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Abstract

The goal of this thesis is to detect the thermal fluctuations of a micromechanical os-

cillator using a DC SQUID. We describe the characterisation process of our SQUID

sensor and use a stochastic numerical model to determine its characteristic parame-

ters. After aligning the micro-cantilever to the SQUID, we analyse noise spectra to

identify a signal from the oscillator. Due to issues in the fabrication of our SQUID

and cantilever samples, the magnetic flux induced by the cantilever motion at 1 K

is too small to be visible in the SQUID spectrum. This is investigated by estima-

tions of the expected signal strength, which support an intensity below the limit of

detection.
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Chapter 1

Introduction

Experiments where micro- or nanomechanical elements enter the regime of quan-

tum mechanics have attracted increasing attention, especially in the last decade.

Some key achievements paved the way for the emergence of a whole new field, be it

ground state cooling of a mechanical oscillator [1], creating entanglement between

mechanical motion and microwave signals [2], entering the strong coupling regime in

cavity optomechanics [3] or being able to capture and release propagating quantum

information with an electro-mechanical resonator [4].

In our research, we try to combine micromechanical resonators with superconducting

circuits, which represent a promising platform for quantum simulation and compu-

tation. Most experiments to date make use of either optical cavities with a movable

mirror or parallel plate capacitors with one flexible electrode to achieve a coupling

between electromagnetics and mechanics. In contrast, our experiment tries to imple-

ment an inductive coupling between a superconducting circuit and the mechanical

resonator.

Such a magneto-mechanical setup represents a novel platform for experiments of

this type and provides a new set of tools, especially considering effects of supercon-

ductivity. As such, the proposal for our experiment [5] makes use of the Meissner

effect to achieve the milestone of entering the strong single photon coupling regime.

The aim of this thesis is to realise a magneto-mechanical experiment that uses a

SQUID to detect the motion of a mechanical oscillator. This should act as a start-

ing point for the long term goal of achieving the strong single photon coupling.

1



Chapter 2

Theory

This chapter discusses some basic principles of the physics that underlies this work.

The theoretical basics to be able to follow the analyses presented in this thesis

are introduced. Most of the elaborations should be interpreted as a motivation of

the respective subject and are far from being complete. Whenever suitable, the

explanations are supported by references with a more thorough treatment.

2.1 Superconductors and Josephson junctions

Superconductivity is a macroscopic quantum effect that, among other phenomena,

enables a dissipationless flow of electric currents. It can be described by a wave

function

Ψ(~r, t) = Ψ0(~r, t)eiθ(~r,t) =
√
ns(~r, t)e

iθ(~r,t), (2.1.1)

with amplitude Ψ0(~r, t) and phase θ(~r, t), which both can depend on position and

time. In contrast to other quantum mechanics problems, the probability distribution

of the macroscopic wave function Ψ(~r, t) is usually not normalised to one, but to the

total number of carriers of the supercurrent. Hence, the probability density function

|Ψ(~r, t)|2 = ns(~r, t) describes the carrier density. These carriers of the supercurrent

are correlated pairs of electrons, the so called Cooper-pairs.

If we make use of the continuity equation that one can derive from the Schrödinger

2



2.1. Superconductors and Josephson junctions 3

equation, we find an expression for the supercurrent density ~Js(~r, t) [6], which reads

~Js(~r, t) = qs Re

{
Ψ∗
(

~
msi

~∇− qs

ms

~A

)
Ψ

}
=

=
qsns~
ms

[
~∇θ(~r, t)− 2π

Φ0

~A(~r, t)

]
=
qsns~
ms

~γ(~r, t). (2.1.2)

Here, qs = 2e and ms are the charge and mass of a Cooper-pair, ~A(~r, t) is the vector

potential of the surrounding electromagnetic field and Φ0 = h/2e is the magnetic

flux quantum. It is assumed, that the Cooper-pair density ns(~r, t) = ns is static and

homogeneous in the bulk of the superconductor. In the last step, we also introduced

the gauge invariant phase gradient ~γ(~r, t).

a)

b)

0

V0

V(
x)

a 0 a
x

0

n

|
(x

)|2

Figure 2.1: Sketch of a Josephson junction. Fig. a) shows the superconductor-

insulator-superconductor arrangement with a small barrier dimension a. In b), the

model as a potential barrier is illustrated. Also the carrier density |Ψ(x)|2 along the

JJ is shown. The superconductor contacts have an assumed constant carrier density

of ns,1 = ns,2 = n.

If we connect two superconductors with a thin insulating layer as in fig. 2.1 a), the

ability to conduct a dissipationless current can under certain conditions still persist

3



4 2.2. DC SQUID

due to the tunneling of Cooper-pairs through the barrier. Such an arrangement is

called Josephson junction (JJ). To describe its behaviour, we start with defining the

gauge invariant phase difference

δ(~r, t) =

∫ 2

1

~γ(~r, t) · d~l = θ2 − θ1 −
2π

Φ0

∫ 2

1

~A(~r, t) · d~l, (2.1.3)

which we obtain by integrating ~γ(~r, t) along a path from 1 to 2, as illustrated in

fig. 2.1 a). The notation θi = θ(~ri, t) was used.

The insulating layer can be modelled as a potential barrier with height V0 that the

Cooper-pairs have to tunnel through, see fig. 2.1 b). By matching the boundary

conditions of the macroscopic superconductor wave functions with the evanescent

insulator wave function, one can find an expression for the current IJ through the

JJ

IJ = Ic sin(δ), (2.1.4)

with the critical current of the junction Ic, which is the maximum supercurrent a JJ

can maintain. This is the first Josephson relation. The second one can be determined

from the time derivative of eq. (2.1.3). It expresses the voltage UJ across the JJ as

UJ =
~
2e
δ̇ =

Φ0

2π
δ̇. (2.1.5)

Equations (2.1.4) and (2.1.5) fully describe the behaviour of the Josephson junction

element.

2.2 DC SQUID

The elements we introduced so far can be combined to form a so called superconduct-

ing quantum interference device, in short SQUID. Such a superconducting circuit

can be used to detect tiny magnetic field variations. Even though first experimental

realisations of a SQUID already date back to 1964 [7], SQUID magnetometers still

achieve record-breaking magnetic field sensitivities. Due to that, a so called DC

SQUID represents the key element in our experimental arrangement.

4



2.2. DC SQUID 5

2.2.1 Layout and function

The DC SQUID consists of a superconducting ring which is interrupted in two

points by thin insulating layers that form Josephson junctions. In fig. 2.2 we show

two possible layouts of such a SQUID.

a) b)

Figure 2.2: Sketch of two realisations of a DC SQUID. Fig. a) illustrates a magne-

tometer layout, whereas in fig. b) a gradiometer design is shown. Variable parameters

are the bias current I and the external magnetic flux Φa. The Josephson junctions

are parametrised by their critical current Ic,i and the junction phase difference δi, see

eq. (2.1.4).

The grey regions mark the superconducting loop and the thin black sections are

JJs. Figure 2.2 a) shows a magnetometer design of the SQUID. Such an arrangement

is suited to directly measure the magnetic field strength. In contrast, the figure eight

shape in fig. 2.2 b) represents a gradiometer design. With this layout, a SQUID

measures the magnetic field gradient, in this case along the horizontal direction.

The functional principle of the SQUID is based on the superconductivity effect of

fluxoid quantisation. We can express this, by integrating the phase gradient ~∇θ of

the macroscopic wave function along a closed contour C, as indicated by the dashed

line in fig. 2.2 a),∮
C

~∇θ · d~l =
2π

Φ0

[
Λ

∮
C

~Js · d~l +

∮
C

~A · d~l
]

= 2πn. (2.2.1)

5



6 2.2. DC SQUID

For this we introduced the London coefficient Λ = ms/nsq
2
s and made use of eq. (2.1.2).

The integral has to be equal to an integer multiple n of 2π in order to get construc-

tive interference of the wave function. Via eq. (2.1.3), we can also express this in

form of the gauge invariant phase differences δ1 and δ2 of the two JJs. One finds

δ2 − δ1 =
2π

Φ0

[∮
C

~A · d~l + Λ

∫ c

b

~Js · d~l + Λ

∫ a

d

~Js · d~l
]

=

= 2π
ΦT

Φ0

. (2.2.2)

We see that the phase differences are connected via the total flux through the SQUID

loop ΦT. The vector potential ~A contains contributions from the externally applied

magnetic field, indicated by Φa in fig. 2.2, as well as the field induced by the circulat-

ing current in the SQUID loop. The two integral terms involving the supercurrent

density ~Js describe the so called kinetic inductance of the SQUID loop. Usually

these contributions can be neglected, by taking the integration contour C deep in-

side the bulk material of the loop. The supercurrents only flow in a thin layer on

the surface of the superconductor. This layer has a thickness on the order of the

London penetration depth λL =
√

Λ/µ0, which is 39 nm for niobium [8]. Hence,

~Js ≈ 0 inside the bulk superconductor.

2.2.2 RCSJ model

A versatile method for describing the behaviour of a DC SQUID is provided by

the resistively and capacitively shunted junction (RCSJ) model. It incorporates the

effect of intrinsic junction capacitance Ck, junction shunt resistance Rk, SQUID loop

inductance Lk and the externally applied magnetic flux Φa. Also the Johnson current

noise IN,k of the shunt resistors plays a key role. Its implementation is discussed in

sections 2.5 and 4.1. Further, the model can be extended by taking asymmetries

in all these parameters into account. We can represent the RCSJ model by the

following schematic in fig. 2.3.

6



2.2. DC SQUID 7

Figure 2.3: Schematics of the RCSJ model of the DC SQUID.

The currents in the two arms of the SQUID loop, I1 and I2, can be expressed

as a superposition of the externally applied bias current I and the circulating ring

current J by

I1 =
I

2
+ J and I2 =

I

2
− J.

With the nodal rule for each junction, we can further decompose this into

I

2
± J = IJ,k + IR,k + IC,k + IN,k =

= I0,k sin(δk) +
Φ0

2πRk

δ̇k +
Φ0

2π
Ckδ̈k + IN,k, (2.2.3)

where we used the junction supercurrent IJ,k from eq. (2.1.4), the quasiparticle

current IR,k = UJ,k/Rk, the displacement current IC,k = CkU̇J,k and the thermal

noise current IN,k. The junction voltage UJ,k is defined in eq. (2.1.5).

In eq. (2.2.2), we found that the two junction phases are connected via the total

magnetic flux ΦT through the SQUID loop. This can also be expressed as

δ2 − δ1 = 2π
ΦT

Φ0

=
2π

Φ0

(
Φa + LJ − αLL

I

2

)
(2.2.4)

with the loop inductance L = L1 + L2 and the inductance asymmetry parameter

αL = (L2−L1)/L. We see that ΦT is the sum of the externally applied magnetic flux

Φa, the flux caused by the ring current ΦJ = LJ and the self-flux ΦI = −αLLI/2

created by the bias current. This expression can be used to calculate the circulating

current J for a given combination of externally applied parameters (I,Φa).

For the purpose of comparability, it makes sense to convert the SQUID parameters

7



8 2.3. Mechanical oscillator

to normalised quantities. To this end, we divide currents in eq. (2.2.3) by the

average critical current I0 = (I0,1 + I0,2)/2 and time t by ω−1
c = Φ0/2πI0R. With

the introduction of the asymmetry parameters

αI =
I0,2 − I0,1

I0,1 + I0,2

αR =
R1 −R2

R1 +R2

αC =
C2 − C1

C1 + C2

αL =
L2 − L1

L1 + L2

(2.2.5)

we find the normalised version of the RCSJ model:

i

2
+ j = (1− αI) sin(δ1) + (1− αR)δ̇1 + βC(1− αC)δ̈1 + iN,1, (2.2.6)

i

2
− j = (1 + αI) sin(δ2) + (1 + αR)δ̇2 + βC(1 + αC)δ̈2 + iN,2, (2.2.7)

δ2 − δ1 = 2πφT = 2π

(
φa +

βL

2
j − αLβL

4
i

)
. (2.2.8)

The lower-case flux variables φi are normalised to the flux quantum Φ0 and we intro-

duced the important Stewart-McCumber parameter βC and the screening parameter

βL, defined by:

βC =
2πI0R

2C

Φ0

βL =
2LI0

Φ0

φa =
Φa

Φ0

R =
2R1R2

R1 +R2

C =
C1 + C2

2
L = L1 + L2

Finally, we can also formulate the voltage across the SQUID in terms of the junction

voltages

u =
(1 + αL)u1 + (1− αL)u2

2
, (2.2.9)

with u normalised to I0R0 and uk = δ̇k = UJ,k/I0R0.

2.3 Mechanical oscillator

As already mentioned, the aim of this thesis is to detect the motion of a microme-

chanical oscillator via its inductive coupling to a SQUID. In this section we discuss

some key concepts of such oscillators, with a special focus on the cantilever beam as

we use it in our experiment. The analysis closely follows the introductions in refs.

[9, 10]. We restrict our description to a purely classical treatment in this section. A

quantum-mechanical extension follows in section 2.4.

8



2.3. Mechanical oscillator 9

2.3.1 Eigenmodes and -frequencies

A mechanical oscillator features multiple bending and torsional modes with different

mode shapes un(x) and resonance frequencies ωn. Each of these modes can individ-

ually be described as a harmonic oscillator. For a cantilever beam as we use it in

our experiment, the mode shapes take the form [9]

un(x) = C

{
sin
(
αn
x

l

)
− sinh

(
αn
x

l

)
−

− sin(αn) + sinh(αn)

cos(αn) + cosh(αn)

[
cos
(
αn
x

l

)
− cosh

(
αn
x

l

)]}
, (2.3.1)

with l the length of the beam, αn a numerical coefficient listed for the first few

modes in table 2.1 and C a normalisation constant. Figure 2.4 illustrates the shape

of the fundamental mode u0(x). The corresponding (angular) eigenfrequencies are

ωn = 2πfn =
α2
n

l2

√
D

ρA
. (2.3.2)

Here, A = wh denotes the cross-sectional area of the beam with width w and height

h, D = EI/(1 − ν) the bending rigidity, I = h3w/12 the moment of inertia, E the

Young’s modulus, ν the Poisson’s ratio and ρ the mass density. For silicon, these

material properties are [11, 12]

E = 170 GPa, ν = 0.064, ρ = 2330 kg/m3.

Figure 2.4: Sketch of the mode shape u0(x) for the fundamental mode of a cantilever

beam.

