the sidewalls, often referred as "wings",
"ears" or "fences", attached to the film. Upon another metal deposition on top, these
wings might interrupt the second layer (see Section 3.4).

3.3 Amplifier fabrication
Once we gained some insight on how optical lithography and lift-off work, understanding
the whole process for amplifier fabrication is crucial for proceeding with this chapter. For
this purpose, we utilize a two-step optical lithography process. A simplified version of this
process can be found in Fig. 3.3.1. Once the first layer, including most of the structures
forming the SQUIDs, the transmission line and the central capacitor, is patterned and
developed, the sample is prepared for aluminium deposition by being loaded in the
load lock of an electron beam evaporator Plassys MEB550S which is pumped to high
vacuum. The sample is then cleaned with a plasma mix of argon and oxygen, where
the argon is mainly used for charging the oxygen plasma. This cleaning step is called
plasma descum and removes thin residual organic layers left over after the development
(scum). The chamber is then pumped and a gettering process follows in which titanium is
evaporated with the shutter closed. In this step, the titanium is exploited for sorption
of leftover molecules in the chamber which enhances the sticking between the metal film
and the substrate. Finally, an aluminium layer is deposited under zero angle. For better
uniformity, the stage on which the sample is mounted is rotated during both descum and
metal evaporation.
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Figure 3.3.1: Schematic of a simplified two-step process for Al/AlOx/Al
junction fabrication. The first row represents the first layer including exposure,
development, evaporation and lift-off. The rest illustrates the second layer fabrication
including the following steps form left to right: spinning the resist, exposure, development
and plasma etching of the native oxide layer, controlled static oxidation, metal deposition
and lift-off.

After evaporation, we proceed with the lift-off by placing the wafer in a
beaker with a resist-removing substance, which can be acetone or a special remover
as recommended in the data sheet of the resist. What should be left at the end are
aluminum leads, resembling the amplifier. Yet, we need a second layer to form the tunnel
junctions. The lithography process is similar, although care needs to be taken for aligning
the two layers, special aligning marks are required for the two-layer processes. Moreover,
there are usually drifts for long distances, due to the lack of interferometric stabilization
of the stage, that need to be taken into account.

Once developed, the sample is ready for the evaporation of the second layer.
This time the descum is skipped to avoid further oxidation of the aluminium leads and
instead we proceed to the Ti gettering. Aluminium forms an uncontrolled oxide layer due
to the atmosphere exposure. Because of its chemical and thickness variability we remove
it with the aid of an argon milling process[52]. This time we use pure argon plasma, where
the argon removes the oxide via momentum transfer.

There are two ways for creating the barrier in the tunnel junction: via static or
dynamic oxidation. While the former oxidation is performed by fixing the oxygen partial
pressure in the chamber, in the latter case a constant oxygen flow is used. We use static
oxidation while varying the time and pressure in order to achieve the desired critical
currents. However, there have been studies that dynamic oxidation can improve the
critical current variation from wafer to wafer and also within a single wafer[53]. Aluminum
evaporation follows immediately after the oxygen has been pumped away with the second
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layer being slightly thicker to ensure good contact. During both milling and evaporation
the sample holder is rotated. After a second lift-off the sample is almost ready. An optical
microscope image of a device fabricated with laser writer technology on silicon can be
seen in Fig. 3.3.2.

Figure 3.3.2: Finished amplifier device with N = 1800 fabricated on silicon in
QNTZ. From left to right: on-chip microstrip, SQUID array, coupling capacitor, SQUID
array, ground plane.

In order to provide a well-defined ground plane for keeping the lead capacitance
to ground C0 constant along the array, a 200 nm thick layer of silver is evaporated on the
backside of both wafers (details in App. C). To prepare the sample, a thick protection
layer of resist is spun on top of the amplifiers and baked at low temperature. The wafers
are then mounted upside down in the Plassys. Similarly to the first layer, the recipe
includes descum and Ti gettering. The additional step is the evaporation of 5 nm of Ti to
enhance the sticking of the following silver layer. After this process, the wafers are diced
into individual chips and then cleaned from the resist.

3.3.1 Design considerations and fabrication
calibrations

Although the design for the DJJAA was readily provided by KIT, it is worth stressing the
importance of several parameters when developing such a device. As already mentioned,
increasing the number of SQUIDs dilutes the non-linearity, yielding higher dynamic ranges.
However, one needs to take several other parameters in consideration: the central capacitor
and the coupling rates. As a rule of thumb, the array length scales linearly with the
central capacitor, where for the used interdigitated capacitor we adjust the capacitance
by the length and the number of the fingers, rather than changing the gap. In addition,
increasing the array length lowers the coupling rates which has a negative influence on
the instantaneous bandwidth. Therefore, a trade-off needs to be found. In general, the
lower modes have higher coupling rates and the resonant frequencies scale inversely with
the number of SQUIDs in the amplifier.

With these design consideration, we can proceed with the parameters that
are solely fabrication dependant. In order to achieve the desired frequencies where
amplification appears, the critical current needs to be picked accordingly. For tunnel
junctions, it can be achieved by changing the junction size or adjusting the resistance
via the tunnel barrier. The Ambegaokar-Baratoff relation[54] gives an estimate for the
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critical current from the normal state resistance Rn

Ic(T ) = jc(T )A =
π∆(T )

2eRn

tanh
∆(T )

2kBT
=
T→0

π∆(0)

2eRn

(3.3.1)

where jc(T ) is the critical current density, A - the junction area, and ∆(T ) is the
temperature dependant energy gap of the superconductor. According to BCS theory, it is
related to the critical temperature ∆(0) = 1.76kBTc[40], where for thin film aluminum
Tc = 1.4K.

Since the resistance is measured at room temperature, but the normal state
resistance is defined just above the critical temperature, the conversion is executed via
Rn = 1.15Rn(TR), where the scaling factor is determined experimentally[19]. Another
consideration to be made is the additional contribution to the resistance from the aluminum
leads. The lead resistance is given by

Rl = ρ
L

Wt
(3.3.2)

with L,W, t being the length, width and thickness of the film, respectively, and ρ - the
resistivity of the material. When subtracted from the total resistance, the obtained value
represents only the room temperature resistance of the junction(s).

Another common way to take the lead resistance into account is by using the
so-called sheet resistance R� as the resistance of square sheet of metal (L = W ). For the
DJJAA parameters we have R�,Al = 1.1 Ω/� and there are six such sheets belonging to
each SQUID, meaning that in order to extract the bare resistance of all SQUIDs in the
amplifier, we use the following expression

RSQUID = Rn(TR)− 6NR�,Al (3.3.3)

where N is the number of SQUIDs in the measured device.

Argon milling

Aluminum forms a native oxide layer of a few nanometers upon exposure to the atmosphere.
However, the thickness and chemical composition of this layer varies greatly, rendering it
unsuitable for reliable junction fabrication. Therefore, this layer needs to be replaced by
a pure AlOx layer with controlled thickness.

The insulating native oxide layer is removed with the aid of an argon ion beam
with a radius of 2 cm, generated by a Kaufman ion source in the Plassys. The parameters
for the source are chosen to sustain a stable ion beam. A first rough calibration was
executed with a recycled sapphire wafer containing some Al wires. Thick drops of resist
were placed on top of the wires and baked. The sample was subjected to 30min of
argon milling, after which the resist was removed with a solvent and the formed step was
measured with a profiler. The milled amount added up to a milling rate of 0.8 nm/min.
With this information and a rough estimate for the native oxide thickness of 2 nm, we
would expect that the layer is removed after 2.5min.

A precise calibration is required since the etching rate for aluminum is ten times
faster[52]. We use JJAs constituted of ten 5 × 5 (µm)2 junctions in series milled for
2, 3 and 4 minutes. As a reference point, we create geometrically identical structures
but evaporated in one step so no junctions are created, giving us the lead resistance.
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Figure 3.3.3: Argon milling calibration.The plot shows the resistance ratio between
junction arrays fabricated with two-step lithography over the resistance of the same
geometric structure evaporated within a single lithography step versus the time of Ar
milling. The ratio of one marks the onset of metallic contact between the two layers.

The resistance of the two-layer chains are normalized by the single layer structure and
plotted as a function of the milling time in Fig. 3.3.3. Indeed, we see metallic contact is
achieved after between 2 and 3 minutes of milling time when resistance of the overlap
contact disappears. The ratio goes lower than one as the milling widens the leads which
reduces the sheet resistance of the two-layer structures with respect to the single-layer
one. Notably, if extended to higher times, the thickness of the film will decrease due to
milling into the aluminum, counteracting the effect of the lead widening on the resistance.

Critical current density

The usual way for fitting the critical current to the desired value is to fix the critical
current density with the oxidation parameters and vary the junction area to adapt the
current precisely. Note that, a reliable fabrication without shorts in the oxide layer sets an
upper limit on the critical current density. The lower limit on the critical current density
is set by the self-limiting nature of the controlled growth of AlOx[55]. Similarly to the
native oxide, the controlled oxide-layer growth saturates.

For the calibration we use JJAs comprising of 10 junctions in series as test
structures. The total number of arrays is ten: five with junction size 5× 5 (µm)2 and five
with 10× 10 (µm)2. From the resistance measurements the critical current is extracted.
The sheet resistance is taken into account by subtracting the resistance of the single layer
analogues placed on the same chip. Due to the lithography process junction areas come
out 1 − 2 (µm)2 bigger than designed which is measured under an SEM. The critical
currents are then normalized to the real junction area, giving the final values for the
densities.

In Fig. 3.3.4, we have extracted four different densities by varying the oxidation
parameters. Similarly to the Nb/AlOx/Nb tunnel junctions[56], it is evident that the
density has a power-law dependence on the product of the oxidation time and pressure.
The target value of 154nA/(µm)2 would result in Ic = 5µA for the amplifier SQUIDs,
yielding many dimers in the range 1 − 10GHz. The parameters coming closest to this
value are t = 6min and p = 30mbar. Both the rising and falling times for reaching the
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Figure 3.3.4: Critical current density calibration. The critical current density
(blue) as calculated from the Ambegaokar-Baratoff formula 3.3.1 as a function of the
oxidation time t and pressure p. The points are fitted with a power law function a(t · p)b
(red), where the resulting fitting parameters are a = 362(8), b = −0.38(1). The target
value (green) is the critical current density for which Ic = 5µA for the SQUIDS in the
amplifier.

respective pressure and pumping back to high vacuum are included in t.

Junction aging

The tunnel junction barrier changes over time and this process is called junction aging.
As a consequence, the resistance grows. The main culprits for this are two phenomena[57]:
diffusion of oxygen from the barrier to the electrodes and chemical change of the barrier
itself due to absorption and/or desorption of atoms and/or molecules different than oxygen.
It is believed that the second mechanism dominates in the process of aging while the
first is only noticeable on long time scales. Additionally, the oxide starts crystallizing in
contrast to its usual amorphous structure.
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Figure 3.3.5: Junction aging. The resistances of JJAs consisting of 10 junctions each
have been observed over the span of 24 days. There were two types of arrays, five from
each type, depending on the junction size: 5× 5 (µm)2 (red) and 10× 10 (µm)2 (blue).
R5×5 and R10×10 are the averaged resistances over the five arrays, where the subscript
denotes the junction size.
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The calibration for the critical current density cannot be executed without
knowing first how long it takes for the junction resistances to settle down. For this we
took the sample from the previous calibration with oxidation parameters t.p = 14.4 s.bar
and observed the resistances over the span of 24 days (see Fig. 3.3.5). We found out that
the junctions age between 43 − 62% of their initial resistances, where the higher value
corresponds to the bigger junction area. After approximately 6 days, the junctions are
settled, giving the correct information to proceed with other calibrations.

3.4 Troubleshooting
A big part of this work was dedicated to overcoming fabrication problems arising constantly
during the process development. Despite the promising start, several months into the
development sticking issues started appearing, as shown in Fig. 3.4.1a, rendering our
initial recipe unreliable. Step-by-step we started excluding the possible reasons. The first
suspicion was that the undercut is too big, making the structures mechanically unstable.
After a discussion with the resist producer, the baking temperature was increased by 3◦ C
in order to reduce the undercut, but the results were unsatisfactory since the problems
persisted.