9



10 2.3. Mechanical oscillator

The cantilever displacement u(x, t) can hence be decomposed into the eigenmodes

according to

u(x, t) = Re

{∑
n

cn(t)un(x)eiωnt

}
, (2.3.3)

with cn(t) being the amplitude of the n-th eigenmode component.

n 0 1 2 3 4

αn 1.875 4.694 7.855 10.996 14.137

Table 2.1: Coefficients αn for the first five eigenmodes [9]. The values are obtained

by numerically solving the equation cos(αn) cosh(αn) + 1 = 0.

2.3.2 Harmonic oscillator

We would like to describe the response of a mechanical oscillator to a force of a

certain frequency F (ω). To this end, we start with the equation of motion of a

damped harmonic oscillator that is driven by an external force F (t)

mü = −kRu−mγRu̇+ F (t), (2.3.4)

where m is the effective mass, kR is the spring constant and γR the damping constant

of the oscillator. With the Fourier transformation x(ω) =
∫∞
−∞ e

−iωtx(t)dt, we can

rewrite this in frequency space as

−mω2u(ω) = −kRu(ω)− imωγRu(ω) + F (ω). (2.3.5)

This allows us to define the mechanical susceptibility χHO(ω). If we express the

spring constant kR = mω2
R by the oscillator resonance frequency ωR and the damping

constant γR = ωR/Q via the quality factor Q, we obtain [9, 10]

χHO(ω) =
u(ω)

F (ω)
=

1

m(ω2
R − ω2 − iωωR/Q)

. (2.3.6)

We can interpret χHO(ω) as a transfer function. Its magnitude

|χHO(ω)|2 =
1

m2
[
(ω2

R − ω2)
2

+ ω2ω2
R/Q

2
] (2.3.7)

10



2.3. Mechanical oscillator 11

describes the response of the displacement u to a force at a certain frequency F (ω).

For low frequencies this expression is constant with |χHO(ω)|2 ≈ (mω2
R)−2 = k−2

R

and for frequencies ω � ωR it tends to 0. Further, for high Q resonators the line

shape around ω ≈ ωR can be approximated by a Lorentzian of the form

|χHO(ω ≈ ωR)|2 =
ω−2

R

m2
[
(ωR − ω)2 + ω2

R/Q
2
] . (2.3.8)

On resonance, i.e. ω = ωR, we obtain |χHO(ωR)|2 ≈ Q2/(mω2
R)2 = Q2/k2

R. This

illustrates the strong enhancement by a factor ofQ2 with respect to the low frequency

value.

2.3.3 Thermal motion

Instead of a dedicated external driving force, the F (t) term in eq. (2.3.4) can also

describe the thermal excitation of the motion of the mechanical oscillator. The

drive is then represented by the thermal Langevin force Fn(t), which is described

by a stochastic process and is typically modelled as a white noise source. Hence, we

can characterise it by the spectral noise density SFnFn , which is constant for white

noise, see section 2.5.2.

Consequently, also the thermal motion of the oscillator has to be described as a

stochastic process. We can determine the spectral noise density Suu for the dis-

placement u with the help of the mechanical susceptibility χHO from eq. (2.3.6)

according to

Suu(ω) = |χHO|2 SFnFn . (2.3.9)

The displacement u is a zero mean process, i.e. 〈u〉 = 0. Therefore, we can use

eq. (2.5.13) to calculate the mean square displacement of the oscillator:

〈u2〉 =

∫ ∞
0

Suu(ω)
dω

2π
=

1

4

Q

m2ω3
R

SFnFn . (2.3.10)

In thermal equilibrium, the equipartition theorem states that each degree of freedom

has a mean energy of kBT/2, where kB is the Boltzmann constant and T is the

temperature. For the one-dimensional motion of the mechanical oscillator, this

results in
1

2
kR〈u2〉 =

1

2
m〈u̇2〉 =

1

2
kBT, (2.3.11)

11



12 2.4. Strong magnetic coupling

with the potential energy kR〈u2〉/2 and the kinetic energy m〈u̇2〉/2. Combining

eqs. (2.3.10) and (2.3.11), we can finally quantify the spectral noise density SFnFn of

the thermal Langevin force Fn:

SFnFn =
4kBTmωR

Q
= 4kBTmγR. (2.3.12)

2.4 Strong magnetic coupling

In this section, we are going to investigate the proposal [5] that motivated the work

for this master thesis. We try to combine superconducting circuit elements with

a micromechanical oscillator and facilitate the inductive coupling between those

components. Our ultimate goal would be to enter the strong single photon coupling

regime. This represents a key requirement for coherent state transfer in quantum

information applications, where these so called hybrid devices could e.g. act as

storage for quantum states [2, 4] or as quantum interfaces between qubits and optical

fibres [3, 13].

In the proposal, the flux sensitive component is represented by a so called transmon

qubit instead of the simple DC SQUID that we used. The transmon is a parallel

circuit of a large shunt capacitance with either a single Josephson junction or a

DC SQUID if it should be flux tunable. It can also be described as a LC circuit

with a non-linear inductance that can be tuned via the externally applied flux.

The associated qubit Hamiltonian Ĥqb is the one of a harmonic oscillator with an

additional anharmonicity term:

Ĥqb = ~ω(Φ)â†â− EC

2
â†â†ââ (2.4.1)

~ω(Φ) =
√

8EJ(Φ)EC − EC (2.4.2)

EJ(Φ) = 2EJ,0 cos

(
πΦ

Φ0

)
(2.4.3)

Here, EJ(Φ) is the flux-tunable Josephson energy of the SQUID with EJ,0 the equiv-

alent for a single Josephson junction. EC denotes the charging energy.

A simple cantilever beam is used as mechanical oscillator and is aligned to the

SQUID loop of the transmon. The magnetic coupling is achieved via a strip of

superconducting (SC) material on the tip of the beam. If this strip is placed in a

12
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magnetic field, surface currents are induced due to the Meissner effect, which screen

the interior of the superconductor from the magnetic field. Those screening currents

cause a magnetic field themselves, which can be detected by the SQUID. If the

cantilever oscillates in a homogeneous field, the induced currents remain constant,

but the varying distance to the transmon causes a change in the induced flux in

the SQUID loop. Hence, we can use this mechanism to couple the motion of the

cantilever to the transmon frequency. Figure 2.5 illustrates the experimental setup

with the modification of using a gradiometric layout for the SQUID loop instead of

the magnetometer design proposed in ref. [5].

Figure 2.5: Experimental setup with the gradiometer SQUID (blue) in the centre

and the cantilever (black) aligned on top of one loop half with a vertical distance of

zw. The SC strip is placed on the bottom of the cantilever tip, which is indicated

in red and shines through the transparently rendered beam. A pair of wires (pink)

encloses the SQUID loop, which are used to create the quadrupole magnetic field. The

wire distance is dw and a current Iw flows through the wires in opposing orientation.

The flux that threads the SQUID loop depends on the cantilever deflection zm,

i.e. Φ = Φ(zm). We can therefore develop ω[Φ(zm)] from eq. (2.4.2) to first order in

zm for small deviations around the cantilever resting position zm = 0. Making use

of the quantum mechanical expression for the displacement zm = zzp(b̂† + b̂) with

the zero point fluctuation amplitude zzp and the mechanical and electromagnetic

(transmon) annihilation operators b̂ and â, we obtain the standard micromechanics

13
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Hamiltonian

Ĥ = ~ωâ†â+ ~Ωb̂†b̂− ~g0â
†â(b̂† + b̂). (2.4.4)

The anharmonicity term of the qubit Hamiltonian Ĥqb was neglected in this ex-

pression. We can identify the harmonic oscillator terms for the transmon with

ω = ω[Φ(0)] and the mechanical oscillator with the corresponding resonance fre-

quency Ω. A straightforward calculation leads to the following result for the coupling

strength g0 [5]:

g0 = zzp
∂ω[Φ(zm)]

∂zm

∣∣∣∣
zm=0

= ω0φη (2.4.5)

~ω0 =
√

8EJ,0EC (2.4.6)

φ =
π sin[πΦ(0)/Φ0]√
2 cos[πΦ(0)/Φ0]

(2.4.7)

η =
zzp

Φ0

∂Φ(zm)

∂zm

∣∣∣∣
zm=0

(2.4.8)

By tuning Φ(0), one can set φ such that the coupling can be switched on or off. The

key parameter to change the coupling strength is the magnetomechanical (MM) cou-

pling η. It describes the change in the induced flux in the SQUID for a zero point

motion displacement zzp of the mechanical oscillator.

The strong single photon coupling regime is characterised by g0 & Γm, κ where Γm

is the mechanical and κ the electromagnetic decoherence rate. A further require-

ment for being able to perform sideband cooling of the mechanical motion to the

ground state is the resolved sideband regime Ω/κ & 1. Assuming that the conditions

g0 > Γm and Ω > κ are fulfilled, as it was already demonstrated in multiple exper-

iments [10], the proposal describes a possible way to also achieve the challenging

requirement g0 > κ.

The key idea for increasing the MM coupling η is changing the magnetic field pattern

from a homogeneous to a quadrupole field of the form

~Bqp(y, z) = b(−y~ey + z~ez), (2.4.9)

which has a zero at the resting position z = 0 of the cantilever tip and a constant

gradient b along the z-direction. The change of the induced flux in the SQUID loop

is hence not only a result of the changing cantilever displacement, but also a change

14



2.4. Strong magnetic coupling 15

in the intensity of the screening currents of the SC strip. For zero deflection of

the cantilever those currents vanish and no flux is induced in the SQUID loop. In

conclusion, for the case of a homogeneous field η ∝ 1/z2
w, whereas in the quadrupole

field case η ∝ 1/zw.

We can further quantify the MM coupling strength by

η = χη∗, (2.4.10)

η∗ =
zzpblsws

Φ0

= f(ts/ws)
2zzpBcritls

Φ0

, (2.4.11)

with f(x) =
[
1 + (

√
2x+ x)(1 + x)

]−1/2
, the strip length ls, width ws and thickness

ts (with ls > ws > ts cf. fig. 2.5) and Bcrit the critical field of the SC strip material.

χ represents a geometry factor, which is on the order of 0.1 for the quadrupole field

case, but almost an order of magnitude lower for a homogeneous field, see ref. [5].

The desired quadrupole field pattern can be achieved by combining the field ~Bw of

a pair of wires with counter propagating currents Iw (see fig. 2.5) with a bias field

~Bbias:

~Bqp = ~Bw + ~Bbias (2.4.12)

~Bw(y, z) =
µ0Iw

2π

[
-(z + zw)~ey + (y − dw/2)~ez

(z + zw)2 + (y − dw/2)2
− -(z + zw)~ey + (y + dw/2)~ez

(z + zw)2 + (y + dw/2)2

]
(2.4.13)

~Bbias =
µ0Iw

2π

dw

z2
w + d2

w/4
~ez (2.4.14)

The optimal distance for the wire pair is given by dw = 4zw [5]. By adding the

bias field, the field strength equals zero at the resting position of the cantilever tip

at z = 0. Furthermore, the gradient along the z-direction can be linearised around

z = 0, where one obtains

∂Bqp,z

∂z

∣∣∣
z=0

= b

{
1 +

18

25

(
y

zw

)2

+O

[(
y

zw

)4
]}

, (2.4.15)

b =
4µ0Iw

25πz2
w

. (2.4.16)

The field strength at the SC strip position has to be smaller than the first critical

field of the SC material in order to maintain the field screening properties. For

15



16 2.5. Stochastic differential equations - SDE

niobium this is approx. Bcrit = 140 mT [14]. The magnetic field pattern that results

from eqs. (2.4.12) to (2.4.14) is illustrated in fig. 2.6.
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Figure 2.6: Quadrupole magnetic field ~Bqp pattern in a y-z cross-section, cf. fig. 2.5.

The field is generated by two wires with currents Iw of opposing orientation, indicated

by the red and blue circles, in combination with a homogeneous external bias field. The

quadrupole approximation holds for the region around the SC strip (green rectangle)

on the tip of the cantilever (grey rectangle). Field strengths are only reflected by the

colour coding and not by the density of the field lines.

With feasible parameters of zw ≈ 5 µm, a quadrupole wire current of Iw = 1 A

and a quality factor of the transmon of Q = ω0/κ = 1× 106, one can achieve

a coupling strength of g0/κ = 3.5, which is well within the single photon strong

coupling regime.

2.5 Stochastic differential equations - SDE

The following section treats the basics of stochastic differential equations (SDEs) and

two important noise processes, Gaussian white noise and the Ornstein-Uhlenbeck

(OU) process. Section 2.5.1 is a short description based on ref. [15] of the numerical

16



2.5. Stochastic differential equations - SDE 17

SDE solver following the Heun method. The discussion about noise processes is

motivated by the instructive paper of Gillespie [16].

2.5.1 Heun method

In the following, we want to develop a method to numerically solve a stochastic

differential equation. Our aim is to integrate a SDE of the general form

ẋ(t) = q(t, x(t)) + g(t, x(t))ξ(t), (2.5.1)

where x(t) is the variable we want to solve for, q(t, x(t)) is the deterministic and

g(t, x(t))ξ(t) the stochastic term. As indicated, in a very general case both q and

g can depend explicitly on time t as well as on the value of the variable x at that

point. Typically, we also call q the drift term and g the diffusion term, the origin

of these terms will be clarified later. ξ(t) denotes the noise process, which would

in our case either be Gaussian white noise or Ornstein-Uhlenbeck noise. We treat

those different types of noise in the subsequent sections.

By formally integrating eq. (2.5.1) and introducing the discretised time steps ti = i·h

with a constant step size of h, we can obtain an update formula for x of the form

x(ti+1) = x(ti) +

∫ ti+1

ti

q(s, x(s))ds+

∫ ti+1

ti

g(s, x(s))ξ(s)ds. (2.5.2)

To get rid of the integral expressions, we can Taylor expand q and g and only keep

terms up to first order in h. By following a similar approach to the standard Runge-

Kutta method, we finally end up with the so called Heun method, which is described

by eq. (2.5.3). A thorough derivation can be found e.g. in ref. [15].

k = hq(ti, x(ti)),

l = w(ti)g(ti, x(ti)),

x(ti+1) = x(ti) +
h

2
[q(ti, x(ti)) + q(ti+1, x(ti) + k + l)] +

+
w(ti)

2
[g(ti, x(ti)) + g(ti+1, x(ti) + k + l)] +O(h3/2). (2.5.3)

This result combines the forward propagated Taylor expansion for q and g around

the point (ti, x(ti)) with the backward propagated one around (ti+1, x(ti+1)) . The

17



18 2.5. Stochastic differential equations - SDE

x(ti+1) term that would appear in the argument of q and g is itself approximated by

the forward propagated expression x(ti+1) = x(ti) + k + l. For the stochastic term

we end up with the noise integral

w(ti) =

∫ ti+1

ti

ξ(s)ds. (2.5.4)

It is the subject of section 4.1 to discuss the practical implementation of this ex-

pression in our numerical simulations.