Because of technical limitations the resist was stored at room temperature which
is higher than recommended according to the data sheet. The suspicion of premature
aging of the resist due to the improper storage was dropped when a newly opened bottle
of resist gave similar results in terms of adhesion. However, in order to delay this process,
the resist was moved to a refrigerator at 5 ◦C imposing a certain thermalization time
before the lithography until the dew point is passed. Otherwise, if water condensates on
the surface, the resist needs to be thrown away. Another reason for this extra step is that
the viscosity of the resist in general changes with the temperature resulting in different
thickness of the resist film, which alters the lithography process. When stored at colder
temperature, the light-sensitive substance might precipitate on the bottle, making the
stirring while thermilizing essential for the quality of the lithography.

(a) (b) (c)

Figure 3.4.1: Sticking problems. Optical images of developed samples (a) without
pretreatment, (b) with prebaking at 200 ◦C for 5min, and (c) with O2 RF plasma cleaning
for 400 s. In (a) the first appearance of this problem in a DJJAA sample is illustrated.
The pattern in (b) and (c) was developed specially for a sticking test.

For the sticking test a special pattern was designed, including long ridges of
resist with varying well-defined widths, spaced differently. Such structures are extremely
sensitive to sticking issues. The ridge length of 5mm was chosen for easier cleaving
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through the lines on the sample for imaging purposes. Five of the ridges with widths 2, 4
and 6µm were positioned close to each other and two were standing far away from any
other structures to ensure that proximity effects are taken into account. All 16 and 32µm
wide lines were spaced equally separated by their respective widths.

For good adhesion, photoresists need hydrophobic surfaces. The following step
was to exclude the excessive humidity causing inferior adhesion. Due to the capacity of
the dehumidifier in the clean room, the room humidity depends on the outside conditions.
An optimum of 40% relative humidity is required. A sample was prebaked at 200 ◦C for
five minutes and then left for a moment to thermalize before the resist was spun. The
lithography result is shown in Fig. 3.4.1b. From the resist ridges only the 32µm lines
consistently survived during the development. To verify that humidity was not the main
reason for the bad resist adhesion, two runs of fabrication with high and low humidity were
made. Both of them resulted in the resist peeling during the development, but this test
was inconclusive due to the possibility of different handing of the testers. To completely
exclude humidity as the main cause of the inferior adhesion, a change of the dehumidifier
of the clean room is necessary to achieve a constant relative humidity.

(a) (b)

Figure 3.4.2: Resist profiles with different pretreatment. SEM images of
developed and cleaved samples (a) with prebaking at 200 ◦C for 5min, and (c) with
adhesion promoter AR 300-80.

An additional step of O2 RF plasma cleaning in the Sentech ICP SI 500 was
incorporated immediately before spinning the resist, temporarily solving the sticking issues
(see results in Fig. 3.4.1c). Unfortunately, with time the cleaning time and powers needed
to be gradually increased in order to achieve the same results as initially obtained. The
last resort was to use an adhesion promoter AR 300-80 as recommended in the data sheet.

Although this solved the sticking problems, due to the additional incorporated
chemical and the changed interface with the substrate, a big part of the recipe needed to
be adapted including the doses and the development time. In Fig. 3.4.2 one can see the
difference of resist profiles depending on the pretreatment. Only the prebake is insufficient
for good sticking, the resist starts peeling, making the patterned structures mechanically
unstable. On the other hand, the sample with adhesion promoters shows perfect sticking
properties, but the resist profile is not suitable for lift-off anymore.

If, however, the recipe is not adapted and aluminum is deposited on top, the
walls of the resist are covered as Fig. 3.4.3a shows. In general, during lift-off those parts
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remain, forming "wings" which point upwards. Upon second layer evaporation, these
wings can cause discontinuities in the upper layer (Fig. 3.4.3c) making the resistance
readings untrustworthy. Unexpectedly high resistances are a sign of such problem. If
the exposure doses and development times are adapted, an undercut resist profile can be
achieved (Fig. 3.4.3b), yielding clean edges and a continuous second layer (Fig. 3.4.3d).

(a) (b)

(c) (d)

Figure 3.4.3: SEM images of samples with wrong and right resist profiles. (a)
and (b) Exposed, developed and evaporated samples before lift-off; (c) and (d) The
resulting junctions. The first column presents an example for a wrong resist profile (a)
where the sidewalls of the resist are covered with Al. The lift-off would result in "wings"
which may interrupt the second layer of the junction. Not well defined junction edges, as
highlighted in red color in (c), are a clear sign of such wings. The right column illustrates
a sample with good resist profile (b), yielding a continuous second layer (d).

The increased doses lead to other problems with overexposure of some SQUIDs,
changing their loop area. This could be avoided by rotating the pattern by 90 degrees so
only leads are overexposed and not SQUIDs. Despite the good progress in combating the
appearing issues, the final fabrication was moved to KIT owing to time limitation. The



42 3.4. Troubleshooting

final fabrication processes in both facilities can be found in Appendix C.
A suggested improvement for the in-house fabrication is incorporating a

dehumidifier with a higher capacity to eliminate any possible problems connected to
humidity. Perhaps switching to other photoresist process, e.g. negative/image-reversal
resists if flood exposure is supported, would be beneficial since negative resists are known
to have excellent adhesion to silicon, compared to fair adhesion of positive resists[51].
Moreover, negative resists have natural undercut in contrast to the positive resists where
complex chemistry is involved to achieve the undercut. Developing a bilayer process would
be another way for fabricating DJJAAs.



Chapter 4

Experiment

In the span of this thesis, the properties of two amplifiers were investigated. This chapter
provides the general information on those devices and the experimental apparatus used
for determining their properties (see next chapter). It can be split in three main parts.
The first section focuses on each DJJAA, giving some details on assembling the finished
device. The next section describes the experimental setup and gives an insight on Y-factor
measurements and their application in a multi-stage amplification chain. In the final part,
the reader can find the calibrations of the setup which are later used in the experimental
results.

4.1 Devices, sample holder and PCB
Two devices were investigated in this work. The first one, to which we will refer as
DJJAA1, has N = 1400 SQUIDs while the second one, DJJAA2, has N = 1700 SQUIDs.
The chips with size 7.5× 3.6mm2 belong to two different wafers with slight differences in
the fabrication, particularly in the ultrasonication time during the lift-off of the second
layer. Those chips were chosen so the asymmetry factor m =

Rin−Rgnd

Rin+Rgnd
of the normal

resistances of the array between the input and the central capacitor Rin and the array
between the central capacitor and the ground plane Rgnd is smaller than 2% to ensure
good hybridization.

The chips are embedded in a copper sample box, a picture of which can be found
in Appendix D. The microwave connection between the transmission line on the chip
and the SMA connector is created by a printed circuit board (PCB) with a patterned
microstrip transmission line, manufactured by our electrical workshop. For the PCB
RO3003 panel from Rogers Corporation was used with a 508µm thick dielectric material
with relative permittivity εr = 3, enclosed between two 35µm copper sheets. A dedicated
slot for the chip is created in the PCB. The bottom sheet remains on the panel and serves
as ground plane. Meanwhile, the top is split in two parts: half of the metal sheet is
removed, leaving behind only a transmission line, while the other half remains to connect
the ground plane of the chip. To electrically connect the top ground to the bottom vias
(through-plated holes) are used, avoiding stray modes between the plates.

The microstrip is soldered from the outer side of the PCB to the center pin
of an SMA connector. The pin and the microstrip must have similar widths do avoid
reflections, hence the choice of the panel used. The board with the connector is glued
with silver epoxy to a copper sample holder, made in-house by our mechanical workshop,

43
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(a) (b)

Figure 4.1.1: Assembled amplifiers. (a) The PCB and chip are glued with silver
epoxy to the bottom part of the sample holder and bonded to each other. The microstrip
on the PCB is soldered to an SMA connector, forming the input port of the amplifier. (b)
The sample box is closed and a coil is installed on top. The box is wrapped on the sides
with aluminum tape to cover the edges for isolation. The coil is taped with kapton to
protect the wires. Finally, a circulator from Low Noise Factory is attached directly to the
DJJAA.

and additionally secured with four screws. Once completely dry, the chip is also glued
and left to dry. The on-chip microstrip is then wire-bonded to the PCB transmission line
with Al wires, their ground planes are also bonded together. A picture of the device at
this point of the assembling can be found in Fig. 4.1.1a. The height difference between
the chip and the PCB is less than 200µm (tchip = 330µm) and is not compensated. Note
that the aluminum transmission line (chip), the copper microstrip (PCB) and the SMA
connector are all matched to 50 Ω.

In order to tune the resonant frequencies of the amplifiers, each sample holder
is equipped with a coil on top of the lid. The coil is designed to obtain a homogeneous
magnetic field over all SQUIDs in the DJJAA and the windings are picked to achieve
one to two flux quanta through the loops without heating the fridge with high currents
(typical values do not exceed 1mA). To separate the input from the output fields, a
commercial 4− 12GHz circulator is attached directly to the SMA port (see Fig. 4.1.1b),
thus hindering the creation of standing waves in the measurement band.

4.2 Setup
Once fully assembled, the sample holders are mounted to the base plate of a dilution
refrigerator from Oxford Instruments. They are enclosed in a magnetic shield can with
several protective layers of niobium and mu-metal. Two lines are connected to each
circulator, one for input and one for output. The outputs lead to a microwave switch,
which allows performing radio-frequency calibrations. The total number of used input
lines are 3: two of them address the amplifiers and the third one goes directly to the
switch without a sample in between. There are six different ports incident on the switch,
where two loads, two DJJAAs and the aforementioned input line are connected. The
switching is achieved via DC pulses. Another set of DC lines with a DC−5 kHz filter are
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connected to the coil. The wires are twisted to avoid picking up stray fields.

Figure 4.2.1: Schematic of the measurement setup. The abbreviations are as
follows: VNA - Vector Network Analyzer, SA - Spectrum Analyzer, DigAtt - digital
attenuator, HEMT - High-Electron-Mobility Transistor (low-noise cryogenic amplifier),
RT amp - room temperature amplifier. At the free inputs of the switch an input line
without a sample and another DJJAA are connected but not shown in the figure. The
DC lines for the switch control are also not illustrated.

The full setup is illustrated in Fig. 4.2.1. The signal is generated by a Vector
Network Analyser (VNA) and its power is adjusted via a digital attenuator (DigAtt).
A following directional coupler combines the signal connected to the −20 dB port with
the pump as generated by a signal generator. The signal then goes through a DC block,
filtering any DC offset, and into the fridge. The apparatus outside the fridge is fixed, by
connecting different input lines in the fridge and turning on the corresponding switch
port, one can address the different devices. Several attenuators thermalize the input field
to the temperature of the plate to which they are fixed. After going though several filters,
low-pass to filter high-frequency noise and EccoSorb filtering infrared radiation, the input
signal finally reaches the sample through a 4− 12GHz circulator.

After being reflected, the signal is deflected by the circulator to the switch, then
passing through another DC block, a −10 dB directional coupler for pump cancellation, a
low-pass filter and two isolators, which are essentially circulators with one terminated port
used for blocking the thermal radiation back to the sample. Up to this point, all elements
on the line are associated with attenuation. In order to make the signal detectable again,
we use two amplifiers: a High-Electron-Mobility Transistor (HEMT) at the 4K stage and
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a room temperature amplifier (RT amp). The −3 dB attenuator in between is placed to
avoid the saturation of the latter amplifier and to diminish standing waves due to poor
amplifier matching. The output signal is then split by another −20 dB directional coupler
with the coupled port connected to the VNA, while the transmitted wave is detected
by a Spectrum Analyzer (SA) which allows measuring transmission and power emission
simultaneously.

Pump cancellation scheme

A pump cancellation scheme has been implemented by placing two −10 dB directional
couplers, one between the DC block and the low-pass filter on the output line and one
outside the fridge, just after the signal generator. The pump is split with the coupled port
going directly in the fridge while the transmitted port is connected to a mechanical phase
shifter. This part of the pump is used for the cancellation and is sent into the fridge by
another input line, directly connected to the coupled port of the second −10 dB directional
coupler. In this way the attenuation is roughly matched once the two pump tones are
combined, leaving the phase difference between them as the main knob to turn. They
cancel each other before reaching the HEMT. The essential role of the pump cancellation
is to avoid saturation of the consecutive amplification stages by the strong pump. Notably,
if the pump cancellation is not used, the directional coupler splitting the pump is removed
and the microwave generator is directly combined with the signal tone.

4.2.1 Noise characterization
The basic equations describing the behavior of a single bosonic mode passing through
a linear amplifier were already derived in Section 2.1.2. However, we need to consider
our limited frequency resolution and accuracy in practice. In fact, what we measure is a
power spectral density (PSD) with a precision set by the resolution bandwidth. Therefore,
we can generalize Eq. 2.1.5 as

Sout(f, T ) = G(f)(Sin(f, T ) + Sadd(f, T )) (4.2.1)

where S(f, T ) is generally temperature and frequency dependent and has units W/Hz. In
order to obtain this density for our setup, the raw noise power as measured by the SA
needs to be normalized by the resolution bandwidth used in the measurement. Notably,
other spectrum analyzers can perform this normalization automatically. The subscripts
denote the input, output and added spectral densities.

For noise characterization we use a common Y-factor technique[9, 58, 3] relying
on two matched loads thermally anchored at different temperature stages. Y is the ratio
of the measured noise power at the output with the input connected to the hot load versus
the input connected to the cold load. A 50 Ω load at fixed temperature behaves as a
blackbody, which not only absorbs the incident radiation but also emits thermal noise.
There are many ways to derive the power spectral density of a blackbody[30], one of which
can be found in Appendix E, but they all lead to the same result. For a matched load the
power spectral density (PSD) can be written as:

Se(f, T ) =
hf

2
coth

(
hf

2kBT

)
. (4.2.2)
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The expression is known as generalized Nyquist noise and it includes the zero point
fluctuations. Since we can predict the power spectrum if the temperature is well known,
such a matched thermalized load is well suited as a calibrated noise source (Sin(f, T ) =
Se(f, T )).

Usually, if the noise power is weakly dependant on frequency in the bandwidth
of interest, the noise source can be modelled as equivalent thermal noise source at
temperature TN . Typically this characteristics, referred as noise temperature TN , is
quoted for commercial amplifiers like the ones used in the amplification chain of the
measurement setup. Therefore, in order to determine the noise temperature of our
amplification chain, we can approximate its added PSD from Eq. 4.2.1 as Sadd = kBTN .
Notably, the noise temperature is less suitable for parametric amplifiers because of their
quantum nature being incompatible with the purely classical definition of TN . Moreover,
they posses highly frequency dependent noise. Instead, the spectral density is usually
divided by hf yielding the noise in dimensionless units of noise quanta.

In our case, the Y factor is the ratio of the measured noise power at the output
with the hot source "switched on" Sm(f, Th) to the noise power with the cold source
Sm(f, Tl) incident on the switch, both already normalized by the resolution bandwidth.
Using the expression for the added spectral density and combining it with Eq. 4.2.1, we
can extract the gain and the noise temperature of the whole amplification chain after the
switch:

G(f) =
Sm(f, Th)− Sm(f, Tl)

Se(f, Th)− Se(f, Tl)
(4.2.3a)

TN(f) =
Se(f, Th)Sm(f, Tl)− Se(f, Tl)Sm(f, Th)

kB [Sm(f, Th)− Sm(f, Tl)]
(4.2.3b)

where Se(f, T ) is the expected spectral density from Eq. 4.2.2 for the high and low
temperature loads thermalized at Th ≈ 3.43K and Tl ≈ 29mK, respectively.

Multi-stage amplification chain

Once we have the information for the amplification chain, we can characterize the noise
performance of the parametric amplifier of interest. For a two-stage amplification chain
as illustrated in Fig. 4.2.2, at the output we will measure

Sm,tot(f, T ) = G2(f) {G1(f)[Sin(f, T ) + S1,add(f, T )] + S2,add}

= G2(f)G1(f)

[
Sin(f, T ) + S1,add(f, T ) +

S2,add(f, T )

G1(f)

]
(4.2.4)

where the subscripts correspond to the amplifier position in the chain.
This equation reveals the importance of high-gain and low-noise amplifier as

the first part of the chain since the predominant noise comes from it. All subsequent
amplifiers will contribute to the gain but their noise will be reduced by the gain of the
previous amplifiers.

For this particular setup as shown in Fig. 4.2.1, we consider the second part of
the chain as the whole output line from the switch to the SA S2 = Schain, G2 = Gchain,
while the first stage is just the parametric amplifier S1 = SDJJAA, G1 = GDJJAA. Another
assumption we make is that the input is well thermalized to the base plate temperature
TB ≈ 29mK, meaning that in general Sin � SDJJAA,add for the used frequency range. All
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Figure 4.2.2: Two-stage amplification chain. For a chain of two amplifiers if the
second stage is fully characterized and the input is known, we can determine the gain and
the noise performance of the first stage. The frequency and temperature dependence are
left out for clarity.

these assumptions lead to the final equation used in the experiment:

Sm,tot(f, T ) ≈ Gchain(f)GDJJAA(f)

[
kBTN,DJJAA +

kBTN,chain
GDJJAA(f)

]
. (4.2.5)

Therefore, if we have the information for the amplification chain as deduced from the
Y -factor measurement, we can measure directly GDJJAA(f) and extract the noise of the
investigated DJJAA.

4.3 Calibrations
A few measurements were made to characterise the experimental setup, excluding the
parametric amplifiers. Using the Y -factor measurement scheme as already described,
we can extract the gain and the noise temperature of the whole chain after the switch
using Eq. 4.2.3. Such measurements require low video bandwidth (VBW) for smoothing
the signal and thus reducing the noise while the resolution bandwidth (RBW) is picked
to achieve reasonable measurement times while keeping the resolution sufficient for the
chosen frequency range of [3.5, 12.5]GHz.
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Figure 4.3.1: Output characterization. The gain and temperature of the
amplification chain on the output are extracted from Y -factor measurement and plotted
against the frequency.
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For this purpose two measurements of the noise power are executed: with the hot
load and with the cold load connected to the switch. Both of them are not averaged and
the video and resolution bandwidths set on the analyzer are 10Hz and 5MHz, respectively.
The noise powers are then manually divided by the resolution bandwidth to obtain
Sm(f, Th) and Sm(f, Tl). The noise temperature and gain are plotted in Fig. 4.3.1.

The extracted gain is approximately 10 dB lower than the expected value of
≈ 76 dB because of the losses from the additional elements on the output line such as
circulators, directional couplers, the attenuator etc. The gain plummets after 12GHz and
before 4GHz because of the low pass filter and the working range of the HEMT[59] and
the room temperature amplifier[60]. As already mentioned, the total noise temperature
in a two-stage amplification chain is dominated by the first stage, namely the HEMT.
However, the measured noise is significantly higher than the ≈ 3K specified in the HEMT
data sheet. This discrepancy can be explained from the additional attenuation from the
microwave components and the cables before the HEMT which can accumulate up to 3 dB
resulting in doubling the noise temperature. The rest ≈ 1K can be attributed to the noise
coming from the second amplifier and the attenuation from the other elements on the line.
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Figure 4.3.2: Line attenuation. If the gain chain is already characterized, we can
obtain the attenuation along the lines, used for probing DJJAA1 (blue and red) and
DJJAA2 (yellow and purple).

Thanks to the auxiliary feedline directly connected to the switch, we could
measure the attenuation along the input lines with the VNA. Once the output line is
completely calibrated, we measure all available input lines: two lines in the fridge each of
which splits outside in signal and pump line. The gain from Fig. 4.3.1 is substracted from
the raw data in order to obtain the attenuation across the frequency range as plotted in
Fig. 4.3.2. The difference of 1 dB between the lines for the two amplifiers comes from
the length of the cables outside the fridge. Expectedly, the signal line for each amplifier
lies approximately 21 dB lower than the respective pump line because of the directional
coupler and the insertion loss from the digital attenuator. This information is essential
for the calibration of the saturation power of the parametric amplifier. Keep in mind
that because of the extra cabling on the DJJAA input line and the circulator, the actual
powers that reach the sample are further attenuated by 1 − 2 dB more than the value
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extracted from Fig. 4.3.2. This additional attenuation could be estimated by measuring
the signal reflected by the amplifier and comparing it with the transmission without the
amplifier.



Chapter 5

Experimental results

In this chapter the experimental results are presented and discussed. In the first
part, three flux-bias points in the first dimer of DJJAA1 are fully characterized
including flux tunability, gain-bandwidth product, saturation power and noise performance.
Amplification is shown in all dimers of DJJAA2 and the respective added noise number is
determined. Finally, for more accurate results a pump cancellation is implemented and
the background radiation is analyzed.

5.1 Tunability

5.1.1 Mode tunability through magnetic flux
When we probe the amplifier or any one-port device under test with a VNA, we measure
the reflection coefficient Γ(ω) = S11(ω), namely the ratio between the outgoing and
incoming voltages, while sweeping the probe frequency. The term S11(ω) is the first
element in the scattering matrix, used to characterize multi-port systems. In general, the
reflection coefficient is a complex number defined by a phase and an amplitude. Although
not always revealed by the amplitude, the phase undergoes a 2π phase roll in the vicinity
of a resonance which makes their detection possible.

In order to determine the present resonances and confirm that they belong to the
connected amplifier, we probe the devices while sweeping both the probe frequency and
the external flux through the SQUIDs via the coil current. The power of the probe signal
is low to remain in the linear regime. The reflection phase for DJJAA1 and DJJAA2 can
be found respectively in (a) and (b) of Fig. 5.1.1. Their reflection magnitudes can be
found in Appendix F. As expected, in both devices the resonant frequencies decrease when
the external flux through the loops is increased because of the inductance dependence of
the SQUIDs (Eq. 2.2.19). The maximal inductance, or so-called full frustration, is reached
when |φext/φ0| ≈ 0.5, these points can be used to convert coil current to flux quanta.
Note that in both cases there is one more dimer below the measured frequency range but
both couldn’t be measured due to setup limitations. However, the dimer numbering will
address only the mode doublets inside this frequency range.

While the map of DJJAA2 (Fig. 5.1.1b) is very symmetric around zero current
through the coil, the phase response of DJJAA1 reveals peculiar features. The general
response is shifted with respect to zero coil current due to the circulator, mounted in a
way that its magnetic field threads the SQUID loops, causing this constant offset. Another
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irregularity is the feature similar to an avoided crossing observed between the modes in the
two higher frequency dimers. Its origin remains unknown. According to the simulations,
the lowest frequency mode of the triplets does not belong to the amplifier. Since the box
design is the same for both amplifiers, the coupling to a box mode is unlikely. However,
the box of DJJAA1 was recycled still leaving some suspicion about it. Another possible
source would be an unknown issue with the chip itself either in the substrate or the
patterned structures. In any case, the triplet doesn’t react to strong pump tones in the
modes themselves or between pairs. Because of these observations, only the first dimer
was investigated.
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Figure 5.1.1: Flux maps. The phase response of (a) DJJAA1 and (b) DJJAA2 as
already introduced in the previous chapter. Apart from further differences in the maps,
discussed in details in the main text, the number of modes within the same frequency
range is proportional to the number of SQUIDs in the device (N = 1400 in (a) and
N = 1700 in (b)).

5.1.2 Amplification tunability
Once the resonance frequencies are inferred from the maps, we can look into the limits of
the devices in terms of amplification tunability. The final goal would be to engineer the
device such that the tunable ranges of consecutive dimers overlap with each other making
the amplifier smoothly tunable across several gigaherz range.

The gain is obtained when a coherent pump tone is applied between the two
resonance modes within one dimer. The power gain is deduced from the reflection
coefficients taken with two VNA measurements: a main measurement with the pump on
and a calibration measurement with the pump off and the amplifier detuned with the coil
usually around the full frustration point, namely G(ω) = |S11,on|2/|S11,off (Icoil,cal)|2. The
power 2 comes from the definition of the scattering matrix which uses voltage instead of
power. If the amplifier is not detuned, its resonances would appear as artificial gain after
the normalization due to their slightly lossy properties.
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Figure 5.1.2: DJJAA1: Flux tunability. (a) Zoom-in of the flux map from Fig.
5.1.1a on the first dimer. The markers are placed at the frequency of pump tones used to
achieve the gain response from (b) where the colors are matched. A total tunability of
1.6GHz can be extracted.