2.5.2 Gaussian white noise

We shall now turn to the investigation of noise processes. Most often we encounter

so called (Gaussian) white noise. The term white should indicate that the noise

signal is composed of a wide range of frequencies, that all contribute equally. In fact

the frequency spectrum of white noise would theoretically be infinitely wide, as we

will see later. This also means, that the noise signal ξw(t) is not differentiable at any

point t. It may seem that this is a purely theoretical construct. There are however

many applications where we can use the white noise process as a useful model. The

problem of restoring the correct physical behaviour is then simply shifted to the

response of a system, which will not follow arbitrarily fast changes.

We also require, that our noise process should be Gaussian. This means, that if we

analyse a large number of sample noise traces, we should for any time t obtain a

Gaussian distribution of the sample values ξw(t). This property allows us to fully

characterise the noise process with only two measures, the expectation value 〈ξw(t)〉

and the auto-covariance cov [ξw(t), ξw(t′)]. The latter is defined via the covariance

cov [x, y] =
〈
(x− 〈x〉)(y − 〈y〉)

〉
= 〈xy〉 − 〈x〉〈y〉 (2.5.5)

For the Gaussian white noise, we get

〈ξw(t)〉 = 0, (2.5.6)

cov [ξw(t), ξw(t′)] = D δ(t− t′). (2.5.7)

The brackets 〈. . . 〉 indicate an average over a large number of sample traces, D is

the diffusion constant and δ(t− t′) represents the Dirac delta function. Accordingly,
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2.5. Stochastic differential equations - SDE 19

perfect white noise ξw is a zero mean, infinite variance process. With the notation

N [µ, σ2] for a random variable that we pick from a normal distribution of mean µ

and variance σ2, this can formally be written as

ξw(t) = lim
dt→0
N
[
0,
D

dt

]
. (2.5.8)

This formulation also explains the role of the diffusion constant D. If we model

a white noise process with a discrete and finite sampling time ∆t instead of the

infinitesimal dt, we effectively limit the considered frequency range. Consequently,

the variance of ξw is no longer infinite, but given by D/∆t.

To be able to characterise a process x(t), we shall define the two important quantities

auto-correlation function Cxx and power spectral density Sxx. In this context, the

latter is usually also called noise spectral density. According to the Wiener-Khinchin

theorem, these measures are related via the Fourier transform and are defined by

Cxx(t
′) = 〈x(t)x(t+ t′)〉 =

=

∫ ∞
0

Sxx(ν) cos(2πνt′)dν, (2.5.9)

Sxx(ν) = 4

∫ ∞
0

Cxx(t
′) cos(2πνt′)dt′. (2.5.10)

The auto-correlation function Cxx(t
′) describes the self-similarity between the orig-

inal signal x(t) and a copy x(t + t′) that is shifted by a time lag t′. For the noise

spectral density Sxx(ν), the one-sided definition with ν ≥ 0 is used throughout this

thesis. In the case of Gaussian white noise, we find

Cξwξw(t′) = D δ(t′), (2.5.11)

Sξwξw(ν) = 2D. (2.5.12)

The noise signal ξw is completely uncorrelated even for smallest time shifts t′. Under

the Fourier transform, the Dirac delta of the auto-correlation function is translated

to a constant noise spectral density up to arbitrarily large frequencies. The relation

of Sxx to the variance of a process x(t),

σ2
x =

∫ ∞
0

Sxx(ν)dν (2.5.13)
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20 2.5. Stochastic differential equations - SDE

demonstrates the initially mentioned infinite variance for ξw, where all frequency

components contribute equally to the noise variance with a magnitude of Sξwξw(ν)dν =

2Ddν.

2.5.3 Ornstein Uhlenbeck process

Another type of noise, which is in some sense more practically oriented, is the so

called Ornstein Uhlenbeck (OU) noise. Its main difference to white noise is the

effectively bounded frequency spectrum. This leads to a well defined variance for

the OU noise process ξou(t) but does not change the fact that it is not differentiable.

Typically, the OU process is itself described by a SDE.

dξou(t)

dt
= − 1

τou

ξou(t) + c1/2ξw(t) (2.5.14)

Compared to eq. (2.5.1), we can identify the drift term as q(t, ξou(t)) = −τ−1
ou ξou(t)

and the diffusion term as g(t, ξou(t)) = c1/2. The parameters that describe the

OU process are the relaxation time τou and the diffusion constant c. It should be

mentioned that the notation in eq. (2.5.14) is not very rigorous, because the time

derivative of ξou is in fact not defined. A way to circumvent this is to express the

SDE by an update formula of the following form:

ξou(t+ dt) = ξou(t)− 1

τou

ξou(t)dt+ c1/2N(t)(dt)1/2. (2.5.15)

Here, N(t) = N [0, 1] denotes a unit normal random variable. The peculiar notation

for the diffusion term is mostly a matter of convenience, we could also rewrite it

as c1/2N(t)(dt)1/2 = N [0, c dt]. It is however useful to keep track of the order in

dt explicitly, especially if we calculate correlations where we can neglect terms with

higher order than one.

The OU process is also a Gaussian process. If we consider eq. (2.5.15) and form

expectation values over a set of sample realisations of ξou, we can determine the

mean 〈ξou(t)〉 and auto-covariance cov [ξou(t), ξou(t′)] [16]. With the initial condition

ξou(t0) = ξ0, one obtains

〈ξou(t)〉 = ξ0e
−(t−t0)/τou , (2.5.16)

cov [ξou(t), ξou(t′)] =
cτou

2
e−|t

′−t|/τou(1− e−2(t−t0)/τou). (2.5.17)

20



2.5. Stochastic differential equations - SDE 21

This fully describes the OU process and we can express ξou by

ξou(t) = N
[
ξ0e
−(t−t0)/τou ,

cτou

2
(1− e−2(t−t0)/τou)

]
. (2.5.18)

In most cases the transient period from the initial condition to a steady-state is of

no interest. Hence, one defines the fully relaxed OU process as

ξ∗ou(t) = lim
t0→−∞

ξou(t) = N
[
0,
cτou

2

]
. (2.5.19)

For this we determine the properties

〈ξ∗ou(t)〉 = 0, (2.5.20)

cov [ξ∗ou(t), ξ∗ou(t′)] =
cτou

2
e−|t

′−t|/τou . (2.5.21)

We can use those results to calculate the auto-correlation Cξ∗ouξ∗ou and noise spectral

density Sξ∗ouξ∗ou according to eqs. (2.5.9) and (2.5.10).

Cξ∗ouξ∗ou(t′) =
cτou

2
e−|t

′|/τou , (2.5.22)

Sξ∗ouξ∗ou(ν) =
2cτ 2

ou

1 + (2πτouν)2
. (2.5.23)

These outcomes highlight the key differences of the OU process compared to white

noise. The noise signal shows significant auto-correlation also for time shifts t′ > 0

and describes an exponential decay with the relaxation time τou as time constant.

Further, we can see that the noise spectral density falls off ∝ 1/ν2 for ν larger than

the corner frequency νc = 1/2πτou. This means that the relaxation time sets the

upper limit for the range of frequencies that contribute to the noise signal ξou. Below

the corner frequency, Sξ∗ouξ∗ou is approximately constant as in the white noise case,

with a magnitude of 2cτ 2
ou. Hence, for a given value of τou, the diffusion constant c

sets the white noise level for low frequencies.
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Chapter 3

Design and experimental setup

This chapter describes how the ideas of the proposal in ref. [5] are realised in

our experiment. We work our way from the inner to the outer components of our

experimental setup, starting from the SQUID and finishing with the cryostat wiring.

Manufacturing processes are explained and design issues and fabrication flaws are

highlighted for possible future improvements.

3.1 SQUID chip

In the following, we will discuss the key ideas in the design of our SQUID sensors.

Subsequently, their microfabrication process is explained. Finally, we provide illus-

trations of the resulting devices along with a description of encountered fabrication

issues.

3.1.1 Design considerations

In this section, we present some design features of our SQUID samples. The Inns-

bruck (IBK) SQUID layout was designed by Christian Schneider from our research

group with the aid of Matthias Rudolph from the University of Tuebingen, who

provided useful input on process capabilities and limitations at the cleanroom of the

PTB Braunschweig. Fabrication details can be found in section 3.1.2. Matthias is

also responsible for the design of the Tuebingen SQUID layout.

Both designs realise a gradiometer SQUID, see section 2.2.1, in order to suppress
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3.1. SQUID chip 23

the influence of background magnetic fields. Further, in both versions each chip

is equipped with 8 SQUIDs. Their dimensions vary in part, with SQUID loops

optimized for different spacings to the cantilever chip (IBK design) or designed to

obtain different characteristic parameters (Tuebingen design). This is also a precau-

tion with the intention of ensuring that we have working SQUIDs on each chip.

IBK design

The geometry of the IBK SQUID layout is designed to maximize the signal that is

picked up from the cantilever. We adopt the key ideas from the proposal in ref. [5].

As described in section 2.4, the quadrupole field is generated by a pair of straight

wires in combination with a bias coil. In contrast to the proposal, these wires are

placed on the same chip as the SQUID structures. The basic layout of the IBK

design is shown in fig. 3.1.

Figure 3.1: Basic IBK SQUID layout. An inset shows the region with the JJs (light

blue) in detail. The top and bottom Nb layers are drawn in dark blue and light green,

shunt resistors in red and VIAs in orange. Arrows indicate the paths for the SQUID

bias current Ibias and flux bias Iφ.

In the centre of fig. 3.1 we find the gradiometer loop of the SQUID on the top

Nb layer. It is enclosed by the quadrupole wires, which stretch across the full width

of the chip (only a section is shown) and are also placed on the top layer. The plot

inset illustrates the position of the JJs and shunt resistors.
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24 3.1. SQUID chip

Adjacent to the quadrupole wires, we find multiple arrays of small squares. These

represent supporting structures that enable better control of the chemical-mechanical

polishing step in the junction fabrication process, see section 3.1.2.

Figure 3.2: Flux biasing.

The SQUID is contacted via the bottom Nb layer. Here

we encounter another feature of the design. The bias

current Ibias and flux bias Iφ are applied as indicated in

fig. 3.1 and share one of the connecting wires. This re-

duces the number of bond pads on the chip. The flux

bias is induced by the magnetic field of the current car-

rying wire as indicated in fig. 3.2.

Another feature is presented in fig. 3.3. Half of the SQUIDs are surrounded by an

additional loop. It is intended to use this structure for feedback cooling of the me-

chanical oscillator. This can be achieved by either moving the zero position of the

quadrupole magnetic field opposite to the direction of the velocity (direct feedback

cooling) or keeping the zero at a fixed point and changing the quadrupole field gra-

dient (parametric cooling). Both require a homogeneous magnetic field that can be

changed quickly. The feedback loop can provide this due to its small inductance.

Figure 3.3: IBK SQUID layout with feedback loop.

Tuebingen design

The main purpose of the Tuebingen SQUID design was, to use it as a test bed for

some ideas for future SQUID layouts. Even though the dimensions were changed

considerably, the design is still suitable for our experiment, albeit not with optimum

signal yield. The layout differs in some aspects from the IBK design. Figure 3.4

illustrates the main features of the Tuebingen SQUID.
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3.1. SQUID chip 25

Figure 3.4: Tuebingen SQUID layout. The colour scheme is the same as in fig. 3.1.

In the inset, we show the JJ section.

In contrast to the IBK layout, the gradiometer loop is moved to the bottom

Nb layer. The loops are much wider, which can lead to a signal reduction if the

cantilever is placed very close to the SQUID.

In the Tuebingen design, the SQUID is contacted via four wires, two each for the bias

Ibias and the flux bias Iφ current. Hence, these two circuits are completely decoupled,

which however comes with an increased number of bond pads. For the flux bias,

a separate loop is placed on top of one half of the gradiometer loop, indicated in

fig. 3.4 on the top Nb layer.

The Tuebingen design is equipped with a few additional features that have proven

very useful in the the operation of the experiment. In fig. 3.5 we show the complete

layout of one SQUID on the Tuebingen chip.

Figure 3.5: Complete Tuebingen SQUID layout with auxiliary features. Red struc-

tures are placed on the resistive AuPd layer and dark blue and light green elements

on the SC top and bottom Nb layer.
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26 3.1. SQUID chip

The red patches in fig. 3.5 that surround the structure represent thermalisation

pads, where left out marks indicate the SQUID position. On the right, the two

large bond pads are connections to the quadrupole line, the narrow blue loop in the

centre. The additional red meander shaped line is a resistive heater, that can be

used to warm up the SQUID beyond the SC transition temperature if trapped flux

is an issue. Connections to the SQUID are established via the first four small bond

pads from the bottom, with the lower two for the flux bias and the upper two for

the bias current. Each of these lines is equipped with an on-chip RF filter [17], used

to reduce high frequency noise of the control currents. Their layout and current

transfer function GI = |Iout/Iin| is described in fig. 3.6.
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Figure 3.6: Tuebingen SQUID RF filters. Figures a) and c) show the layout and b)

and d) the corresponding equivalent circuit of the bias and flux bias current filters,

respectively. The colour scheme is identical to fig. 3.5. In fig. e), we plot the Bode

diagram of the current transfer functions GI.

The filters have corner frequencies of approximately 300 MHz for the bias and

40 MHz for the flux bias current. These values are obtained, by modelling the SQUID

in the form of a 15 Ω load at the filter output and the flux bias loop as a short.
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3.1.2 Fabrication process

Our SQUID samples were produced at the cleanroom facility of the PTB Braun-

schweig. They are the result of a collaboration with the group of Dieter Kölle at

the University of Tuebingen and were designed by Matthias Rudolph, whose PhD

thesis [17] gives a detailed description of the manufacturing process in chapter 3.

The most important fabrication steps are summarised in the following.

a)

b)

c)

d)

e)

f)

The process starts with a 3 ” Si wafer with a

thickness of 350 µm that was thermally oxidised

to create a 300 nm SiO2 isolation layer on its sur-

face. On top of that, a 30 nm Al2O3 etch stop

layer is deposited. This stack (a) is labelled as

Substrate in fig. 3.7.