For six different bias points in DJJAA1, we find pump parameters which give us
a gain of approximately 20 dB as illustrated in Fig. 5.1.2. For each point, two Lorentzian
shaped profiles emerge symmetrically around the respective pump frequency corresponding
to the two modes from the dimer. The amplification appears without interruption in the
region [4.2, 5.8]GHz, i.e. a total flux tunability of 1.6GHz for the first dimer in DJJAA1.
This value can be boosted by a few hundred MHz by fine tuning the pump parameters
and the coil current. In general, the pump power at the output of the generator, required
to achieve 20 dB gain, reduces with the mode frequencies, mainly because of the lower
line attenuation at lower frequencies (see Fig. 4.3.2).
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Figure 5.1.3: DJJAA2: Gain at the sweet spot of different dimers. The markers
in the flux map (a) denote the frequency of the pump tone and the flux point used to
achieve the response of (b). Their colors are matched. The power of the pump used
to achieve the presented gain in the last dimer has been adjusted in order to obtain
comparable amplification in both modes.
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Another dimension we can exploit to achieve amplification at the desired
frequency is the presence of several dimers. We show in Fig. 5.1.3 that a 20 dB gain
is obtainable in all dimers of DJJAA2. For the fourth dimer, the pump frequency was
constant but two different powers were used to obtain the presented gain response. Since
the higher mode in the forth dimer appears almost at the edge of the working range of
several used microwave devices, it needs higher power to overcome the losses and achieve
the same gain.

5.2 Gain map
It can be observed in Fig. 5.1.2 and 5.1.3 that the pump frequency is detuned from the
mean of the resonances. In fact, such a dynamical system is not straightforward to control
because as the pump power is increased, the resonances shift to lower frequencies due to
their self- and cross-Kerr non-linearity (as explained in Section 2.4) requiring adjustment
of the pump frequency as well. The optimal pump parameters for amplification at a
chosen frequency are such that maximum gain is achieved for minimum pump power.
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Figure 5.2.1: DJJAA1: Non-degenerate gain map at Icoil = 0mA. The maximum
non-degenerate gain is color-coded over a grid of the pump frequency and power. The
colormap is chosen in a way to emphasize the range with achievable 20 dB with the white
color.

An especially useful tool to find the optimal pump parameters is creating a gain
map as the one in Fig. 5.2.1. In order to create this map for a single flux-bias point
(Icoil = 0mA), S11 was measured with the pump frequency being fixed while the power
was increased in steps of 0.1 dBm. Then the pump frequency was shifted by 10MHz and
the procedure was repeated. Each measurement with the pump on was followed by a
calibration measurement in the same way. Then the highest point on either the left or
right of the pump was extracted and its value was plotted in the map. Similar maps of
the maxima positions can be found in App. F. To discover the overall optimal pump
parameters for each frequency different flux points need to be investigated.

This map unveils the vast horizon of pump parameters which can achieve 20 dB
gain. Several phases are distinguishable: stable for low powers in the range [5.29, 5.38]GHz
where there is virtually no gain (barely visible in dark blue color), parametrically unstable
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showing moderate to high gain in the light-blue (& 10 dB), white (∼ 20 dB) and red
(. 25 dB) colored areas, and one-mode unstable in the noisy region below 5.38GHz, where
the maxima extracted from the spectra come from noise spikes, not from the gain profiles.
These regimes are explained in details in Subsection 2.3.1. In fact, if we include the
degenerate gain as well, we would acquire a similar phase diagram as in the Bose-Hubbard
model (Fig. 2.3.3).

5.3 Gain-Bandwidth Product
It is a well-known fact that for amplifiers based on resonant circuits the bandwidth B
decreases as the maximal power gain G0 (the amplitude of the Lorentzian gain profile in
linear scale) grows, imposing a trade-off condition between the two:√

G0B ≈
γ→0

κ (5.3.1)

Here κ is the external coupling rate and γ is the loss rate of the mode of interest.
Generally, the coupling rates vary between different resonances. Moreover, in the

DJJAA or in other non-degenerate amplifier employing two modes, the effective coupling
κ̄k is set by the decay rates of both modes [19, 61]

κ̄k =
2κk,1κk,2
κk,1 + κk,2

(5.3.2)

where κk,m are the rates at which lower (m = 1) and higher (m = 2) modes from the
k-th dimer decay into the port. They can be extracted from the low power reflection
measurements used for creating the flux maps in Fig. 5.1.1.

In order to measure the gain-bandwidth product, the device response is recorded
while applying the pump with constant frequency and increasing power. The VNA
measurements are calibrated in the usual manner used in this chapter. An example for
the resulting gain profiles can be seen in Fig. 5.3.1a. The data is fitted with Lorentzian
curves so one can extract the gain and the bandwidth, which we use to obtain the plot in
Fig. 5.3.1b. For this figure the DJJAA1 was flux-biased at Icoil = 0.1mA, the plots in
Fig. 5.3.1c and 5.3.1d are similarly attained when the amplifier is biased at 0 and 0.2mA,
respectively.

Although not presented here, previously produced samples[19] show that in
general κk,2 > κk,1 which is evident also in every plot here since the gain-bandwidth
product of the higher mode is superior to the one of mode 1. Moreover, the coupling
rates reduce away from the sweet spot which would explain the fact that the greatest
gain-bandwidth achieved on average corresponds to Icoil = 0.1mA which is the nearest to
the sweet spot. Overall, the gain-bandwidth product is comparable but lower than the
one extracted for similar devices of the type[19, 20, 62].

This limitation is one of the disadvantages of resonant parametric amplifiers. A
way to enhance this product would be either to decrease the kinetic inductance of the
SQUIDs or to increase the external coupling, which in both cases would result in higher
bandwidths. Although there are clever ways like impedance engineering[63] to overcome
this limitation, in transmission amplifiers[17] this constraint does not exist.
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Figure 5.3.1: DJJAA1: Gain-bandwidth product for three flux-bias points:
(a) and (b) Icoil = 0.1mA, fp = 5.45GHz; (c) Icoil = 0mA, fp = 5.32GHz and (d)
Icoil = 0.2mA, fp = 5.34GHz. In (a) the gain profiles are plotted in different colors
depending on the pump strength. The gain and bandwidth for each curve are extracted
from their Lorentzian fits (black) and then used to calculate the gain-bandwidth product
as shown in (b) as a function of the maximum gain in decibels.

5.4 1-dB compression point
As already mentioned, the 1-dB compression point is the signal power at which the
maximum gain reduces by 1 dB. There are two suspects for the origin of this phenomena:
pump depletion and signal-induced frequency shift in the resonator. Usually since the
pump tone is stronger than the signal one, we use the so-called stiff pump approximation in
all derivations. However, this approximation is valid only when the signal is weak enough
so it can be amplified without depleting the pump because of the photon conversion.
Above a certain signal threshold, the pump cannot sustain the same conversion rates
resulting in reduction of the gain.

The second mechanism responsible for the saturation is due to the inherent
nonlinearity of the system. We already know that the self-Kerr coefficient makes the mode
frequency dependant on its photon population. Therefore, if the signal is strong enough to
populate the mode significantly, that would change the optimal pump conditions causing
a decline in the gain.
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In order to measure the saturation point of the three flux-bias points in DJJAA1,
the pump strength and frequency were kept constant for each of them while the signal
power was increased. Because of the high deviation from the set value in the digital
attenuator, the signal power was only varied via the VNA while the digital attenuator
was fixed, hence the few data points in Fig. 5.4.1. Each gain response was fitted with a
Lorentzian curve in order to extract the amplitude G0.
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Figure 5.4.1: DJJAA1: Saturation power. (a) Icoil = 0mA, fp = 5.32GHz, Pp =
4.25 dBm; (b) Icoil = 0.1mA, fp = 5.45GHz, Pp = 5 dBm and (c) Icoil = 0.2mA,
fp = 5.34GHz, Pp = 4.75 dBm. The maximum gain is plotted as a function of the signal
power reaching the amplifier as previously calibrated (Fig. 4.3.2). The collapse of the
gain is not well understood.

In all plots a similar behaviour can be observed, namely instead of gradually
reducing, the gain drops abruptly. The negative values come from finite losses which
are fitted automatically in the code. Since the saturation is an effect resulting from the
overall population in the mode, it appears at higher signal powers for lower gains, which
could justify the higher 1-dB compression point in Fig. 5.4.1b, compared to the others.
However, to be conclusive further examination of the saturation power for a different
gain at the same flux bias point is required. In spite of the similar gains in Fig. 5.4.1a
and 5.4.1c, the drop for Icoil = 0.2mA appears at lower signal powers, which could be
due to flux noise from the coil causing the resonances to shift away, rendering the pump
parameters inefficient. The amplifier can be safely used without running into problems
up to [−113± 2,−102± 2] dBm depending on the flux bias point, with the error coming
from the additional attenuation between the amplifier and the switch, not included in the
calibration from Fig. 4.3.2.

Although observed in other devices of the same type[19], the origin of the
collapsing gain remains unresolved. If we refer to the gain map from Fig. 5.2.1 we can
see that for most pump frequencies, the gain increases proportionally to the pump power
until it suddenly disappears. Due to this sharp transition to the chaotic regime (multiple
solutions), the saturation point is not well defined. Only from fp ≥ 5.39GHz once the
maximum is reached, the gain smoothly diminishes, and we could expect to find a clear
1-dB compression point. However, the amplification with these pump parameters was not
investigated.
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5.5 Noise performance
The main reason for the wide usage of parametric amplifiers is their noise performance.
While there are many ways to characterize this property, here we present two of them,
namely noise visibility ratio (NVR) and input added photon number which was already
mentioned earlier.

5.5.1 Noise visibility ratio
The noise visibility ratio (NVR) of a device is defined as the noise power in a spectrum
analyzer at room temperature when the device is on versus off without any input signal
applied. In our experiment, when the paramp is turned off, the noise spectrum is dominated
by the HEMT. Once we apply the pump to the DJJAA, the noise incident on its input is
amplified, overcoming the noise from the following amplification stages on the chain. By
the definition the NVR can be quantified as

∆P =
GDJJAATN,DJJAA + TN,chain

TN,chain
. (5.5.1)

where we have employed Eq. 4.2.5 for multistage amplification chain and kept the notation
the same.

The data for the NVR is taken by the spectrum analyser in parallel to the VNA
measurements used to determine the gain-bandwidth product. Needless to mention, the
VNA is off while the power spectrum is measured. The resulting spectra in linear scale
(shown in logarithmic scale in Fig. 5.5.1a) are fitted as Lorentzian profiles and their
maxima is plotted as a function of the gain in Fig. 5.5.1b for Icoil = 0.1mA, 5.5.1c and
5.5.1d flux-biased at 0 and 0.2mA, respectively. If the gain is divided by the NVR (in
linear scale), one could estimate the amount by which the SNR can be improved when
the paramp is on.

For the three pairs of flux parameters yielding gain close to 20 dB (marked
by diamonds in Fig. 5.5.1) we infer the added photon number. Combined with the
noise temperature of the system without DJJAA extracted from the data in Fig. 4.3.1,
the extracted added photon numbers are: {2.14(1.45), 1.81(0.47)} for Icoil = 0.1mA,
{2.38(1.1), 1.68(0.5)} for Icoil = 0mA, and {2.52(0.93), 1.87(0.49)} for Icoil = 0.2mA
where the first value always corresponds to the lower mode in the dimer. Consistently,
the lower frequency mode is noisier than the higher. The values for all flux bias points
overlap within the margin of error.
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Figure 5.5.1: DJJAA1: Noise rise: (a) and (b) Icoil = 0.1mA, fp = 5.45GHz; (c)
Icoil = 0mA, fp = 5.32GHz and (d) Icoil = 0.2mA, fp = 5.34GHz. The normalized
noise rise (a) is fitted with Lorentzian curves to extract the amplitude, plotted versus the
respective gain in (b). The diamond-shaped points are further processed in the main text
to extract their respective added noise numbers.

5.5.2 Added photon number
Although noise rise is a convenient and easy method to determine the noise performance
of a device, it characterizes only the added noise at one point. While it can be expanded
to include a bigger frequency range, with this method it is harder to consider deviations
in the gain of the involved amplifiers. Instead, if we measure the input added noise, we
can always directly calculate the SNR for any given input signal.

In order to do that, we implement another method which includes a set of four
different measurements: PSD and S11 measurements with the parametric amplifier on
and PSD and S11 measurements with the parametric amplifier off and flux-detuned to
the point of full frustration. An example for such a raw data set can be found in Fig.
5.5.2. Additionally, the PSD with the hot load incident on the switch Sm(f, Th) is taken
and later used together with the aforementioned PSD measurement with the DJJAA off
Sm(f, Tl) to characterize the amplification chain, assuming the amplifier and attenuators
are all well thermalized.

Referring back to Eq. 4.2.5, with the additional PSD of the hot load we have
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Figure 5.5.2: Raw data for noise measurements. As mentioned in the main text,
four different measurements are taken (two with the VNA and two with the SA) for each
mode in order to extract the added noise number within the amplification bandwidth.
The additional PSD measurement of the hot load is not included in this plot.

calibrated the gain of the chain Gchain. Then from the VNA measurements the parametric
amplifier gain GDJJAA is extracted. Afterwards we eliminate the noise contribution from
the chain kBTN,chain by subtracting the two noise power densities with the DJJAA on
and off, leaving the noise spectral density from the parametric amplifier kBTN,DJJAA as
the only unknown parameter. We previously made clear that the classical definition of
the noise temperature is not well adapted for quantum objects. Therefore, to convert the
result to photon number, we divide the PSD by hf , yielding the added photon number as
a function of frequency. The averaging is done manually by repeating the procedure and
taking the mean of the photon number at the end.
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Figure 5.5.3: DJJAA1: Added photon number at different flux-bias points:
(a) Icoil = 0mA, fp = 5.32GHz, Pp = 4.25 dBm; (b) Icoil = 0.1mA, fp = 5.45GHz,
Pp = 5 dBm and (c) Icoil = 0.2mA, fp = 5.34GHz, Pp = 4.75 dBm. The added photon
number is plotted against the frequency, together with the quantum limit expected for
the measured gain. The green horizontal line marks the level of half a photon, which is
the quantum limit for high gain.

For the same flux-bias points in DJJAA1 the added photon number is extracted
and plotted in Fig. 5.5.3. The expected quantum limit for the measured DJJAA gain is
also shown after utilizing Eq. 2.1.7. In general, these results are higher than the values
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inferred in the previous section. However, here the standard deviations are usually below
0.5 photons over the shown ranges. Within the margin of error, the results from both
techniques overlap. We observe higher added photon number in the lower-frequency mode,
which is consistent with the results from the NVR method.

Occasionally, the added photon number goes below zero. The source of this
unphysical effect is the high sensitivity of this method: even a difference of 0.1 dBm in the
background PSD could account for ±0.5 added photons, with the sign depending on the
sign of the deviation. Since outside of the band of our paramp the SNR is considerably
smaller, any small change in the background, stemming from changes in the gain or
saturation of the amplification chain, heating effects, etc., will be reflected on the results.

Furthermore, the same procedure is executed for the sweet spots in all DJJAA2
dimers in the range [3.5, 12.5]GHz and the results are presented in a similar manner in Fig.
5.5.4. Although missing in this figure, the last dimer was also studied and a similar plot
presenting its noise properties can be found in Appendix F. In general, this amplifier seems
to outperform DJJAA1 regarding added noise. Moreover, the two modes within one dimer
are far more symmetric. Despite nearly doubling the averages, the signal-to-noise ratio
deteriorates at higher frequencies because of the increasing line attenuation. However, the
SNR is sufficient to determine that the added noise diminishes at higher dimer numbers.
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Figure 5.5.4: DJJAA2: Added photon number at the sweet spots of different
dimers: (a) dimer 1, fp = 4.45GHz, Pp = 3.7 dBm; (b) dimer 2, fp = 7.38GHz,
Pp = 7.8 dBm, and (c) dimer 3, fp = 9.8GHz, Pp = 8.1 dBm. The added photon number
and the quantum limit expected for the measured gain are plotted as a function of the
frequency. The green horizontal line emphasises the level of half a photon. Due to the
increasing attenuation, the signal becomes noisier at higher frequencies. In (b) the extra
peak in the quantum limit results from improper gain calibration, which in turn causes
the dip in the added photon number at that frequency.

5.6 Pump cancellation
The need for pump cancellation becomes evident in Fig. 5.5.4a, where the number reaches
below −5 added photons. This cannot be explained by fluctuations in the background.
Another fundamental process takes place, namely saturation of an amplifier in the chain
by the strong pump tone. If we send a copy of the pump tone out of phase with the
one used for the signal amplification and combine them on the output of the paramp, a
destructive interference takes place which would either completely or partially cancel the
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strong pump, avoiding the saturation of the following amplification stages. For this reason
we place an additional directional coupler where the coupled port is used for pumping the
amplifier.
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Figure 5.6.1: DJJAA2: Comparison of the added photon number of the first
dimer with and without pump cancellation. Due to saturation in an amplifier in
the chain, the added photon number becomes negative without taking care of the pump.
If, on the other hand, the pump is partially cancelled, the photon number doesn’t drop
below zero. The quantum limit and the level of half a photon (green) are also presented.

Because of the nature of the attenuation, the amplifiers on the chain are easier to
saturate at lower frequencies, explaining why the negative photon number is more visible
in the first dimer. Therefore, we implemented the pump cancellation only for this dimer
with the results shown in Fig. 5.6.1, together with the expected quantum limit. It is clear
that suppressing the pump tone which reaches the amplifiers in the chain improves the
quality of these measurements eliminating the unphysical negative values. Furthermore,
both modes show decreased maximum number of added photons compared to the case
without pump cancellation.

Due to the highly non-linear system we deal with, the phase shift and the
attenuation on the pump cancellation tone need to be optimized for each pump power
and frequency in order to achieve highest pump suppression for these particular pump
parameters. This fact, combined with the time-consuming measurements of the added
photon number, lead to the decision to only show the working principles of the scheme for
the first dimer.

5.7 Attenuator heating
However, another effect takes place, which is also observed in Fig. 5.5.4b and 5.5.4c
manifesting itself in the positive offset from zero outside the amplification bandwidth.
Due to the high pump powers the attenuators on the main line connected to the coupled
port of the directional coupler start emitting thermal radiation, thus raising the overall
background when the pump is on. The thermal noise coming from the pump cancellation
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line is further attenuated by the directional coupler inside the fridge, making it negligible
compared to the contribution from the main line.
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Figure 5.7.1: Heating effects. Purely thermal radiation as a function of the frequency
is illustrated for two pump powers Pp = −1 dBm and Pp = 19dBm at the microwave
source output, while the frequency is constant fp = 6GHz. Theoretical expectations
respectively for T = 140mK and T = 510mK highly agree with the presented data. The
noise around the pump frequency probably originates from the microwave generator.

To further investigate this effect, we connect the auxiliary input line without any
sample on it and detect the noise power with the spectrum analyser while varying the
pump power applied. The pump frequency is fixed at fp = 6GHz. The power spectral
densities we normalize by subtracting the background with the pump off leaving just the
excess thermal radiation and no quantum contribution. The results for two pump powers
are plotted in Fig. 5.7.1. The points in the close vicinity of the pump are removed for
clarity. The noise around the pump frequency at the higher power trace comes probably
from spurious modes from the microwave generator but this hypothesis wasn’t confirmed
by moving the pump to other frequencies.

In the plot one can see that a 20 dB difference in the pump power corresponds
to already between half and two photons emitted by the attenuators on the line which
translates in a 370mK increase in temperature, according to the theoretical expectations,
also plotted in Fig. 5.7.1. This effect degrades the overall signal-to-noise ratio. We see it
mainly outside the amplification band in the higher background level. A possible solution
would be implementing better matched and better thermalized attenuators[64].
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Chapter 6

Conclusions and outlook

The main objective of this thesis was to fabricate and characterize low-noise, high-gain
parametric amplifiers with high effective bandwidth which would greatly increase the
signal-to-noise ratio in the existing experimental setups. These amplifiers, based on long
dispersion-engineered Josephson junction arrays, were fabricated utilizing photolithography
technology and, similarly to other devices of the same type[20, 19], they exhibit both
degenerate and non-degenerate gain depending on the pump tone frequency.

In the first part, a recipe for in-house fabrication was developed from scratch.
With the newly installed laser writer, a double-layer process was established for reliable
fabrication of Josephson junctions. The basic recipe consists of several steps: optical
lithography, aluminum film deposition, in situ argon milling and static oxidation. It
has been shown that under the calibrated parameters, the native aluminum oxide layer
is completely removed after three minutes forming a metallic contact between the two
evaporated layers. The evaporation parameters were varied to determine the power-law
dependence of the critical current density, a crucial parameter for the resonance frequencies
of the circuit. Finally, the junction aging process was monitored over the span of more
than three weeks, demonstrating age suppression approximately after a week with the
amount of aging strongly depending on the junction size.

The biggest part of the fabrication was spent on combating problems, rather
than the calibrations. The main issue that emerged regularly was inferior adhesion of
the resist to the substrate. A precaution was taken to decelerate aging by changing the
resist storage. Additional oxygen plasma cleaning step was incorporated before the first
layer lithography, but this helped only temporarily. The final solution appeared to be
an adhesion promoter which enforced changing almost all previously calibrated steps.
Due to time concerns, the final devices were fabricated in KIT. However, repeating the
process with the original recipe once the clean room dehumidifier is exchanged would be an
interesting test to determine whether humidity was the sole reason behind these problems.
Yet, if the sticking problems persist, changing the lithography to e.g. bilayer process, or
switching completely to electron beam lithography would be the way to proceed.

Additionally, two of the fabricated devices were assembled and their non-
degenerate operation was thoroughly tested. The high tunable range of the devices
was demonstrated by obtaining gain exceeding 20 dB at four different dimers in DJJAA2.
Moreover, a 1.6GHz flux tunability of the first dimer in DJJAA1 was deduced while
keeping a moderate bandwidth of approximately 10MHz. By exploiting the flux tunability
of several dimers, if their tunable ranges overlap, the DJJAA frequency working range can
be boosted to a value which successfully competes with any state-of-the-art transmission
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parametric amplifier[14, 16]. The clear phase response of all dimers in DJJAA2 makes it a
good candidate to achieve tunability of several gigahertz. Similar devices based on resonant
circuits covering almost the whole range 4− 12GHz have already been developed[65].

Finally, the noise performance of both amplifiers is comprehensively analyzed in
two ways. On average, the maximum added noise in the first dimer of DJJAA1 is 2.8
per unit bandwidth, with the lower frequency more being always noisier than the higher
one. In DJJAA2 we show that the noise reduces at higher dimer numbers and generally
showing better noise performance than DJJAA1 with up to 2.5 the quantum limit. A
pump cancellation scheme was implemented, successfully overcoming the saturation from
the following amplification stages. Due to the constant offset in the added photon number,
the background was also investigated showing that under the influence of the pump, the
attenuators heat up, thus rising the background radiation.

In summary, the amplifier concept was successfully implemented. While the
fabrication was challenging with the laser writer technology, the design is flexible allowing
easy manipulation of the parameters yielding predictable and reproducible results. An
improvement of the devices by making them smoothly flux-tunable is possible if asymmetric
SQUIDs are employed instead. Other changes like increasing the number of SQUIDs would
be beneficial for the total working range of the device but would also inevitably complicate
the fabrication. Some corrections in the PCB and the sample box design could diminish
spurious modes to which the amplifier couples. As a last remark, the pump cancellation is
easy and powerful technique to overcome the limitations of the measuring architecture. It
revealed that great care needs to be taken to eliminate or reduce the heating effects which
could influence also surrounding experiments in the fridge. Employing better thermalized
attenuators could considerably improve the experimental setup.



Bibliography

[1] Richard P. Feynman. Simulating physics with computers. International Journal of
Theoretical Physics, 21(6):467–488, Jun 1982.

[2] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas,
S. Boixo, and et al. Quantum supremacy using a programmable superconducting
processor. Nature, 574(7779):505–510, Oct 2019.

[3] R. Albert. Multiplication of microwave photons via inelastic Cooper pair tunneling.
PhD thesis, Université Grenoble Alpes, Nov 2019.