Next, the junction Nb/Al-AlOx/Nb trilayer (b)

is deposited by DC magnetron sputtering. The

Nb layers have a thickness of 150 nm, interrupted

by a 10 nm thick Al layer. The latter is oxidised

in an intermediate step to form an 1-2 nm AlOx

barrier on the surface. Subsequently, a 100 nm

SiO2 film and a 30 nm Al layer are deposited on

top of the trilayer by plasma enhanced chemical

vapor deposition (PECVD) and thermal evapo-

ration, which are used as masks. The Al is pat-

terned by electron beam lithography (EBL) and

defines the junction.

The SiO2 and the top Nb layer are etched (c)

by reactive ion etching (RIE) in CHF3 and CF4,

respectively, which automatically stops at the Al

layer. An ion beam etch (IBE) with Ar ions fi-

nally strips the Al mask.

The SiO2 layer is used as a mask for an electro-

chemical anodization (d) that oxidises the Nb.
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28 3.1. SQUID chip

g)

h)

i)

j)

Figure 3.7: SQUID fabrication

process flow diagram. With kind

permission adapted from ref. [17].

This improves the junction properties and com-

pensates a growth of the junction size in the prior

etching step.

The bottom Nb layer is patterned by EBL and a

subsequent RIE using SF6 (e), which etches both

the Nb and the Nb2O5.

Another PECVD step buries the junction under

a 600 nm thick layer of SiO2 (f), that isolates the

top from the bottom Nb layer.

This is followed by a chemical-mechanical polish-

ing (CMP) step (g) used to planarize the struc-

ture. Careful timing is essential, because the

process has to stop as soon as the top Nb layer is

released. Typically, a removal of less than 50 nm

of Nb can be achieved.

Next, the vertical interconnect access (VIA)

openings are patterned by EBL, followed by an

ICP-RIE (inductively coupled plasma RIE) with

CHF3 (h), that removes the SiO2 and Nb2O5.

Patterns for the AuPd shunt resistors are generated by EBL. The metal is deposited

by DC magnetron sputtering with a prior deposition step of 2 − 3 nm Al that acts

as adhesion promoter. The AuPd structures are released by a lift-off process (i).

In a last step, the thick 750 nm top Nb layer is deposited (j) by DC magnetron

sputtering, followed by a 300 nm Al mask. The latter is patterned by EBL and used

to define the structure of the top Nb layer, etched in an SF6 RIE. This e.g. removes

the Nb on the top layer that would bypass the AuPd shunt resistor. An equivalent

circuit diagram (white lines in fig. 3.7 (j)) indicates the position of the relevant JJ

elements in the final structure.

28



3.1. SQUID chip 29

3.1.3 Inspection and microfabrication flaws

The manufacturing of our SQUID samples is very demanding and requires a complex

and lengthy fabrication process that usually takes multiple weeks. Each processing

step underlies certain variations, even if the technician operates the machine prop-

erly. Therefore, a detailed inspection of the chips is essential to identify possible

flaws in the microfabrication process. This can save time in debugging the setup

and provides valuable information for improvements to future designs.

IBK design

In a first inspection with an optical microscope, illustrated in fig. 3.8, we cannot

identify any major defects of the structures. All patterns appear well defined and

there are no apparent residuals from the etching and lift-off processes visible. We

can discriminate between top and bottom Nb layer by their colour difference and

one can identify VIAs and shunt resistors.

a)

b)

Figure 3.8: Optical microscope inspection of IBK SQUID samples. Fig. a) shows a

basic IBK SQUID layout and fig. b) a SQUID with feedback loop. Compare figs. 3.1

and 3.3 for details on the design.
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Even though the optical inspection is promising, the experiment reveals that our

samples are corrupted. We are not able to find a properly functioning device on

two sample chips with 8 SQUIDs each. Instead, the SQUIDs appear to be shorted.

A simple optical microscope does not provide the necessary resolution to rule out

possible unwanted connections. Hence, we switch to a scanning electron microscope

(SEM) to examine the structures in more detail. Our findings are shown in fig. 3.9.

Figure 3.9: SEM inspection of an IBK SQUID sample. The plot shows the central

section of the gradiometer. In the middle, we see the VIA that connects the top and

bottom Nb layer, indicated by the large square-shaped recess. Adjacent, we find the

thin strip of the shunt resistor that bridges the gap between VIA and SQUID loop.

At the bottom end of the resistor, we can identify a small bump on the top Nb layer,

which represents the JJ. The large structure on the left is the quadrupole wire.

We can see in fig. 3.9 that the VIA structure is connected with the quadrupole

wire, which is clearly a flaw in the microfabrication. Such defects are observed for

every VIA in the centre of a SQUID structure. The remaining connection is likely

the result of an issue in the final EBL step, which did not open the Al mask properly

for the subsequent SF6 etch. We suspect connections of this kind to be responsible

for the shorted SQUIDs.
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Tuebingen design

The Tuebingen and IBK samples are both manufactured in the same fabrication

run. Also the minimum spacing in the design is comparable. However, the process

performance can vary noticeably depending on the position of the sample on the

wafer. Hence, it is not guaranteed that the Tuebingen sample suffers from the same

problems as the IBK sample. We repeat the inspections from the prior section for

the Tuebingen chip. The optical microscope images are shown in fig. 3.10.

Figure 3.10: Optical microscope inspection of Tuebingen SQUID samples. The main

figure illustrates the auxiliary features of the design, see fig. 3.5 for comparison. In

the inset on the bottom, a close-up of the SQUID is shown, c.f. fig. 3.4.

As in the case of the IBK sample, the first inspection does not indicate any

major issues in the microfabrication. We change to the SEM for a detailed check

for possible defects. The result is illustrated in fig. 3.11.
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32 3.1. SQUID chip

Figure 3.11: SEM inspection of a Tuebingen SQUID sample. The top plot shows an

overview of the SQUID. In the bottom row, we show close-ups of the JJ section (pink

box, rotated by 90◦) and the step coverage of the shunt resistor (green box). The JJs

can be identified by small bumps in the top Nb layer.

Most SQUIDs that we tested on two Tuebingen chips are fully functional. The

close-ups in fig. 3.11 prove that there are no unwanted connections. Also the step

coverage of the shunt resistor is satisfying, despite the thick 750 nm Nb top layer.

The resistance should therefore be close to the nominal value.

Besides those positive findings, we also identify a manufacturing flaw in the Tuebin-

gen samples. We can see from fig. 3.12 that the space between the feed lines of the

flux bias loop is not fully cleared. This is a consequence of a too narrow line spacing

of nominally 300 nm. The SF6 etch cannot clear the Nb either due to residuals from

the Al mask or other contaminations that can lead to micro-masking. The result is

similar to the case of the IBK SQUID. All flux bias loops on the two tested chips

32



3.2. Cantilever chip 33

Figure 3.12: SEM image of a shorted flux

bias line on a Tuebingen sample.

are shorted and can not be used for flux

tuning. The SQUID is however not af-

fected by this flaw, as the gradiometer

loop on the bottom Nb layer is isolated

from the flux bias loop. As described in

section 5.1.2, we also find a workaround

for flux tuning, represented by the bias

coil. The large inductance of the coil

however prevents the use of a standard

SQUID readout technique, the so called

flux-locked-loop (FLL), which is a sub-

stantial drawback for our experiment.

3.2 Cantilever chip

In this section, we first explain the microfabrication process of our cantilever chips.

After that, we describe our attempt of depositing magnetic nanoparticles on the

cantilever tip. The section concludes with illustrations of the alignment procedure

of cantilever and SQUID chip.

3.2.1 Fabrication process

The cantilever chips for our experiment result from a collaboration with Michael

Trupke from the University of Vienna (UNIVIE). They were fabricated at the ”Zen-

trum für Mikro- und Nanostrukturen (ZMNS)” of the Vienna University of Tech-

nology (TU Wien). In the process flow in fig. 3.13, the strip on the cantilever tip

is made of the SC material Nb as proposed in ref. [5]. For our first iteration of the

experiment we however used process development samples, equipped with a Cr strip

instead. Besides that, the process flow is identical.
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34 3.2. Cantilever chip

a)

b)

c)

d)

e)

f)

g)

The starting point is a silicon-on-insulator (SOI)

wafer, which consists of a Si handling layer with

400 µm thickness, a 1 µm SiO2 insulating layer

and a Si device layer with a thickness of 4 µm.

In a first step, the metal coating (a) of 200 nm

is done in-house in an electron beam evaporator

for Cr or externally in the case of Nb.

The pattern of the Nb strip on the cantilever tip

is defined by photolithography (b) with a posi-

tive resist.

It is subsequently etched in an RIE with SF6 (c)

and the photoresist is stripped.

A second photolithography step (d) is used to

define the position of the Ti pillars, that act as

spacers between the cantilever and SQUID chip.

Here, a negative resist is used in order to cre-

ate negative sidewall profiles for the later lift-off

process.

The 1 µm thick Ti layer is deposited (e) by e-

beam evaporation.

Next follows a lift-off process (f) by immersing

the wafer in acetone and applying ultra-sound to

release the excess Ti.

After finishing the patterning of the metal struc-

tures, the cantilever shape has to be defined on

the SOI wafer. For this purpose, another pho-

tolithography step (g) on the device layer defines

the rectangular U-shaped opening for the can-

tilever beam.

The Si device layer is etched in an RIE Bosch

process (h) with SF6. With this, one achieves
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h)

i)

j)

k)

l)

Figure 3.13: Cantilever fabrica-

tion process flow diagram.

vertical sidewalls with the characteristic scallops

of the Bosch process for the cantilever profile.

The etch process automatically stops at the SiO2

layer.

Next, the device layer is coated in photoresist

to protect the sensitive structures. The back

side of the wafer, i.e. the Si handling layer, can

now be patterned. To this end, a photolithog-

raphy step (i) defines the windows for the can-

tilevers.

Another RIE Bosch process step (j) with SF6

is used to etch the structures into the handling

layer.

In a final process step, the photoresist that pro-

tects the device layer is stripped and the wafer is

subsequently immersed in an HF solution. This

wet etching process removes the SiO2 insulation

layer (k) and releases the cantilever beam.

Figure 3.13 (l) illustrates the resulting device in

top view. Attached to the tip of the cantilever

beam is the SC Nb strip and the Ti spacers are

placed outside the corners of the opening. The

wafer is finally diced into chips with 8 cantilevers

each.

3.2.2 Nanoparticle application

The cantilever samples we received from the TU Wien are equipped with Cr strips.

This metal was chosen for testing purposes to check the alignment of the lithogra-

phy steps. Cr is however an anti-ferromagnet. Hence, its spin magnetic moment

vanishes, which is an issue for our detection schemes, see sections 5.4.1 and 5.4.2.
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Nonetheless, the fact that Cr is a good conductor might result in a detectable signal.

This is enabled by the eddy-currents that are induced when the metal experiences

a changing magnetic field due to the cantilever oscillation.

We do not want to solely rely on this mechanism for generating a cantilever signal.

Therefore we try to deposit material that can be magnetised on a cantilever sample

that does not have any Cr applied. We choose magnetite Fe3O4 nanoparticles, which

can have a large magnetisation due to their superparamagnetic properties [18]. An

estimation of the achieved magnetic moment is presented in section 5.4.1.

The nanoparticles come in an aqueous solution. We further dilute the liquid to re-

duce the nanoparticle concentration and use a nebulizer (”OMRON U22 MicroAIR”)

to dispense it on the chip. To this end, we mask the regions of the chip that should

not be covered with nanoparticles. The result is illustrated in fig. 3.14.

Figure 3.14: Cantilever chip with magnetic nanoparticles. In the main plot we see

a section of the chip, with the square-shaped Ti pillars arranged around the windows

for the cantilever beams. The inset shows a close-up of the cantilever that is selected

for our experiment.

We can see that the improvised deposition is not confined to the cantilever tip,

but a large portion of the nebulized nanoparticle solution accumulates in the region

between the cantilever windows. On the other hand, the beam remains mostly

uncovered and only on the tip we find a region with high nanoparticle concentration,

which meets our intention.
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3.2.3 Assembly/Alignment procedure

Our experimental setup requires a relatively accurate alignment of cantilever and

SQUID chip. The SC strip on the cantilever should be centred between the quadrupole

lines and aligned to one of the loop halves of the SQUID gradiometer, ideally with

an accuracy better than 10 µm.

We use a linear translation stage to achieve those positioning accuracies. As indi-

cated in fig. 3.15, a piece of standard optical fibre is glued to the cantilever chip.

The cladding is stripped from the bottom of the fibre, such that we can easily break

it with a wire cutter after the alignment procedure. Therefore, we can pick up the

chip via the attached fibre and move it to the desired position with the translation

stage.

Figure 3.15: Translation stage for the alignment of the cantilever chip. In the inset,

we can see the windows for the cantilever beams, which are used as viewports for the

alignment procedure.

The alignment procedure is performed under an optical microscope. We use the

opening for the cantilever beam to see the SQUID on the chip below. In this way,

we achieve a sufficing alignment accuracy, as indicated in fig. 3.16.
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38 3.3. Printed Circuit Board

a) b)

Figure 3.16: Cantilever alignment procedure. In fig. a) we show the arrangement

for aligning the cantilever to the SQUID chip, which is mounted on the PCB. Fig. b)

illustrates the achieved alignment accuracy.

When the alignment is satisfying, we use the fibre to carefully apply some pres-

sure on the chip to hold it in place. The cantilever chip is finally glued to the PCB

using small drops of ”Stycast 2850 FT” epoxy. We let the epoxy rest for 1-2 h before

we apply it, to increase its viscosity and thereby prevent it from creeping into the

gap between the two chips. The Stycast has to cure for approximately 12 h.

3.3 Printed Circuit Board

The connection to our SQUID chip is provided by a printed circuit board (PCB).

To reduce the effect of resistive heating, we use 50 µm Al wire to bond the chip to

the PCB. For the same purpose, the cross-section of the Cu tracks on the circuit

board is designed as large as possible. We use 25-pin Micro-D connectors for the

signal lines of 4 SQUIDs and screw terminals for the high current connections to

the quadrupole lines. A sketch of the PCB design is shown in fig. 3.17 along with

pictures of the wire bonded chip.
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a) b)

Figure 3.17: PCB design and wire bonding. Fig. a) shows a CAD drawing of the

fully equipped PCB. In b), we see the chip after it was wire bonded to the PCB.