[4] G. Arnold, M. Wulf, S. Barzanjeh, E. S. Redchenko, A. Rueda, W. J. Hease, F. Hassani,
and J. M. Fink. Converting microwave and telecom photons with a silicon photonic
nanomechanical interface. Nature Communications, 11(1):4460, Sep 2020.

[5] C. M. Caves. Quantum limits on noise in linear amplifiers. Phys. Rev. D, 26:1817–1839,
Oct 1982.

[6] C. Eichler. Experimental characterization of quantum microwave radiation and its
entanglement with a superconducting qubit. PhD thesis, ETH Zurich, 2013.

[7] M. A. Castellanos-Beltran. Development of a Josephson Parametric Amplifier for the
Preparation and Detection of Non-classical States of Microwave Fields. PhD thesis,
University of Colorado, 2002.

[8] M. A. Castellanos-Beltran and K. W. Lehnert. Widely tunable parametric amplifier
based on a superconducting quantum interference device array resonator. Applied
Physics Letters, 91(8):083509, Aug 2007.

[9] M. A. Castellanos-Beltran, K. D. Irwin, G. C. Hilton, L. R. Vale, and K. W. Lehnert.
Amplification and squeezing of quantum noise with a tunable Josephson metamaterial.
Nature Physics, 4(12):929–931, Dec 2008.

[10] N. Bergeal, F. Schackert, M. Metcalfe, R. Vijay, V. E. Manucharyan, L. Frunzio,
D. E. Prober, R. J. Schoelkopf, S. M. Girvin, and M. H. Devoret. Phase-preserving
amplification near the quantum limit with a Josephson ring modulator. Nature,
465(7294):64–68, May 2010.

[11] R. Vijay, M. H. Devoret, and I. Siddiqi. Invited Review Article: The Josephson
bifurcation amplifier. Review of Scientific Instruments, 80(11):111101, Nov 2009.

[12] I. Siddiqi, R. Vijay, F. Pierre, C. M. Wilson, M. Metcalfe, C. Rigetti, L. Frunzio, and
M. H. Devoret. Rf-driven josephson bifurcation amplifier for quantum measurement.
Phys. Rev. Lett., 93:207002, Nov 2004.

67



68 Bibliography

[13] B. E. A. Saleh and M. C. Teich. Fundamentals of photonics; 2nd ed. Wiley series in
pure and applied optics. Wiley, New York, NY, 2007.

[14] A. Miano and O. A. Mukhanov. Symmetric traveling wave parametric amplifier.
IEEE Transactions on Applied Superconductivity, 29(5):1–6, 2019.

[15] B. Ho Eom, P. K. Day, H. G. LeDuc, and J. Zmuidzinas. A wideband, low-noise
superconducting amplifier with high dynamic range. Nature Physics, 8(8):623–627,
Aug 2012.

[16] L. Planat, A. Ranadive, R. Dassonneville, J. Puertas Martínez, S. Léger, C. Naud,
O. Buisson, W. Hasch-Guichard, D. M. Basko, and N. Roch. Photonic-crystal
josephson traveling-wave parametric amplifier. Phys. Rev. X, 10:021021, Apr 2020.

[17] C. Macklin, K. O’Brien, D. Hover, M. E. Schwartz, V. Bolkhovsky, X. Zhang, W. D.
Oliver, and I. Siddiqi. A near–quantum-limited Josephson traveling-wave parametric
amplifier. Science, 350(6258):307–310, 2015.

[18] P. Winkel, I. Takmakov, D. Rieger, L. Planat, W. Hasch-Guichard, L. Grünhaupt,
N. Maleeva, F. Foroughi, F. Henriques, K. Borisov, J. Ferrero, A. V. Ustinov,
W. Wernsdorfer, N. Roch, and I. M. Pop. Nondegenerate parametric amplifiers based
on dispersion-engineered josephson-junction arrays. Phys. Rev. Applied, 13:024015,
Feb 2020.

[19] P. Winkel. Superconducting quantum circuits for hybrid architectures. PhD thesis,
Karlsruhe Institute of Technologies, 2020.

[20] C. Eichler, Y. Salathe, J. Mlynek, S. Schmidt, and A. Wallraff. Quantum-limited
amplification and entanglement in coupled nonlinear resonators. Phys. Rev. Lett.,
113:110502, Sep 2014.

[21] K. Sliwa. Improving the quality of Heisenberg back-action of qubit measurements
made with parametric amplifiers. PhD thesis, Yale University, 2016.

[22] E. Tholén. Intermodulation in microresonators for microwave amplification and
nanoscale surface analysis. PhD thesis, KTH, 2009.

[23] A. Roy and M. Devoret. Introduction to parametric amplification of quantum signals
with Josephson circuits. Comptes Rendus Physique, 17(7):740 – 755, 2016.

[24] A. Roy and M. Devoret. Quantum-limited parametric amplification with josephson
circuits in the regime of pump depletion. Phys. Rev. B, 98:045405, Jul 2018.

[25] D. F. Walls and G. J. Milburn. Quantum optics. Springer-Verlag Berlin ; New York,
springer study ed. edition, 1995.

[26] B. Yurke, P.G. Kaminsky, R.E. Miller, E. Whittaker, A.D. Smith, A. Silver, and
R. Simon. Observation of 4.2 k equilibrium noise squeezing via a josephson-parametric
amplifier. Magnetics, IEEE Transactions on, 25:1371 – 1375, Apr 1989.

[27] J. Bardeen, L. N. Cooper, and J. R. Schrieffer. Theory of superconductivity. Phys.
Rev., 108:1175–1204, Dec 1957.



Bibliography 69

[28] M. H. Devoret. Quantum fluctuations in electrical circuits. In S. Reynaud,
S. Giacobino, and J. Zinn-Justin, editors, Quantum Fluctuations: Les Houches Session
LXIII, June 27 - July 28, 1995, chapter 10, pages 351–386. Elsevier, Amsterdam,
1997.

[29] B.D. Josephson. Possible new effects in superconductive tunnelling. Physics Letters,
1(7):251 – 253, 1962.

[30] U. Vool and M. Devoret. Introduction to quantum electromagnetic circuits.
International Journal of Circuit Theory and Applications, 45(7):897–934, 2017.

[31] A. Blais, A. L. Grimsmo, S. M. Girvin, and A. Wallraff. Circuit quantum
electrodynamics. arXiv e-prints (arXiv:2005.12667), May 2020.

[32] M. D. Hutchings, J. B. Hertzberg, Y. Liu, N. T. Bronn, G. A. Keefe, Markus
Brink, Jerry M. Chow, and B. L. T. Plourde. Tunable superconducting qubits with
flux-independent coherence. Phys. Rev. Applied, 8:044003, Oct 2017.

[33] J. Braumüller, L. Ding, A. P. Vepsäläinen, Y. Sung, M. Kjaergaard, T. Menke,
R. Winik, D. Kim, B. M. Niedzielski, A. Melville, J. L. Yoder, C. F. Hirjibehedin,
T. P. Orlando, S. Gustavsson, and W. D. Oliver. Characterizing and optimizing qubit
coherence based on squid geometry. Phys. Rev. Applied, 13:054079, May 2020.

[34] S. Boutin, D. M. Toyli, A. V. Venkatramani, A. W. Eddins, I. Siddiqi, and A. Blais.
Effect of higher-order nonlinearities on amplification and squeezing in josephson
parametric amplifiers. Phys. Rev. Applied, 8:054030, Nov 2017.

[35] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver.
A quantum engineer’s guide to superconducting qubits. Applied Physics Reviews,
6(2):021318, 2019.

[36] C. W. Gardiner and M. J. Collett. Input and output in damped quantum systems:
Quantum stochastic differential equations and the master equation. Phys. Rev. A,
31:3761–3774, Jun 1985.

[37] B. Yurke and E. Buks. Performance of cavity-parametric amplifiers, employing kerr
nonlinearites, in the presence of two-photon loss. J. Lightwave Technol., 24(12):5054–
5066, Dec 2006.

[38] C. W. Gardiner and P. Zoller. Quantum Noise - A Handbook of Markovian and
Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics.
Springer, second edition, 2000.

[39] D. Sarchi, I. Carusotto, M. Wouters, and V. Savona. Coherent dynamics and
parametric instabilities of microcavity polaritons in double-well systems. Phys. Rev.
B, 77:125324, Mar 2008.

[40] Michael Tinkham. Introduction to Superconductivity. Dover Publications, 2 edition,
Jun 2004.



70 Bibliography

[41] N. Maleeva, L. Grünhaupt, T. Klein, F. Levy-Bertrand, O. Dupre, M. Calvo,
F. Valenti, P. Winkel, F. Friedrich, W. Wernsdorfer, A. V. Ustinov, H. Rotzinger,
A. Monfardini, M. V. Fistul, and I. M. Pop. Circuit quantum electrodynamics of
granular aluminum resonators. Nature Communications, 9(1):3889, Sep 2018.

[42] Yu. Krupko, V. D. Nguyen, T. Weißl, É. Dumur, J. Puertas, R. Dassonneville,
C. Naud, F. W. J. Hekking, D. M. Basko, O. Buisson, N. Roch, and W. Hasch-
Guichard. Kerr nonlinearity in a superconducting josephson metamaterial. Phys.
Rev. B, 98:094516, Sep 2018.

[43] T. Weißl, B. Küng, E. Dumur, A. K. Feofanov, I. Matei, C. Naud, O. Buisson,
F. W. J. Hekking, and W. Guichard. Kerr coefficients of plasma resonances in
josephson junction chains. Phys. Rev. B, 92:104508, Sep 2015.

[44] P. R. Muppalla, O. Gargiulo, S. I. Mirzaei, B. Prasanna Venkatesh, M. L. Juan,
L. Grünhaupt, I. M. Pop, and G. Kirchmair. Bistability in a mesoscopic josephson
junction array resonator. Phys. Rev. B, 97:024518, Jan 2018.

[45] P. R. Muppalla. Josephson junction array resonators in the Mesoscopic regime:
Design, Characterization and Application. PhD thesis, University of Innsbruck, 2020.

[46] N. A. Masluk, I. M. Pop, A. Kamal, Z. K. Minev, and M. H. Devoret.
Microwave characterization of josephson junction arrays: Implementing a low loss
superinductance. Phys. Rev. Lett., 109:137002, Sep 2012.

[47] L. Planat, R. Dassonneville, J. P. Martínez, F. Foroughi, O. Buisson, W. Hasch-
Guichard, C. Naud, R. Vijay, K. Murch, and N. Roch. Understanding the saturation
power of josephson parametric amplifiers made from squid arrays. Phys. Rev. Applied,
11:034014, Mar 2019.

[48] T. Yamamoto, K. Inomata, M. Watanabe, K. Matsuba, T. Miyazaki, W. D. Oliver,
Y. Nakamura, and J. S. Tsai. Flux-driven Josephson parametric amplifier. Applied
Physics Letters, 93(4):042510, Jul 2008.

[49] T.J. Rinke, C. Koch, and MicroChemicals GmbH. Photolithography: Basics of
Microstructuring. MicroChemicals, 2017.

[50] Allresist. Positive Photoresist for Lift-off AR-P 5300, Jan 2018.

[51] M. Madou. Fundamentals of Microfabrication. Boca Raton: CRC Press, 2007.

[52] L. Grünhaupt, U. von Lüpke, D. Gusenkova, S. T. Skacel, N. Maleeva, S. Schlör,
A. Bilmes, H. Rotzinger, A. V. Ustinov, M. Weides, and I. M. Pop. An argon ion beam
milling process for native AlOx layers enabling coherent superconducting contacts.
Applied Physics Letters, 111(7):072601, Aug 2017.

[53] J. M. Kreikebaum, K. P. O’Brien, A. Morvan, and I. Siddiqi. Improving wafer-scale
josephson junction resistance variation in superconducting quantum coherent circuits.
Superconductor Science and Technology, 33(6):06LT02, May 2020.

[54] V. Ambegaokar and A. Baratoff. Tunneling between superconductors. Phys. Rev.
Lett., 10:486–489, Jun 1963.



Bibliography 71

[55] S. Fritz, L. Radtke, R. Schneider, M. Luysberg, M. Weides, and D. Gerthsen.
Structural and nanochemical properties of AlOx layers in Al/AlOx/Al-layer systems
for josephson junctions. Phys. Rev. Materials, 3:114805, Nov 2019.

[56] A. W. Kleinsasser, R. E. Miller, and W. H. Mallison. Dependence of critical current
density on oxygen exposure in Nb/AlOx/Nb tunnel junctions. IEEE Transactions
on Applied Superconductivity, 5(1):26–30, 1995.

[57] I. M. Pop, T. Fournier, T. Crozes, F. Lecocq, I. Matei, B. Pannetier, O. Buisson,
and W. Guichard. Fabrication of stable and reproducible submicron tunnel junctions.
Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics:
Materials, Processing, Measurement, and Phenomena, 30(1):010607, Jan 2012.

[58] David M Pozar. Microwave Engineering 3e. Wiley, 2006.

[59] Low Noise Factory. LNF-LNC4_16B s/n 1456Z 4-16 GHz Cryogenic Low Noise
Amplifier, Aug 2019.

[60] Agile Microwave Technology Inc. AMT-A0067 4 GHz to 12 GHz Broadband Low
Noise Amplifier, rev a edition.

[61] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf.
Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys.,
82:1155–1208, Apr 2010.

[62] I. Takmakov. Josephson parametric dimer based on quarter wavelength microstrip
squid array resonators. Master’s thesis, Moscow State University, 2017.

[63] T. Roy, S. Kundu, M. Chand, A. M. Vadiraj, A. Ranadive, N. Nehra, M. P. Patankar,
J. Aumentado, A. A. Clerk, and R. Vijay. Broadband parametric amplification with
impedance engineering: Beyond the gain-bandwidth product. Applied Physics Letters,
107(26):262601, Dec 2015.

[64] J.-H. Yeh, Y. Huang, R. Zhang, S Premaratne, J. LeFebvre, F. C. Wellstood, and B. S.
Palmer. Hot electron heatsinks for microwave attenuators below 100 mk. Applied
Physics Letters, 114(15):152602, Apr 2019.

[65] V. V. Sivak, S. Shankar, G. Liu, J. Aumentado, and M. H. Devoret. Josephson
array-mode parametric amplifier. Phys. Rev. Applied, 13:024014, Feb 2020.

[66] U. Vool. Engineering Synthetic Quantum Operations. PhD thesis, Yale University,
2017.

[67] Allresist. AR 300-80 new and HMDS adhesion promoter, May 2019.

[68] Allresist. AR 300-26 and AR 300-35 buffered developers, Oct 2019.

[69] C. Tannous and J. Langlois. Classical noise, quantum noise and secure communication.
European Journal of Physics, 37(1):013001, Nov 2015.

[70] Y. Yamamoto. Fundamentals of Noise Processes. Cambridge University Press, Feb
2004.



72 Bibliography



Appendix A

Method of nodes

In this chapter, a recipe for finding the degrees of freedom (DOFs) in an electric circuit
is presented. Electric elements arranged in a specific manner form the topology of the
circuits and together with the external initial conditions outline the boundary conditions
of the problem to be solved. Whether the electric network elements are linear or non-
linear would determine the intricacy of finding the DOFs. The task starts with deriving
the classical Lagrangian or Hamiltonian, diagonalizing one of them in order to find
the independent eigenstates and promoting those to quantum variables with imposing
uncertainty conditions. As from now, we follow the treatment from [30, 66].

Figure A.1.1: Branch and node representation. Any dipolar circuit element can be
replaced by a branch b. Each branch is surrounded by two nodes via which the connection
to other branches is achieved. The sign convention of the voltage vb(t)and current ib(t)
determine the sign of the power absorbed by the branch element (Eq. A.1.2). Figure
adopted from [30].

We assume, without big loss in generality, that any electric circuit consists of
dipolar elements, called branches b, and these elements are connected to each other via
nodes as shown on Fig. A.1.1. Each branch is characterized by the voltage across it and
the current flowing through it. They are connected to the underlying electromagnetic
fields in the following way

vb(t) =

∫ end of b

start of b

~E(~x, t).~dl (A.1.1a)

ib(t) =
1

µ0

∮
around b

~B(~x, t).~dl (A.1.1b)
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where µ0 is the permeability of free space.
The path for the closed loop integral is in vacuum and encircling all field

components. In the lumped-element approximation, which we are using, it is equivalent
to integrating along a path surrounding the branch only since all fields are focused within
the element. As a result, the current and voltage should not depend on the path taken for
the integration, meaning the path for integration should not include components from
other fields than the one in the integral.

The directions of the current and voltage vectors are chosen to be opposite, in
order to define the energy absorbed by the element as a positive entity

Eb(t) =

∫ t

−∞
vb(t

′)ib(t
′)dt′ (A.1.2)

where the lower bound of the integral is set to a time sufficiently far in the past (−∞)
when the system was at rest. Other common variables for describing the branch are flux
and charge, obtained by integrating the voltage and current respectively

Φb(t) =

∫ t

−∞
vb(t

′)dt′ (A.1.3a)

Qb(t) =

∫ t

−∞
ib(t
′)dt′ (A.1.3b)

also considered as position and momentum coordinates in the nodes method.
By using Kirchhoff’s first law, one can take into account external magnetic fields

or electric biases ∑
all b joining
at node n

Qb = Qn
ext (A.1.4)

where Qn
ext is the charge on node n. Generally, because of these conditions, the total

number of independent DOFs is smaller than the branches composing the circuit. With
this method we assign a flux coordinate to every node in the circuit. One can instead
use the method of loops by assigning charges to the loops, and solve the problem via the
second Kirchhoff’s law. The final DOFs should be identical by converting to branch fluxes
via

Φb = Φn − Φn′ (A.1.5)

for a branch b between nodes n and n′, where the direction determines the sign of the
current.

We need to introduce some terminology for further use in this chapter. Let us
define two specific groups of elements: capacitive and inductive. If the voltage across a
branch vb(t) is directly dependent only on the charge Q(t), then this element is capacitive.
On the other hand, if the current through the element ib(t) is a function only of the flux
Φ(t), then we call this unit inductive. The respective energies for the commonly used units
in our setups are summarized in Table A.1.1. As of now, all nodes collecting branches
of one type will be called active, while if the converging elements are mixed (capacitors
and inductors) the nodes will be referred as passive. If we divide the system in two sub-
networks of capacitances and inductances, we make sure that all nodes in the capacitive
sub-network are passive, while in contrast the nodes in the inductive sub-network can be
also active.
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Element Energy

Linear capacitor C(Q) = C Q2

2C

Linear inductor L(Φ) = L Φ2

2L

Josephson junction (Non-linear inductor) LJ − φ20
LJ

cos
(

Φ
φ0

)
Table A.1.1: Energies of the basic building blocks in circuit quantum
electrodynamics. The energies for a linear capacitor, linear inductor and Josephson
junction are calculated from Eq. A.1.2. Constant offsets are excluded.

Proceeding with the task we choose the ground node with node flux zero from
where the spanning tree is built. The ground node is always picked to be active. Notably,
no matter what the choice for spanning tree is, the equations of motion will be the same
despite the different energy expressions. However, as a rule of thumb, defining the tree
only through capacitive sub-network simplifies the connection of the conjugate variable to
the charge across the capacitors. At this moment, we are ready to build the capacitance
and inverse inductance matrices with dimension (N ×N), where the passive nodes are
denoted with index 1 to P and the active nodes with P+1 to N. For the inductance
matrix L̃−1 all off-diagonal elements are −L−1

ij corresponding to the inverse inductance
connecting nodes i and j. If there is no inductance, which is the case for all passive
nodes, these matrix elements are zero. The diagonal elements are the negated sum of all
inductive contributions from the branches joining at this node.

The conductance matrix C̃ is built in a similar way with the only difference that
the off-diagonal elements are now −Cij. We can now introduce a flux column vector ~Φ
with components Φi. The kinetic energy will be the sum of the contributions from all
linear capacitive branches

Ekin =
∑
{i,j}

Cij
2

(Φ̇i − Φ̇j)
2 (A.1.6)

while the potential energy is associated to all inductive branches

Epot =
∑
{i,j}

1

2Lij
(Φi − Φj)

2 (A.1.7)

where the sum runs through all branches. In the matrix representation, the Lagrangian
can be written as

L = Ekin − Epot =
1

2
~̇ΦT C̃~̇Φ− 1

2
~ΦT L̃

−1~Φ (A.1.8)

where the matrices C̃ and L̃
−1

differ from the aforementioned capacitance and inverse
inductance matrices in their dimension (N − 1) × (N − 1) since the row and column
corresponding to the ground node have been removed.

Finally, the equations of motion are found from the Euler-Lagrange equation

d

dt

∂L
∂Φ̇i

=
∂L
∂Φi

(A.1.9)
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and the conjugate variable is the charge

Qi =
∂L
∂Φ̇i

(A.1.10)

with the charge vector defined as ~Q = C̃~̇Φ. This treatment is universal as long as there
are no loops in the circuit, otherwise the external fluxes need to be taken into account.
It is important to mention that the offset charges on the nodes have been neglected for
simplicity but they can influence immensely the circuit properties in the superconducting
case.

For more insight, we look into two examples: the LC oscillator from Section 2.2
and a JJA with three junctions, depicted in Fig. 2.4.1. In the first case we have a node
with flux Φ and a ground reference node (Φ = 0). Therefore, we can directly derive the
Lagrangian 2.2.3 with the help of Table A.1.1. The later example is more interesting,
since it includes four nodes in total, with the boundary conditions Φ0 = Φ3 = 0. The
Lagrangian in this case reads

L =
C0

2

(
Φ̇2

1 + Φ̇2
2

)
+
CJ
2

[
Φ̇2

1 +
(

Φ̇2 − Φ̇1

)2

+ Φ̇2
2

]
−EJ [cos(φ1) + cos(φ2 − φ1) + cos(φ2)]

(A.1.11)
where we imposed the boundary conditions in the derivation. In the harmonic
approximation (for small currents I � Ic), we can approximate the non-linear element as
a linear inductor EJ cos(φ2 − φ1) ≈ 1

2LJ
(Φ2−Φ1)2 and write the Lagrangian in the matrix

form from Eq. A.1.8 with the following matrices

C̃ =

(
2CJ + C0 −CJ
−CJ 2CJ + C0

)
(A.1.12a)

L̃−1 =

( 2
LJ

− 1
LJ

− 1
LJ

2
LJ

)
. (A.1.12b)

Φ0 Φ1

C0

Φ2

C0

Φ3

Figure A.1.2: Josephson junction array with N = 3: Lumped-element
representation. Circuit diagram of a one-dimensional chain of three Josephson junctions
coupled galvanically to a transmission line for controlling the system. The capacitance to
ground C0 comes from the superconducting islands connecting the junctions.



Appendix B

Kerr coefficients

The self-Kerr Kkk and cross-Kerr coefficients in Eq. 2.4.11 and 2.4.17 can be extracted
from the formula[42, 43]

Kkl = 2(2− δkl)
π4~EJηkkll
φ4

0C
2
Jωkωl

. (B.1.1)

where numerical factors ηkkll delineate wave function overlaps

ηkkll = C2
J

N∑
i=1

( N∑
j=0

(C̃
−1/2
i,j − C̃−1/2

i−1,j)Ψj,k

)2( N∑
j=0

(C̃
−1/2
i,j − C̃−1/2

i−1,j)Ψj,l

)2
 . (B.1.2)

Here Ψj,k is the j-th element in the k-th eigenvector and C̃−1/2
i,j is the entry at i-th row

and j-th column in the matrix C̃−1/2.
Note that, the capacitance matrices give rise to utterly different coefficients.