It was further intended to equip the PCB with filters for the different SQUID

signals, as indicated in fig. 3.17 a). This is essential for the IBK design, due to the

missing on-chip RF filters. However, as discussed in section 3.1.3 the IBK samples

could not be used in the experiment. Consequently, no filters were used in the first

iteration with the Tuebingen samples. The filter designs are nonetheless presented

in fig. 3.18 as a reference for possible later use.
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Figure 3.18: SQUID filters for IBK design. Fig. a) and b) show low pass filters

for the bias Ibias and flux bias current Iφ, respectively. In c), a bandpass design for

the feedback loops is illustrated. Plots d) and e) show Bode diagrams of the current

transfer function GI = Iout/Iin. In d) we compare the Ibias and Iφ filters. Fig. e)

shows GI for the bandpass filter and the component IR/Iin of the shunt resistor.
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The transfer functions in fig. 3.18 are obtained with a shorted output for the

filters in b) and c) that represents the SC loops and with a 8.5 Ω load in a), which

models the SQUID. With the cryogenic temperatures of our setup, we are limited

to passive components for the filter designs. We choose to work with capacitors

with NP0/C0G dielectrics and inductors with molypermalloy powder (MPP) core,

because they retain their nominal capacitance [19] and inductance [20] also at cryo-

genic temperatures.

The bias filter is designed to achieve an as low as possible corner frequency with

the available components to ensure a stable working point. For the flux bias filter,

we choose a corner frequency in the range of the mechanical frequency to allow the

use of the FLL readout. Finally, the mechanical frequency should be in the pass

band for the bandpass filter, such that direct feedback cooling is possible. A cer-

tain bandwidth should be available for quicker response and ideally the dip in the

IR/Iin curve in fig. 3.18 e) should be tuned to the mechanical resonance frequency

to prevent warming up the cryostat.

3.4 Bias coil

With the bias coil, we intend to create large magnetic field strengths that should be

homogeneous across the area of the SQUID chip. This requires large currents and

winding numbers. We use thin superconducting NbTi wire to combine both. Our

coils are wound on a lathe, see fig. 3.19, and the windings are coated with ”Stycast

1266” epoxy after each layer. The latter is optimised for cryogenic applications and

provides good thermal conductivity at low temperatures. After curing, it also serves

as protection of the fragile insulation of the SC wires.

The coil body has a height of h = 9 mm and an inner radius of rin = 5 mm. Together

with the windings, the outer radius results in rout = 8.5 mm.

In the course of the experiment, we fabricated three different coils. A first attempt

with single SC filament wire of 67 µm thickness results in a winding number of

N = 5240. The coil wire however shows a connection to the coil body and the SC

breaks down at too low currents. These issues are attributed to the fragility of the
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wire. During the winding process it is put under tension, which presumably causes

the SC filament to break and damages the wire insulation at sharp corners.

Consequently, we switch to a thicker 254 µm multi-filament wire with 54 SC filaments

for a proof-of-principle attempt. A second coil with N = 440 turns is hand-wound

and is able to withstand the desired high currents, as explained in section 5.2.2.

In a final iteration, we use a 127 µm thick wire with 54 SC filaments. A third coil

with N = 1680 turns is wound on the lathe. The fragile insulation is damaged in

the winding process, which can however be repaired by also coating the coil body

with Stycast epoxy.

The wires that leave the coil are finally twisted to a pair and coated with ”GE

varnish” for better protection. They are connected to the dedicated high current

lines, described in section 3.5.2.

Figure 3.19: Coil winding process and resulting bias coil. In the inset, we show the

first generation bias coil.

3.5 Sample mount and electronic connectivity

This section describes the remaining components of our experimental setup. They

provide the connection to our SQUID samples and take care of the alignment of the

individual elements and the thermalisation with the cryostat.
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3.5.1 Sample holder and magnetic shielding

The PCB is placed in a copper box for electromagnetic shielding. At the same time,

this box is part of the connection between cryostat plate and sample. Therefore,

when mounting the sample, the contact area of the joints should be cleaned with

sandpaper and coated with ”GE 7031 low temperature varnish” or ”Apiezon R© high

vacuum N grease” for better thermal conductivity.

The copper box is suspended from a T-beam that also carries the bias coil, see

fig. 3.20. Box and T-beam are finally bolted to the cryostat via an adapter plate

made of copper.

a) b) c)

Figure 3.20: Sample box and magnetic shield. Fig. a) and b) show CAD drawings

of the sample holder in sectional view. In a), we can see the magnetic mu-metal shield

that surrounds the copper box and in b) the assembly with the PCB is illustrated.

Plot c) shows pictures of the individual components.

As illustrated in fig. 3.20 a), the sample box is enclosed in a magnetic shield. The

latter is manufactured of so called mu-metal. This is a material with an exceptionally

high permeability in the range of µr = 7× 104 for static fields [21]. Due to that,

external magnetic fields are attracted by the shield and effectively guided around

the sample box. Our shield is composed of two layers of 1 mm mu-metal and should

achieve a magnetic field suppression of Bint/Bext < 1× 10−5.

In a final step of the fabrication, the shields are annealed in a H-atmosphere. After
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that, they have to be treated with care, as they are highly sensitive to shock or

stress. Otherwise, the high permeability properties can be lost.

3.5.2 Wiring scheme

In our experiment, we have to supply the quadrupole line and bias coil with currents

in the range of 1 A. The structures on our sample chips are all fabricated with

Nb, which can achieve supercurrent densities jc > 1× 1011 A/m2 [22]. For 1 A we

require jc = 3.3× 1011 A/m2. As discussed in section 5.3, a fabrication flaw prevents

a measurement of the critical current for the quadrupole line on our chip.

Figure 3.21: Cryostat wiring.

Here, the sample box is placed on

the 4 K plate, as can be seen in the

bottom of the inset.

Handling such high currents in a cryostat en-

vironment is a delicate task. The normal con-

ducting part of the cryostat wiring requires large

cross sections, which presents an issue for main-

taining the thermal isolation of the individual

cryostat plates. We equipped our cryostat with

a set of 10 dedicated high current lines, repre-

sented by the red wires in fig. 3.21. The lines are

thermally anchored by large copper blocks and

span the section from the cryostat top to the 4 K

PT2 stage. Despite the increased thermal load

on those plates, we are able to reach a final base

temperature of roughly 15 mK without a notice-

able slowdown in the cool-down procedure.

An illustration of the full wiring scheme of our

experimental setup is provided in fig. 3.22. Two

pairs of high current wires are used to supply the bias coil and quadrupole line. The

section from the PT2 plate to the sample on the 1 K still plate is connected by SC

NbTi loom wires.

Bias and flux bias lines on the SQUID chip are connected by Cu loom wires with

12 twisted pairs from top to PT2. The remaining section to the still plate is wired

with SC NbTi looms.
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Outside the cryostat, we use a triply shielded cable with 12 copper wire pairs. The

cable connects the SQUID lines to a breakout box, from where we then use BNC

cables for the connection to current sources (Keysight B2902A SMU) and measure-

ment devices (LabJack T7-PRO DAQ board and R&S FSV spectrum analyser). We

use low pass filters to reduce RF noise on the SQUID lines. For the measurements

in chapter 5, the cut-off frequencies of these filters are 1 kHz for the bias current

and 5 kHz for the coil current (Thorlabs EF110 and EF114). The flux bias loop and

quadrupole line can not be used with our samples, see sections 3.1.3 and 5.3.

Figure 3.22: Simplified schematic of the experimental setup. The dashed contour

marks the interior of the cryostat and on the bottom a sketch of the connections to

PCB and bias coil is shown. Interfaces between wire sections are indicated by grey

rectangles. The copper blocks for thermalisation of the high current lines are placed

on the PT1 and PT2 stage, shown in dark red. We use current sources to supply

the SQUID bias and coil current and analyse the SQUID output voltage VSQUID with

either a DAQ board (red) or a spectrum analyser (blue).
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Chapter 4

Numerical simulations

We use a numerical approach to model characteristic curves of the SQUID. This

chapter first discusses, how we can simulate the Johnson current noise from sec-

tion 2.2.2. Later, we demonstrate the influence of various SQUID parameters on the

I-Φ-V curve.

The results are finally used in section 5.1.4, where I try to fit the simulation model

to an actual characteristic curve of one of the SQUIDs in our experiment. This will

enable us to extract valuable information about its characteristic parameters and

give us some insights in imperfections of the fabrication process.

4.1 Noise modelling

In this section, we are going to develop a practical realisation of the noise pro-

cesses in section 2.5 that we can use for our numerical SQUID simulations. The

procedure closely follows the descriptions in ref. [15], but a more general version

of the Ornstein-Uhlenbeck noise process according to ref. [16] is implemented. A

verification of the properties of our noise modelling is presented at the end of each

section.

4.1.1 Gaussian white noise

We want to determine how a variable evolves according to a SDE that is subject

to white noise. Therefore, we have to express the noise integral of eq. (2.5.4) in a
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way, that it can be implemented in a numerical simulation. If we realise that the

noise integral describes a Gaussian process, we can fully describe it with the two

parameters mean and auto-covariance (see eq. (2.5.5)). For discretised time steps

ti = i · h in our simulation, we obtain

〈ww(ti)〉 = 0, (4.1.1)

cov [ww(ti), ww(tj)] = Dhδij. (4.1.2)

This behaviour can be modelled by a unit normal random variable ui with 〈ui〉 = 0

and 〈uiuj〉 = δij, i.e. ui ∈ N [0, 1]. The noise integral for a Gaussian white noise

process can hence be described by the simple relation

ww(ti) =
√
Dhui. (4.1.3)

Thus, all we have to do in our numerical simulation routine in eq. (2.5.3) is gener-

ating a new sample from a unit normal distribution for each iteration.

What is left is to determine the constant D, which sets the magnitude of the noise

variance. In our SQUID simulations, we would like to implement the thermal John-

son current noise IN that is created by the junction shunt resistors. Its magnitude

can be expressed by the spectral noise density

SININ(f) =
4kBT

R
. (4.1.4)

Here f denotes the frequency, kB the Boltzmann constant, T the temperature and

R the shunt resistance. As described in section 2.2.2, our model for the numerical

simulations works with normalised variables. For the spectral noise density this

normalisation results in

SiNiN(ν) =
ωc

I2
0

SININ = 4Γ, (4.1.5)

where ν = f 2π
ωc

is the normalised frequency, ωc the characteristic frequency, I0 the

mean critical current of the junctions and Γ the noise parameter. If we compare this

to the result from eq. (2.5.12), we find

D = 2Γ. (4.1.6)

We validate the correct behaviour of our white noise model by analysing time record-

ings of the normalised noise current iN in our simulations. To this end, we generate

46



4.1. Noise modelling 47

100 samples with a total simulation time of T = 5000 and a sampling step size of

h = 0.02 for a noise parameter of Γ = 1× 10−3. T and h are normalised quantities

in units of ω−1
c = 3.3× 10−12 s. We perform a characterisation of the noise proper-

ties by calculating the auto-correlation function CiNiN and the spectral noise density

SiNiN . The results are presented in fig. 4.1.
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Figure 4.1: Characterisation of the implemented Gaussian white noise model for iN.

In a) we plot a section of the auto-correlation function CiNiN with respect to time t′.

The latter is normalised to ω−1
c and expressed in units of the simulation step size h.

Plot b) shows the corresponding spectral noise density SiNiN vs. the true frequency

f . The orange line marks the SiNiN = 4Γ level. The curves are obtained by averaging

over n = 100 samples.

If we focus on fig. 4.1 b) first, we can see that the result for SiNiN agrees very

well with the expected white noise level from eq. (4.1.5). The increasing spread

of the data points results from their even frequency spacing. The logarithmic plot

collects more points at higher frequencies and therefore shows a larger portion of

the underlying Gaussian distribution.

In fig. 4.1 a), we also find good agreement with the predicted Dirac delta function

for CiNiN in eq. (2.5.11). We can furthermore determine the nominal peak height

of CiNiN(0). The generated noise current traces are sampled with a step size of

h = 0.02. According to the Nyquist-Shannon sampling theorem, the maximum

frequency component in our noise spectrum will be νmax = 1/2h. If we consider

eq. (2.5.13) and integrate the constant spectral noise density SiNiN = 4Γ over the
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48 4.1. Noise modelling

frequency range ν = [0, νmax], we obtain

CiNiN(0) = σ2
iN

=
4Γ

2h
= 0.1, (4.1.7)

which is also the peak height we find in fig. 4.1 a).

4.1.2 Ornstein-Uhlenbeck noise

Analogue to section 4.1.1, we start with searching for an expression for the noise

integral in eq. (2.5.4) of the Ornstein-Uhlenbeck (OU) process, that is suitable to be

implemented in our numerical simulations. For this purpose, we define the function

W (t) =

∫ t

t0

ξou(s)ds, (4.1.8)

where we integrate the noise term starting from t0 with ξou(t0) = ξ0. Hence, the

noise integral wou(ti) can be expressed as

wou(ti) = W (ti+1)−W (ti). (4.1.9)

Due to the fact that dW
dt

= ξou(t), we can make use of eq. (2.5.14) and find a solution

for W (t) with the initial conditions W (t0) = 0 and dW
dt

∣∣
t=t0

= ξ0,

W (t) = τouξ0

(
1− e−(t−t0)/τou

)
+ c1/2τou

[∫ t

t0

ξw(s)ds− e−(t−t0)/τou

∫ t

t0

es/τouξw(s)ds

]
.

(4.1.10)

As in section 2.5.3, τou denotes the relaxation time and c the diffusion constant.

Note that our expression for W (t) now only includes integrals of the white noise

process ξw instead of the OU process ξou.

This result allows us to determine an update formula for the noise integral wou.

Making use of the definitions

p = e−h/τou ,

f1(t) = c1/2τou

∫ t+h

t

ξw(s)ds, (4.1.11)

f2(t) = −c1/2τou p e
−(t−t0)/τou

∫ t+h

t

es/τouξw(s)ds,

and by discretising the time as ti = i · h, we find the relation

wou(ti+1) = pwou(ti)− pf1(ti) + f1(ti+1)− f2(ti) + f2(ti+1). (4.1.12)
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4.1. Noise modelling 49

These expressions might still look very complicated, but if we take a closer look at

the properties of f1 and f2 in eq. (4.1.11), we can greatly simplify the calculation.

First of all, f1 and f2 describe Gaussian processes, which implies, that we can fully

characterise them by their expectation value and auto-correlation. We find for both

terms, that 〈f1(ti)〉 = 〈f2(ti)〉 = 0. Furthermore, one can calculate the following

auto- and cross-correlations:

〈f1(ti)f1(tj)〉 = cτ 2
ouh δij,

〈f2(ti)f2(tj)〉 =
cτ 3

ou

2
(1− p2) δij, (4.1.13)

〈f1(ti)f2(tj)〉 = −cτ 3
ou(1− p) δij.

In contrast to section 4.1.1, we now have two correlated Gaussian processes. This

behaviour can be modelled with two unit normal random variables ui and vi, with

〈ui〉 = 〈vi〉 = 0, 〈uiuj〉 = 〈vivj〉 = δij and 〈uivj〉 = 0. To create the correlation

between f1 and f2, we can simply set

f1(ti) = αui,

f2(ti) = βui + γvi. (4.1.14)

The weights can then be calculated with the help of eq. (4.1.13). One finds

α = τou

√
ch,

β = τ 2
ou(p− 1)

√
c

h
, (4.1.15)

γ =

√
cτ 3

ou

2

[
1− p2 − 2τou

h
(1− p)2

]
.

In summary, to implement an OU noise source we have to update the noise integral

term wou with each iteration according to eq. (4.1.12). This involves two correlated

variables f1 and f2, which we can model as weighted sums of two unit normal random

variables ui and vi. To calculate wou(ti+1) we also require the knowledge of wou(ti),

f1(ti) and f2(ti) of the former iteration. The simulation is therefore not self-starting

and we have to initialise wou with

wou(t0) =

√
cτ 3

ou

2
(1− p)us + f1(t0) + f2(t0), (4.1.16)
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50 4.1. Noise modelling

with us being another unit normal random variable independent of u0 and v0.

We also generated OU noise traces and carried out an analysis equivalent to the

one in section 4.1.1. A total number of 100 samples was simulated for the following

parameters (quantities without physical units are normalised to ωc or ω−1
c ):

T = 5000 h = 0.02 Γ = 1× 10−3

I0 = 10 µA R0 = 10 Ω ωc = 3.04× 1011 s−1

fmax = 100 GHz τ ′ou = 0.484 c′ = 8.55× 10−3

We set the relaxation time τou and the diffusion constant c, which fully characterise

the OU noise process, according to

τou =
τ ′ou

ωc

=
1

2πfmax

and c = ωcc
′ =

2Γ

ωcτ 2
ou

. (4.1.17)

These relations are especially convenient for our noise current modelling. They

translate the fundamental noise properties to practical measurable quantities. Their

meaning is best described with the help of fig. 4.2, where the results of the OU noise

analysis are presented.

As indicated in fig. 4.2 b), τou is related to the corner frequency of the spectral noise

density SiNiN . This effectively determines the maximum frequency that contributes

to the noise, higher frequencies are increasingly suppressed. Furthermore, we find

that c is related to the asymptotic value of SiNiN for low frequencies. As we are

interested in modelling Johnson current noise, we have to inherit the corresponding

low frequency behaviour. This is described as Gaussian white noise with magnitude

4Γ, see eq. (4.1.5). Thus, by picking a maximum frequency fmax for the OU current

noise we fix the relaxation time τou and with our choice for the noise parameter Γ

we also set the diffusion constant c. We see that the generated noise is in excellent

agreement with the associated theoretical model from eq. (2.5.23).
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Figure 4.2: Characterisation of the Ornstein-Uhlenbeck noise implementation for

iN. Figure a) shows the auto-correlation function CiNiN with respect to time t′, which

is normalised to ω−1
c and expressed in units of the simulation step size h. The ver-

tical grey dashed lines mark points with t′ωc = τ ′ou, where CiNiN has dropped to

1/e · CiNiN(0), marked by the horizontal line. In b), the corresponding spectral noise

density SiNiN is plotted vs. frequency f . The theoretical expression from eq. (2.5.23) is

shown by the orange line. A grey dashed line marks the corner frequency fmax, where

the amplitude of SiNiN is reduced by a factor 1/2 of the low frequency asymptotic

value. The curves are obtained by averaging over n = 100 samples.

In fig. 4.2 a), we see how the noise signal is strongly correlated for small values

of t′ and that the auto-correlation function follows an exponential decay when t′

is increased. The decay constant is given by 1/τou. We can further calculate the

magnitude of the noise variance σ2
iN

, which is equivalent to the auto-correlation

function at t′ = 0, according to eq. (2.5.22). We obtain

σ2
iN

= CiNiN(0) =
cτou

2
= 2.07× 10−3, (4.1.18)

which is in good agreement with the peak height in fig. 4.2 a).

4.2 SQUID simulations

In this section, I want to illustrate the influence of various parameters on the SQUID

I-Φ-V characteristic curve. First we are going to compare different configurations
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52 4.2. SQUID simulations

for the Stewart-McCumber parameter βC and the screening parameter βL to get an

intuition for their respective effect. This is followed by a study on the individual

impact of SQUID asymmetries, defined in section 2.2.2. With that we should be able

to decide whether our fitting routine in section 5.1.4 provides meaningful results.

4.2.1 Characteristic curve βC & βL dependence

The Stewart-McCumber parameter βC and the screening parameter βL describe

the junction shunt capacitance and the loop inductance of a SQUID, respectively.

Their influence on the SQUID characteristic curve is substantial. But especially its

dependence on βC is intricate and usually investigated by numerical simulations.

Hence, I will try to give an overview by illustrating exemplary SQUID characteristic

curves for varying βC and βL in the following.

The Johnson current noise created by the junction shunt resistors is modelled by

a white noise process with Γ = 0.01. A total simulation time of Ttot = 1× 104

is used for averaging the resulting SQUID voltage at each point (Ibias,Φ) and the

simulation step size is h = 0.2. Figure 4.3 presents the obtained SQUID I-Φ-V for

βC ∈ {0.2, 1.0, 2.0} and βL ∈ {0.5, 1.0, 4.0}.

With an increasing screening parameter βL, the inductance L of the SQUID loop

becomes more and more important. For large L, already a small ring current J in

the loop is able to generate a substantial amount of flux

ΦJ

Φ0

=
LJ

Φ0

=
βLJ

2I0

(4.2.1)

that will screen the externally applied flux Φa. From this follows, that the total flux

through the SQUID ΦT = Φa +ΦJ only reaches a maximum value Φmax < Φ0/2 [23].

We can quantify this behaviour by examining the effective critical current Ic,eff . This

is the maximum bias current for a selected external flux Φa at which the SQUID

is still in the superconducting state with V = 0. For ΦT = Φ0/2, which implies

βL = 0, the effective critical current would be Ic,eff = 0 and the modulation depth

∆Ic,eff

Ic,max

=
Ic,max − Ic,min

Ic,max

=
Ic,eff(ΦT = 0)− Ic,eff(ΦT = Φmax)

Ic,eff(ΦT = 0)
(4.2.2)

would be maximal with ∆Ic,eff/Ic,max = 1. With a screening parameter βL & 10 and
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perfectly symmetric SQUID junctions, the modulation depth scales as [24, 25]

∆Ic,eff

Ic,max

≈ 1

βL

. (4.2.3)

In fig. 4.3, it is easy to see that the modulation depth is continuously reduced with

increasing βL, irrespective of the choice for βC.
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Figure 4.3: SQUID I-Φ-V characteristic curves for varying βC and βL. The plot

labels indicate the respective configuration.
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The systematics in the SQUID behaviour for different values of βC are less obvi-

ous. By increasing βC from small values to βC ' 1, we can observe a change in the

phase of the Φ-V curves for bias currents slightly above the critical point. This is a

result of the ring current in the SQUID loop, that excites the resonance of the loop

inductance L and the junction capacitance C [26].

Furthermore, without the effect of thermal noise, a SQUID would have a hysteretic

I-V curve for values of βC & 0.8 [27]. My simulation model does not take this effect

into account. However, the thermal noise smears out hysteresis effects [26], which

means that also the characteristic curves for βC = 2 are meaningful. In those, we ob-

serve the formation of additional plateaus besides the superconducting region. Also

the transition from the superconducting to the normal conducting state becomes

more and more pronounced for increasing βC.

4.2.2 Asymmetry studies

Our numerical simulations allow us to generate SQUID I-Φ-V characteristic curves

for all relevant parameter combinations. This is especially interesting for analysing

the influence of the individual asymmetry parameters defined in section 2.2.2. We

simulate SQUID characteristic curves for the parameters I0 = 40 µA, R0 = 17 Ω,

βC = 1.0, βL = 4.0 and Γ = 0.01 and vary one asymmetry parameter at a time.
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Figure 4.4: Effect of an asymmetry αI in the critical currents of the SQUID junctions.
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For increasing values of αI, we observe a relative shift of the Φ-V curves for positive

and negative bias currents. The plot for αI = 0.6 is close to the extreme case. Here

we can e.g. find a SQUID I-V curve, where the magnitude of the effective critical

current |Ic,eff | is maximal for Ibias > 0 and minimal for Ibias < 0. We can define

this shift ∆Φ with respect to the points of maximum |Ic,eff | for positive (Ipos
c,max) and

negative bias currents (Ineg
c,max) as

∆Φ = Φa(Ipos
c,max)− Φa(Ineg

c,max). (4.2.4)

Studies based on similar numerical simulations lead to the result [24, 25]

∆Φ

Φ0

= βL(αI + αL), (4.2.5)

with αL being the inductance asymmetry of the two SQUID loop halves.

In addition, large values of αI cause a noticeable skew in the Φ-V curves and lead

to a reduction of the modulation depth by increasing Ic,min, cf. section 4.2.1. The

right most plot illustrates both of these effects.
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Figure 4.5: Effect of an asymmetry αR in the shunt resistances of the SQUID

junctions.

An asymmetry in the shunt resistors of the two Josephson junctions αR mostly

causes a distortion of the Φ-V curves. For large αR the modulation depth appears

suppressed, especially for bias currents that are clearly above the critical point. We
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can also observe a slight skewing effect of the characteristic curves. However, there

is no relative shift of Φ-V curves for positive and negative bias currents apparent.

This is an indicator by which we can discriminate αR asymmetries from an αI or αL

imbalance.

Junction capacitance asymmetry αC
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Figure 4.6: Effect of an asymmetry αC in the junction capacitances of the SQUID.

The characteristics of an imbalance in the junction capacitances αC are very similar

to those of an αR asymmetry. As before, there is no ∆Φ shift apparent. We also find

that the Φ-V curves are clearly skewed and that the modulation depth is suppressed

for large values of αC. In our example plots, the former effect is more pronounced

and the latter one less than in the prior αR analysis. It is difficult to discriminate

αC from αR asymmetries. For a fit procedure as in section 5.1.4 it may be helpful to

restrict the capacitance asymmetry to αC = αI. This assumes, that the imbalance

is purely of geometric origin and results from a deviation in the size of the two

Josephson junctions [28].
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Loop inductance asymmetry αL

Ibias(
A)

-120
-60

0
60

120

A/ 0

-1.0 -0.5
0.0

0.5
1.0

V (m
V)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

L = 0.05

Ibias(
A)

-120
-60

0
60

120

A/ 0

-1.0 -0.5
0.0

0.5
1.0

V (m
V)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

L = 0.25

Ibias(
A)

-120
-60

0
60

120

A/ 0

-1.0 -0.5
0.0

0.5
1.0

V (m
V)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

L = 0.60

Figure 4.7: Effect of an asymmetry αL in the inductances of the two SQUID loop

halves.

As described in eq. (4.2.5), we observe a shift ∆Φ between Φ-V curves for positive

and negative bias currents if we increase αL. In contrast to the critical current

asymmetry αI, we practically cannot observe skewing. Only for the very large value

of αL = 0.6 we see the onset of the effect. The inductance asymmetry also does

not affect the modulation depth. Hence, we have clear indicators to differentiate

between an αI and αL asymmetry.
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Chapter 5

Experimental results

This chapter covers the characterisation of components of our experimental setup

as well as measurement results. First, we describe the behaviour of our DC SQUID

magnetic field sensor. This is followed by performance studies of the elements that

create the magnetic field pattern explained in section 2.4 and chapter 3. Finally, we

try to detect the thermal motion of the oscillator at a temperature around 1 K in

the response of our SQUID.

5.1 DC SQUID characterisation

In the following, we describe the characterisation procedure of the main compo-

nent of our experiment, the DC SQUID. Its excellent sensitivity to changes in the

magnetic field makes it the perfect sensor for detecting the minuscule magnetic

distortions induced by the mechanical oscillator. Characterising the performance of

our SQUID and extracting characteristic parameters will be the main subject in this

chapter. I split this procedure into smaller portions and progressively set bounds on

the parameters. At the same time, the behaviour of the SQUID is further illustrated

on the basis of actual measurement results.

5.1.1 Current voltage characteristics

The characteristic curve of the voltage V across a SQUID for a chosen bias cur-

rent Ibias describes one important aspect of the functional principle of a SQUID.
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The transition point from the superconducting to the resistive state is mainly de-

termined by the critical current I0 and the shunt resistance R0 of the Josephson

junctions. These quantities refer to the parameters of a single Josephson junction.

The parallel arrangement of two junctions in the DC SQUID therefore leads to

a superconducting region of the I-V curve that spans [−2I0,+2I0] and has a nor-

mal conducting asymptote for large bias currents of Vnormal = IbiasR0/2. A simplified

model of a SQUID I-V curve, neglecting the junction capacitance and thermal noise

and assuming perfectly symmetrical junctions is described by

v =

0 if |i| ≤ 1

sign(i)
√
i2 − 1 otherwise.

(5.1.1)

Here v is the SQUID voltage normalised to I0R0 and i the bias current normalised

to 2I0.

Figure 5.1 shows a typical curve obtained from SQUID #1 on a Tuebingen sample.

In this case, the sample was placed on the still plate of the cryostat with a nominal

temperature of roughly 1 K. We performed the measurement by sweeping through a

set of bias current values and averaging the SQUID voltage for tavg = 0.5 s for every

bias current set point.