To derive the Kerr coefficients for DJJAA, we use a symmetrized version of the flux
eigenvectors. Otherwise, the jump experienced by the odd modes at the center causes
numerical instabilities coming from the coefficients ηkkll from Eq. B.1.2.
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Appendix C

Final recipes for DJJAA fabrication

KIT
Cleaning

No wet cleaning, blowing with nitrogen
Resist layer S1805

Spinning acceleration 500 rpm/s
Ramp 500 rpm for 5 s

Spinning speed 4500 rpm
Spinning time 60 s

Heat plate temperature 115 ◦C
Baking time 1 min

Exposure
Dose 13mW/cm2

Time 4 s
Wavelength 365 nm

Contact mode hard
Development MF-319: Layer 1

Time 30 s with swirling the liquid in the beaker
Stopping distilled H2O, N2 dry-blowing

Development MF-319: Layer 2
Time 25 s less swirling the liquid in the beaker

Stopping distilled H2O, N2 dry-blowing

Table C.1.1: Two-layer photolithography process, optimized for DJJAA production on
sapphire in the KIT clean room: Wafer preparation and lithography. Mask aligner Karl
Süss MA6 is used for the exposure. The difference in the development of the two layers
comes from the TMAH in MF-319 which etches Al.
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KIT
Aluminium evaporation: Layer 1

Descum + Rot O2/Ar (10/5) sccm, Vbeam = 200V, Ibeam = 10mA, Vacc = 50V
Al evaporation + Rot 30 nm at rate 1 nm/s

Lift-off
Solvent NEP at 40 ◦C
Time at least 2 hours

Ultrasonication 5min at low power
Rinsing Ethanol + N2 dry-blowing

Aluminium evaporation: Layer 2
Ti gettering 2 min at rate 0.2 nm/s
Milling + Rot Ar (4 sccm), t = 2min 30 s, Vbeam = 400V, Ibeam = 15mA, Vacc = 40V
Static oxidation p = 10mbar, t = 4− 10min

Al evaporation + Rot 40 nm at rate 1 nm/s
Silver backside metallization

Protection layer
Resist S1818

Baking at 80 ◦C for 5min
Wiping the backside with acetone

Ag deposition

Descum time 2min 30 s
Ti gettering

Ti evaporation, 5 nm at 0.2 nm/s
Ag evaporation, 200 nm at 1 nm/s

Table C.1.2: Two-layer photolithography process, optimized for DJJAA production on
sapphire in the KIT clean room: Metal deposition, lift-off and backside metallization.
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QNTZ
Cleaning

Solvent cleaning
Ultrasonication in acetone, 1 min

Isopropanol cleaning from the acetone
Dry-blowing with nitrogen

RF plasma cleaning O2 (30 sccm), p = 5Pa, P = 100W, t = 10min
Adhesion promoter layer AR 300-80[67]

Spinning acceleration 1000 rpm/s
Spinning speed 4000 rpm
Spinning time 100 s

Heat plate temperature 105 ◦C
Baking time 2 min

Thermalization time 1 min 30 s
Resist layer AR-P 5350

Preparation of resist Taken out of the fridge ∼ 30min before exposure
Stirred at 150 rpm until ∼ 10min before resist spinning

Spinning acceleration 1000 rpm/s
Spinning speed 4000 rpm
Spinning time 100 s

Heat plate temperature 105 ◦C
Baking time 4 min

Exposure: Layer 1
Dose 60mJ/cm2

Exposure: Layer 2
Dose 56mJ/cm2

Development AR 300-35[68]
Dilution 1:2 with distilled H2O
Time 1 min 5 s

Stopping distilled H2O, several sequential beakers, N2 dry-blowing

Table C.1.3: Two-layer photolithography process, optimized for DJJAA production on
silicon in the QNTZ clean room: Wafer preparation and lithography.
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QNTZ
Aluminium evaporation: Layer 1

Descum + Rot O2/Ar (10/10 sccm), Vbeam = 200V, Ibeam = 10mA, Vacc = 50V
Ti gettering 2 min at rate nm/s

Al evaporation + Rot 30 nm at rate 1 nm/s
Lift-off

Solvent Acetone at maximum 40 ◦C, several sequential beakers (room t)
Time minimum 2-3 hours

Ultrasonication* 3× 30 s in the different beakers at 135 kHz and 20% power
Rinsing Isopropanol + N2 dry-blowing

Aluminium evaporation: Layer 2
Ti gettering 2 min at rate nm/s
Milling + Rot Ar (5 sccm), t = 3min, Vbeam = 400V, Ibeam = 20mA, Vacc = 80V
Static oxidation p = 30mbar, t = 5min 30 s, trise ≈ 2min, tfall ≈ 2min

Al evaporation + Rot 50 nm at rate 1 nm/s

Table C.1.4: Two-layer photolithography process, optimized for DJJAA production on
silicon in the QNTZ clean room: Metal deposition of the first layer. The step marked
with an asterisk (*) applies only to the first layer.



Appendix D

Setup details

The sample holder is produced out of copper because of its good thermal conductivity
properties. A picture of the holder can be seen in Fig. D.1.1a. In the middle of the
bottom part, there is a post where the PCB and the chip are glued and the former is also
screwed to the holder. The dimensions of the inner cavity formed by the two halves are
chosen in a way that all modes are outside of the measurement band. This design was
also used for measurements of a bare transmission line, hence the two ports. Once the
amplifiers are installed, everything from the full assembly (the sample box in Fig. D.1.3
and the coil body in Fig. D.1.4) is screwed to the T-beam through the four sides (Fig.
D.1.1b). The T-beam, enclosed in a shielding can, is then mounted to the base plate of
the refrigerator as shown in Fig. D.1.2.

(a) (b)

Figure D.1.1: Setup pictures. (a) Sample holder, (b) DJJAA1 and DJJAA2 mounted
on the T-beam.

83



84

Figure D.1.2: Dilution refrigerator. Open dilution refrigerator with the samples
installed in a shielding can attached to the base plate (silver-colored at the bottom).
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Figure D.1.3: SolidWorks drawing of the sample holder. It includes the (a) lower
and the (b) upper part of the sample holder. The dimensions are in mm.
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Figure D.1.4: SolidWorks drawing of the coil body. The dimensions are in mm.
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Appendix E

Nyguist model: semi-infinite
transmission line

This chapter is rewritten from [69]. Consider a lossless transmission line of length L with
one open and one short termination. Introducing the capacitance c and inductance l per
unit length, the Hamiltonian of the system can be written as

H(t) =

∫ L

0

(
q2(x, t)

2c
+
φ2(x, t)

2l

)
dx, (E.1.1)

where q(x, t) and φ(x, t) represent the local charge and flux densities, respectively. If we
make the variable change θ(x, t) =

∫ x
0
q(x′, t)dx′, the Hamiltonian can be rewritten in the

following way

H(t) =

∫ L

0

[
1

2c

(
∂θ

∂x

)2

+
l

2

(
∂θ

∂t

)2
]
dx. (E.1.2)

Using Hamilton’s equation of motion, we get a wave equation for θ(x, t) with
velocity v = 1/

√
lc. By imposing the boundary conditions θ(0, t) = θ(L, t) = 0, we solve

the equation with the normal mode expansion, given by

θ(x, t) =

√
2

L

∞∑
n=1

bn(t) sin knx, (E.1.3)

with bn being the mode amplitude and kn = nπ/L - the wavevector.
We jump directly to the second quantization of the system in order to obtain an

expression for the voltage operator at the position of the short x = 0. We express the
mode amplitude in terms of the creation and annihilation operators

b̂n(t) =

√
~cωn
2k2

n

(â†n(t) + ân(t)), (E.1.4)

where the frequency of the standing waves ωn = nvπ/L has been introduced. Therefore,
for the voltage we get the expression

V̂ (t) =
1

c

∂θ̂(x, t)

∂x

∣∣∣∣∣
x=0

=

√
~
Lc

∞∑
n=1

√
ωn(eiωntâ†n(0) + e−iωntâ†n(0)). (E.1.5)
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The spectral density is then obtained from the Fourier transform of the auto-
correlation function of the voltage SV (ω) =

∫ +∞
−∞ e−iωτ

〈
V̂ (t)V̂ (t+ τ)

〉
dτ , giving the

following equation

SV (ω) =
2π

Lc

∞∑
n=1

~ωn[n(ωn)δ(ω + ωn) + (n(ωn) + 1)δ(ω − ωn)] (E.1.6)

where n(ω) =
〈
a†n(0)an(0)

〉
= (e~ω/kbT − 1)−1 is the mean number of photons in a mode

at energy ~ω and temperature T governed by the Bose-Einstein distribution.
Taking the limit L→∞ and converting the sum to an integral gives the final

expression for the power spectral density of the voltage

SV (ω) = 2Zc~|ω|{n(|ω|)Θ(−ω) + [n(|ω|) + 1]Θ(ω)}, (E.1.7)

where Θ(ω) is the Heaviside step function.
The asymmetry of the function in this quantum case is in contradiction to the

classical counterpart. At negative frequencies, the resistor absorbs photons, while the
positive frequency part is related to the stimulated (n(|ω|) term) and spontaneous (+1
term) emission from the element. Even at zero temperature, meaning n(|ω|) = 0, the
term responsible for spontaneous emission remains, meaning the vacuum can still absorb
energy, a well known fact in quantum physics.

10 1 100 101 102

2kbT

100

101

102

S V
(

)/4
k b

TZ
c

Johnson-Nyguist 
 noise

Quantum noise

Figure E.1.1: Generalized Nyquist noise. The voltage noise spectrum of a semi-
infinite transmission line including zero-point fluctuations reduces to the familiar classical
Johnson-Nyguist noise or to quantum noise depending on the ratio ω/T . Figure adopted
from [70].

If we focus on the emission only, namely ω > 0, we retrieve a more familiar
equation

SV (ω) =
2Zc~ω

1− e−~ω/kbT
. (E.1.8)

Taking only the symmetric part of the voltage spectral density, we obtain an expression
for the voltage spectral density from a purely dissipative element which we can measure

SV (ω) + SV (−ω) = 2Zc~ω coth
~ω

2kbT
. (E.1.9)
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Meanwhile, the asymmetric-in-frequency part of the noise is related to damping.
This equation, also known as generalized Nyquist noise, reduces to the classical

Johnson-Nyguist noise SV (ω) = 4kbTZc in the limit kbT � ~ω, or to the quantum noise
SV (ω) = 2~ωZc in the low temperature limit kbT � ~ω as can be seen in Fig. E.1.1. Note
that the classical noise can be directly measured while the quantum noise only manifests
itself indirectly as e.g. photon shot noise. Finally, the conversion to power spectral density
is executed by simply dividing the expressions by 4Zc.
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Appendix F

Additional plots

Flux tunability: magnitude response
Similarly to Fig. 5.1.1, from the same data we can extract the magnitude response of the
amplifier as shown in Fig. F.1.1. Qualitatively, the information received from such a map
is similar, but a feature missing in the phase response is the spurious coupling to the box
mode around 4GHz present in both amplifiers.
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Figure F.1.1: Flux maps in magnitude. (a) DJJAA1 with N = 1400 and (b)
DJJAA2 with N = 1700.

DJJAA1 : Frequency maps for Icoil = 0mA
From the data used for making the gain map in Fig. 5.2.1 we can also extract the
frequencies where gain appears on both sides of the pump. The results are plotted in
Fig. F.1.2. The effect we see is that in mode 1 (Fig. F.1.2a) the frequency where the
gain appears decreases as the pump power is ramped up, while for mode 2 (Fig. F.1.2b)
the frequency is proportional to the pump power. Meanwhile, the pump frequency has
the same influence on both modes, meaning as we shift the pump frequency the gain
frequencies follow in the same manner.
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Figure F.1.2: DJJAA1: Frequency maps of the gain for Icoil = 0mA. The
frequencies where non-degenerate gain appears as a function of the pump parameters.
The two modes within the dimer are plotted separately in (a) the lower frequency mode
and in (b) the higher frequency mode.

DJJAA2 : Noise performance of the fourth
dimer
This dimer was the only one pumped with two different powers in order to achieve
comparable gain in both modes. Because of the noisy results, the added photon number
for the dimer 4 from DJJAA2 is plotted in a semilogarithmic scale. The first contribution
to the noise comes from the high attenuation at these frequencies, which are in close
vicinity to the end of the working range of most microwave components, further enhancing
this effect. Another reason for the noisy behavior of this dimer is the heating of the
attenuators because of the strong pump as already discussed in Section 5.6.
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Figure F.1.3: DJJAA2: Added photon number at the sweet spots of dimer 4.
The used pump parameters are fp = 4.45GHz, Pp,1 = 13.8 dBm and Pp,2 = 14.05 dBm.
The added photon number (blue) and the quantum limit (orange) expected for the
measured gain are plotted as a function of the frequency. The green horizontal line
emphasises the level of half a photon.
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