From the raw data in fig. 5.1 we can extract an apparent resistance for low bias

current values of Rwire = 1.83(2) Ω. The limited amount of loom wires in our cryostat

prevented a four wire connection. Therefore, the measurements also include the

resistance of the connecting wires. Calibrating the line resistance from the cryostat

top plate to the 1 K still plate compensates for Rloom = 1.2(1) Ω. A temperature

check with a ruthenium oxide resistance probe placed inside the sample box yielded

a temperature of 1.8(1) K, which is clearly lower than the critical temperature of

niobium of roughly 9 K [29]. Due to that, it is fair to assume that the SQUID reached

the superconducting state for low bias currents and the slope of the characteristic

curve around Ibias = 0 should be 0. The remaining discrepancy of approx. 0.6 Ω

is attributed to the rest of the wiring. This includes the section on the cold end,

consisting of connectors, PCB and bonding wires, as well as the connection to the

measurement devices on the warm end outside the cryostat.
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Figure 5.1: SQUID Ibias-V curve with wire resistance correction. From the raw

data for SQUID #1 represented by the green line, we subtract the resistance of the

wiring, resulting in the corrected I-V curve shown in blue. A simplified model for the

current-voltage characteristics of a SQUID is fit to the corrected curve. The result is

presented by the dash-dotted red line and the obtained fit parameters are listed in the

plot legend.

The blue line in fig. 5.1 shows a corrected I-V curve, where the contribution of

the wire resistance was subtracted. In addition, the red broken line represents a

simple model fit according to eq. (5.1.1). The following parameters are determined

from the fit for SQUID #1 on the Tuebingen sample:

I0 = 45.1(1) µA,

R0 = 11.80(2) Ω.

The strongly simplified model used in this section only provides a quick estimate for

the SQUID parameters. However, the results serve as a good starting point for the

more complex fitting procedure in section 5.1.4.

In the course of the experiment, we continuously improved the thermal anchoring
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5.1. DC SQUID characterisation 61

of the sample and finally moved the sample box from the initial 4 K stage to the

colder 1 K still plate in the cryostat. Hence, we can compare the I-V characteristic

curves for different SQUID temperatures, as the experimental setup remained mostly

unchanged for these measurements. The only difference results from changes in the

cryostat wiring. We can eliminate this influence by comparing the normal conducting

asymptote of the I-V curves, determined by the shunt resistance R0 of the Josephson

junctions. As these resistors are fabricated from an AuPd alloy (53 % Au, 47 %

Pd) whose resistivity stays constant for the temperature range of interest [30], we

can simply adjust the wire resistance such that the normal conducting asymptotes

match. Figure 5.2 shows the comparison of the I-V characteristic for SQUID #5

on the Tuebingen sample for three different temperatures.

0.0 50.0 100.0 150.0

Ibias ( A)

0.0

0.3

0.6

0.9

1.2

V
(m

V)

T = 6.7(1) K @ 4K plate

T = 5.2(1) K @ 4K plate

T = 1.8(1) K @ 1K plate

Figure 5.2: Temperature dependence of the SQUID I-V characteristics. The current

voltage curves of SQUID #5 for three different cool-down runs are compared. Better

thermal anchoring as well as improvements in the wiring lead to a reduced noise

rounding of the SQUID I-V curves. Temperatures measured by a ruthenium oxide

probe are listed in the legend.
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As the temperature decreases, the transition from the normal conducting to

the superconducting phase becomes more and more pronounced. The difference

between the two measurements at the 4 K plate is related to the improved thermal

anchoring. Every joint between the cryostat plate, the pieces of the sample box and

the PCB that carries the sample was covered with ”GE varnish” to increase the

thermal conductivity. Furthermore, we reduced the heat intake from the loom wire

by increasing the length of wire between adjacent cryostat plates. Also the thermal

anchoring of the loom wire was improved by tightly clamping it at the entrance point

to each plate and winding some wire around copper posts covered with ”Apiezon R©

N grease” for better thermal contact. These methods were adopted from the helpful

and extensive book on Experimental Techniques for Low-Temperature Measurements

by J. Ekin [31].

All these improvements led to a temperature reduction from 6.7(1) K to 5.2(1) K

between the two runs with the sample positioned on the 4 K plate. It is worth

mentioning, that these temperatures were measured at the bottom of the sample box.

This box is connected to the SQUID chip via the PCB, whose thermal conductivity

is unknown. It is therefore not guaranteed that the SQUID reaches the same final

temperature as the sample box. Especially in the first run at 6.7(1) K without the

described improvements, the contact might have been too poor to fully thermalize

the SQUID chip and the actual sample temperature might be even higher.

We maintained these improvements for the measurements at the 1 K plate and a

final temperature of 1.8(1) K was determined. A more detailed characterisation

procedure, together with an estimation of the effective temperature of the SQUID

is presented in section 5.1.4.

5.1.2 Flux voltage characteristics

The main feature of a SQUID is the modulation of the voltage through applying an

external magnetic field. As described in section 3.1.1, the flux bias loop designed to

induce this magnetic flux was shorted on all the working SQUIDs of our Tuebingen

samples. This could lead to difficulties in coupling flux to the SQUID loop, due to

its gradiometric design.
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Despite those imperfections, we were able to observe flux tunability for some SQUIDs

by using the large bias coil above the sample. In principle this coil is designed to

create a constant homogeneous bias field that should be invisible for all gradiometer

SQUIDs on the chip. Against our expectations, we could also use it to create a

static flux bias for the SQUIDs. This compromise solution has the drawback, that

a powerful standard technique for SQUID readout, the so called flux locked loop

(FLL), can not be used in the given experimental setup. This method would rely

on a quick feedback mechanism that maintains a constant flux through the SQUID

loop, which is not possible with the slow response of the bias coil due to its large

inductance.

A map of flux voltage curves for SQUID #5 on a Tuebingen sample is shown in

fig. 5.3. The data was obtained by acquiring the full Ibias-V curve of the SQUID for

a set of currents through the bias coil Icoil. Due to the fact that the measurement

procedure for this large number of points is very time consuming, the averaging

time of the SQUID voltage V at each pair of (Ibias, Icoil) values was reduced to

tavg = 0.2 s.

We find that the critical current of SQUID #5 exhibits a very small modulation

depth. The voltage V only shows considerable modulation through Icoil in a rela-

tively narrow bias current range of |Ibias| ≈ 70..90 µA, as illustrated in fig. 5.3(a). On

top of that, the shape of the Icoil-V curves appears slightly skewed and its maxima

and minima do not overlap perfectly for positive and negative bias currents. The

latter can be an indication for an asymmetry in the critical currents of the two DC

SQUID junctions [26]. This is further investigated in sections 5.1.3 and 5.1.4.

The magnetic field strength of the bias coil grows linearly with increasing bias coil

current Icoil. Hence, the applied external flux through the SQUID loop Φa is a linear

function of the coil current. We use a ”skewed” sine fit to extract the period of the

curves and determine the conversion factor cI−Φ between Icoil and Φa,

y(x) = y0 +
A

arctan
(
t/
√

1− t2
) arctan

(
t sin (2πνx+ φ)

1 + t cos (2πνx+ φ)

)
. (5.1.2)

Here, y0 is the offset, A the amplitude, ν the frequency, φ the phase and t the

skewness factor with t ∈ [−1,+1]. For t = 0, i.e. no skew, this expression produces

a sine function of the form y(x) = y0 +A sin(2πνx+ φ). The extreme cases t = ±1
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64 5.1. DC SQUID characterisation

correspond to positively and negatively skewed sawtooth functions. An example

Icoil-V curve together with the fitted skewed sine model is shown in fig. 5.3(b). We

can determine the conversion factor cI−Φ with the period 1/ν according to

cI−Φ =
1

νΦ0

= 6.9(2)× 10−4 A/Φ0. (5.1.3)
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Figure 5.3: SQUID Icoil-V flux tuning curves for SQUID #5. Plot a) illustrates

the modulation of the SQUID voltage V for varying induced flux in the SQUID loop,

controlled via the coil current Icoil. The legend lists the Ibias set points at which the

curves were extracted. In b), the Icoil-V characteristic for Ibias = 78 µA is shown along

with a skewed sine model function. Fit parameters are described in the text below.

We find the point with maximum flux sensitivity around Icoil = 0.22 mA.
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Another important parameter that we can extract from the Icoil-V curves is the

flux-to-voltage transfer coefficient VΦ. It characterises the performance of a SQUID

and is determined at the point of maximum flux sensitivity, i.e. the point with

the steepest slope in our set of curves. For SQUID #5 we find this point for the

configuration Ibias = 78 µA and Icoil = 0.22 mA and obtain a value from our skewed

sine fit of

VΦ = max
Φa

∣∣∣∣ ∂V∂Φa

∣∣∣∣ = 6.6(4)× 10−4 V/Φ0. (5.1.4)

The flux-to-voltage transfer coefficient VΦ describes the minimum flux change that

can be detected and therefore effectively sets the resolution limit of a SQUID.

Let us return to the considerations on the flux tunability. Recall that the flux

bias loop is placed directly on top of one half of the gradiometer SQUID and might

form a closed superconducting loop because it is shorted. This would act as a perfect

shield for magnetic fields and effectively mask the underlying half of the gradiometer

loop. Our SQUID design would in this case be reduced to a standard magnetometer

layout with a single loop of the size of one gradiometer half. Considering this, we

can calculate the necessary magnetic field strength for creating a flux of one Φ0 at

the SQUID loop position. The dimensions of the unmasked gradiometer loop are

Aeff = 13 µm× 36 µm. Assuming that the magnetic field is homogeneous across the

small loop area, its strength has to be

Bz,SQ5 = Φ0/Aeff = 4.5 µT (5.1.5)

to create an excitation of one Φ0. We can compare this with the strength of the

magnetic field that is created by the bias coil. SQUID #5 is placed zSQ5 = 2 mm

below the end of the coil and its radial distance from the coils symmetry axis is given

by ρSQ5 = 4 mm. Plugging those values into eq. (5.2.2) together with the dimensions

of the coil body (see section 3.4), the wire diameter dwire = 127 µm, the number of

windings N = 1680 and, according to cI−Φ, a coil current of I = 0.69(2) mA, we

calculate a field strength at the position of the loop of SQUID #5 of

Btheo
z,SQ5 = 38.7 µT. (5.1.6)

This is almost a factor 10 larger than the experimental result, thus the simple

model that we assumed here does not describe the configuration in the experiment
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66 5.1. DC SQUID characterisation

appropriately. In the following, I present two attempts to explain the observations

qualitatively.

Hypothesis I: So far, we did not consider the effect of the cantilever chip that

is placed directly above the SQUID. In case of SQUID #5, this cantilever is cov-

ered with magnetic nanoparticles, which was an attempt to deposit a magnetised

material on the cantilever tip (described in detail in section 3.2.2). It can be seen

in fig. 3.14 that the deposition also contaminated the region outside the opening

for the cantilever. According to ref. [18], these particles show a superparamagnetic

response to an applied magnetic field. Therefore, regions with high nanoparticle

concentration can channel the magnetic field due to the high magnetic susceptibil-

ity and effectively reduce the magnetic field strength in regions without or with low

nanoparticle concentration. On our chip, high concentrations are primarily found

outside the window for the cantilever. There are also nanoparticles on the cantilever

tip, but presumably in a lower concentration. Because the SQUID loop is placed

in the centre of the opening for the cantilever, the magnetic field strength could be

considerably reduced here. This possibly provides an explanation for the increased

magnetic field strength necessary to create a Φ0 flux excitation in the SQUID loop.

Hypothesis II: The fact that there was a short in the connection to the flux

bias loop on all the tested SQUIDs does not imply that the loop forms a closed

superconducting ring. If the structure on the chip is however open or only closed

via a resistive path, the screening effect would disappear or at least be suppressed.

Therefore the gradiometer could work as supposed and the net flux through the

twisted SQUID loop would result from an inhomogeneity of the magnetic field. The

coil does not create a perfectly homogeneous bias field, it was however checked that

this aspect can not account for the large deviation. Hence the field distortion would

have to be caused by the nanoparticles or slowly decaying eddy currents in the flux

bias loop. Besides that, also an imperfectly balanced and asymmetric gradiometer

loop would lead to a net flux even for a homogeneous external bias field. This should

however be a minor effect in our case and is not sufficient to explain the observations

on its own.
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5.1.3 Critical current modulation curve

We can gain better knowledge about the SQUID parameters by viewing the flux

voltage curve in a different fashion. Instead of looking at the flux modulation of the

SQUID voltage, we can inspect the modulation of the effective critical current Ic,eff

when changing the external flux Φa. If we neglect thermal noise, Ic,eff would be the

maximum bias current for a given external flux that we can send through the SQUID

without measuring a voltage drop, i.e. the point where the superconductivity of the

Josephson junctions breaks down.

To extract a precise value for Ic,eff from an I-V characteristic curve, one would have

to know the Stewart-McCumber parameter βC, the screening parameter βL and the

noise parameter Γ of the SQUID. In our case these are all unknowns, but if we

can determine the modulation depth of Ic,eff we can get a good estimate for βL.

We extract Ic,eff from every I-V curve in the data set that was used to construct

the flux voltage characteristics in section 5.1.2. By using the simplified model from

eq. (5.1.1) as a fit function, we get an estimate for the effective critical current. Our

I-V curves show a clear rounding in the region where I ≈ Ic, due to the effect of

thermal noise. The fit function does not account for that and therefore the Ic,eff

values that we obtain are slightly biased towards a lower magnitude. However, we

are mainly interested in the span of the range in which Ic,eff varies, which should

be reproduced correctly by our model. Figure 5.4 shows the resulting modulation

curves for positive and negative bias current orientation.

We already observed in section 5.1.2 that the modulation depth for Ic,eff is very

small. This clearly indicates, that the screening parameter βL is relatively large,

see section 4.2.1. The modulation depth ∆Ic,eff/Ic,max is determined by fitting the

absolute value1 of the skewed sine function in eq. (5.1.2) to the Ic,eff modulation

curves. Obtained results are illustrated by the red and orange line in fig. 5.4 and

summarised in table 5.1.

1We take the absolute value of the oscillating term, offset y0 and amplitude A are excluded.
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Figure 5.4: Ic,eff -Φ modulation curve for positive (green) and negative (blue) bias

currents. The data points are obtained from the I0 fit parameter in the simplified I-V

curve model. We fit a modified version of the skewed sine function to these values,

shown by the red and orange line. The modulation depth and the relative shift ∆Φ/Φ0

of the Ic,eff curves are determined for positive and negative bias currents individually.

Ic,max (µA) Ic,min (µA) ∆Ic,eff/Ic,max βL

Ibias > 0 69.8(1) 65.23(6) 6.5(1)× 10−2 15.3(3)

Ibias < 0 -69.6(1) -65.35(6) 6.2(1)× 10−2 16.2(3)

Table 5.1: Estimation of the screening parameter βL. Results are calculated from

βL = (∆Ic,eff/Ic,max)−1, according to eq. (4.2.3).

Such large values for βL clearly limit the sensitivity of our SQUID. The sup-

pressed critical current modulation directly leads to a lower amplitude in the flux

voltage curves and therefore lowers the effective resolution we can achieve in mea-

suring a flux change. For optimal SQUID sensitivity, the recommended parameters

are βL = 1 and βC ' 1, see ref. [25]. Considering the fabrication issues we observed

on all of our SQUIDs, it is likely that this problem is a consequence of a faulty

production run.
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Figure 5.4 illustrates other interesting effects that we already observed in sec-

tion 5.1.2. We can see that the curves are clearly skewed and that there is a

small shift between the maxima of the positive and negative Ic,eff curve, labelled

with ∆Φ/Φ0. Both of these effects are indications for existent asymmetries in the

SQUID, as explained in section 4.2.2. According to eq. (4.2.5), the shift can be

caused by either an asymmetry in the critical currents of the junctions αI or an

imbalance in the inductances of the SQUID loop halves αL. Both would explain

the skewing effect, but the former also causes a reduction of the modulation depth

of the Ic,eff curves. Consequently, we cannot decide whether our small modulation

depth purely results from a very large screening parameter or is a combination of an

αI asymmetry with a lower, but probably still large value of βL. A similar skewing

effect can also emerge from an asymmetry in the shunt resistances αR or in the

capacitances αC of the Josephson junctions, see section 4.2.2.

We determine a value of ∆Φ/Φ0 = 0.07(2). The fact that we have an indication for a

large value of βL poses a problem, however. Assuming a value of βL = 15 we obtain

αI +αL = 5× 10−3. It seems unlikely that a close to perfect symmetry was achieved

in the fabrication of the samples, considering the imperfections we observed so far.

One possibility is, that the asymmetries cancel for the most part. However, it is

also possible that we have to consider the distance between next-nearest maxima in

the positive and negative Ic,eff curves as the actual shift. For example, a value of

∆Φ/Φ0 = 1.07 would still give a reasonable asymmetry of αI + αL = 7× 10−2 for

the same value of βL.

In the following section 5.1.4 we attempt to fit the numerical model from sec-

tions 2.2.2 and 4.2 to the full DC SQUID I-Φ-V surface. This should provide

further insights in the observed asymmetries and SQUID parameters.

5.1.4 Characteristic parameters

The analysis steps we took so far essentially pictured different cuts through one com-

plex surface, which enabled us to break the characterisation problem into smaller

portions and extract information about the DC SQUID parameters bit by bit. In

this section we will now investigate the big picture by working with the full I-Φ-V
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surface of characteristic curves. This will clarify the connection between the studies

we already made and also allow us to gain insights about the characteristic param-

eters of our DC SQUID. The fit function we are going to use is derived from the

RCSJ model in section 2.2.2. It accounts for all the possible asymmetries in the

SQUID junctions as well as in the inductance of the two halves of the SQUID loop.

Furthermore, the effect of thermal noise of the shunt resistors for the Josephson

junctions is implemented by a gaussian white noise or an Ornstein-Uhlenbeck pro-

cess (see sections 2.5.2 and 2.5.3) and the resulting stochastic differential equations

are solved numerically.

The fact that a stochastic process is involved in calculating the SQUID I-Φ-V char-

acteristics makes the fitting procedure more difficult. The calculated points are

intrinsically noisy for reasonable simulation times. Hence, using a gradient based

optimization algorithm to fit the model function to the data set is not possible,

because the gradient will also be noisy. My choice for performing the model fit is

a least squares minimisation by a simplex algorithm after Nelder and Mead [32].

This class of optimization algorithms is relatively insensitive to noise, which unfor-

tunately has to be paid with a much larger number of function evaluations to reach

an optimal point. The latter are quite costly in our case and therefore the fitting

routine is very time consuming.

The starting point for the fit procedure is to create an I-Φ-V sample for a given set

of SQUID parameters. A list of these variables together with a description follows

in table 5.2. For each (Ibias,Φa) configuration, I simulate the time evolution of the

two Josephson junction phases δ1 and δ2 and the connected voltages v1 = δ̇1 and

v2 = δ̇2. A simulation spans a total duration of Ttot = 104 with a step size of h = 0.2

(in units of ω−1
c = Φ0/2πI0R). The resulting voltage is then determined by forming

the time average of eq. (2.2.9), for which I exclude an initial period of Ttrans = 103

to eliminate transient residuals.

The simulated sample I-Φ-V surface now serves as the model function that is passed

on to the optimization routine together with our measurement data set. Here the

Nelder-Mead minimizer is used, which searches for trial SQUID parameters by us-

ing a simplex method. The objective function for the minimizer is a standard sum
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of squared residuals. Due to the complexity of the parameter space, the optimizer

will typically get caught in a local minimum quite easily. As an attempt to find the

global minimum, I use a so called ”basin-hopping” algorithm [33]. It essentially tries

to find the true minimum by generating random perturbations of the initial guess

for the SQUID parameters and uses the result as a new start value for running the

minimization procedure.

Figure 5.5 shows a comparison of the fitted model function with the measured char-

acteristics of SQUID #5, which was analysed in the earlier sections. In the top row,

the plot illustrates the overall appearance of the I-Φ-V surface and in the bottom

row some exemplary characteristic I-V and Φ-V curves are compared.

parameter description

I0 Average critical current of the two Josephson junctions (JJs).

I0 = (I0,1 + I0,2)/2

R0 2 x parallel resistance of the shunt resistors for the two JJs.

R0 = 2R1R2/(R1 +R2)

βC Stewart-McCumber parameter. βC = 2πI0R
2
0C/Φ0 with the average

junction capacitance C = (C1 + C2)/2.

βL Screening parameter. βL = 2LI0/Φ0 with the total SQUID loop

inductance L = L1 + L2.

Γ Noise parameter. Γ = 2πkBT/I0Φ0

αI Relative asymmetry in the critical currents of the JJs.

αI = (I0,2 − I0,1)/(I0,1 + I0,2)

αR Relative asymmetry in the shunt resistances of the JJs.

αR = (R1 −R2)/(R1 +R2)

αC Relative asymmetry in the junction capacitances.

αC = (C2 − C1)/(C1 + C2)

αL Relative asymmetry in the inductances of the two halves of the

SQUID loop. αL = (L2 − L1)/(L1 + L2)

Table 5.2: Characteristic parameters of the DC SQUID. The definitions in this thesis

are adopted from the expressions used in ref. [26].
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Figure 5.5: SQUID I-Φ-V surface modelling. We compare the experimental data in

figure a) with the best fitting result in figure b). Selected lines for fixed flux values

Φa/Φ0 and bias currents Ibias are compared in figures c) and d), respectively. Measured

data is represented by solid and simulation by dashed lines. The inset graph in c)

indicates the overall good agreement of experiment and simulation, but deviations in

the modulation depth and shifts in the flux curves are clearly visible.
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The SQUID parameters for the best fit result obtained from the routine described

above is presented in table 5.3.

parameter value parameter value

I0 38.0 µA αI 0.202

R0 16.68 Ω αR 0.027

βC 1.043 αC 0.246

βL 4.640 αL 0.167

Γ 3.41× 10−2

Table 5.3: Fit parameters obtained from the optimization procedure for the numer-

ical simulations of the model in section 2.2.2. The target data is represented by the

measured SQUID I-Φ-V surface for SQUID #5 on the Tuebingen sample.

Referring to section 5.1.3, we find a few deviations to the earlier estimates for

the characteristic parameters. First, the average critical current of the junctions I0

is larger. This was expected, because the noise rounding of the SQUID I-V biases

critical currents of the simplified fit function of eq. (5.1.1) to lower values. Secondly,

we obtain a much smaller value for βL than expected. This can be caused by a

combination of effects. On the one hand, we have neglected how asymmetries affect

the Ic,eff modulation. Section 4.2.2 illustrates that αI, αR and αC imbalances can

lead to a suppression of the modulation depth. According to the fit result, all of

these asymmetries are non negligible. On the other hand, the simple SQUID I-

V fit cannot reproduce the modulation behaviour perfectly and likely smooths the

obtained Ic,eff curve, which leads to an overestimation of βL.

Our model also allows us to get a figure for the Stewart-McCumber parameter

βC and the noise parameter Γ. It is remarkable that the value for βC is close

to the optimal case of βC = 1 [25]. On the other hand, the result for the noise

parameter illustrates a serious issue in our experimental setup. We obtain a value

of Γ = 3.41× 10−2 which translates to an effective temperature of the SQUID of

T = 30.9 K. This is a lot higher than the 1.8(1) K measured in the sample box (see

section 5.1.1) and even higher than the critical temperature of niobium, which can
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obviously not be correct. The root of this inapplicable result is that our model does

not discriminate between actual thermal current noise (Johnson noise) caused by

the shunt resistors, flux noise that induces a fluctuating ring current in the SQUID

loop and bias current noise. The noise parameter Γ therefore describes the sum of

these effects and cannot be used to directly calculate the SQUID temperature. As

a consequence, we can draw the conclusion that our SQUID is subject to excessive

noise, which is a major issue for its performance. The magnetic shielding of the

sample box is presumably very good, therefore flux noise from external sources

should not be a problem. However, if RF noise is picked up in the wiring outside

the cryostat, it can be routed to the SQUID sample. This can either happen directly

as bias current noise or via surrounding wires on the chip in the form of flux noise.

Hence, improved RF shielding and filtering will be necessary and highly beneficial

in a future version of the experimental arrangement.

Finally, we can take a look at the outcome for the asymmetry parameters of our fit.

For the inductance asymmetry αL of the two arms of the SQUID loop we obtain

L1/L2 = 0.714. The deviation of the geometric inductances of the two gradiometer

loops should be negligible, meaning that the asymmetry we obtain is most likely

caused by mutual inductance effects (e.g. with the cantilever) that are included in

the loop inductances L1 and L2.

The Josephson junction properties αI and αC result in surprisingly large values, αR

is as expected comparably small. If we express those parameters as the ratios of the

underlying physical entities, we get

I0,1/I0,2 = 0.664 R1/R2 = 1.055 C1/C2 = 0.605.

The reason for an asymmetry in the junction parameters is most likely a deviation

from its nominal size, that results from imperfections in the fabrication procedure.

Therefore, the asymmetry is typically of geometric origin, which would mean that

αI = αR = αC [28]. However, for DC SQUIDs as ours, the Josephson junctions are

usually externally shunted, meaning that the shunt resistance is not the intrinsic

resistance of the junction, but a dedicated separate resistor on the chip. Because

of that, αR is completely independent of the other asymmetry parameters. As

discussed in section 3.1.3, the step coverage of the thin gold resistive layer on top
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of the very thick niobium top layer is decent, resulting in resistances close to the

nominal values.

The cause for the relatively large values of αI and αC is unclear. It is fair to assume

that the asymmetry in the capacitances is mainly of geometric origin. The deviation

between αI and αC would imply, that the asymmetry of the critical currents of the

junctions also has an intrinsic contribution, i.e. a variation in the film properties.

We were not able to perform any further investigations on those imperfections. A

destructive test to inspect the junction cross section would probably give further

insights.

5.2 Bias coil

One essential component for reaching the remarkably high magnetic field gradients

proposed in ref. [5] is the large bias coil that should create a homogeneous magnetic

field across the arrangement of SQUID and cantilever. As described in section 3.4,

we had to manufacture multiple bias coils due to problems with the very thin and

fragile insulation of the superconducting wire that caused shorts to the coil body.

Despite those issues, we calibrated the created magnetic field with a Hall probe

measurement and demonstrated that the thin superconducting wire can withstand

the intended coil current of 1 A.

5.2.1 Magnetic field calibration

We performed a Hall probe measurement to calibrate the magnetic field created by

the bias coil and to rule out possible shorts between neighbouring turns that would

effectively reduce the number of windings of the coil. Because we are especially

interested in the gradient of the coil field, we placed three evenly spaced Hall probes

in the bottom of our sample box. The sensitive area of those probes is centred on

the symmetry axis of the coil, the nominal spacings can be found in fig. 5.6.

75



76 5.2. Bias coil

d1 d2 d3

Figure 5.6: Bias coil arrangement. We align the Hall probes to the symmetry axis

of the bias coil inside custom made spacers. The nominal spacings of Hall probe 1, 2

and 3 to the centre of the coil body are d1 = 7.2 mm, d2 = 9.2 mm and d3 = 11.2 mm

respectively.

We can describe the total field created by our coil as a sum of the contribution

of each individual turn. The magnetic field of a single wire loop with radius R and

current I can be expressed in cylindrical coordinates as

~Bloop(ρ, z, R, I) =
Iµ0

2π

1√
(R + ρ)2 + z2

[
z

ρ

(
R2 + ρ2 + z2

(R− ρ)2 + z2
E(k2)−K(k2)

)
~eρ+

+

(
R2 − ρ2 − z2

(R− ρ)2 + z2
E(k2) +K(k2)

)
~ez

]
,

(5.2.1)

k2 =
4Rρ

(R + ρ)2 + z2
.

Here ρ and z denote the radial and axial distance from the centre of the loop and

K(k2) and E(k2) are the complete elliptic integrals of first and second kind. In the

sum of the loop contributions, we have to take care of setting the radius pR and

axial position pz of each winding correctly, as we build up the coil layer by layer.

This can be described by

~Bcoil(ρ, z, Rin, hcoil, dwire, N, I) =
N∑
n=0

~Bloop

(
ρ, pz(z, n), pR(Rin, n), I

)
, (5.2.2)

pz(z, n) = z − hcoil

2
+

(
1

2
+ n mod nlayer

)
dwire,

pR(Rin, n) = Rin +

(
1

2
+

⌊
n

nlayer

⌋)
dwire,
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with nlayer =
⌊
hcoil
dwire

⌋
and b·c denoting the floor function. In this expression, hcoil

is the height and Rin the radius of the coil body, dwire is the diameter of the wire

used to wind the coil and N is the number of windings. The coordinates ρ = z = 0

represent the centre of the coil body.

We can check if this simple model reproduces the magnetic field measured by the

Hall probes with respect to magnitude and gradient along the axial z direction. The

results for the first generation of our bias coil with dwire = 67 µm and N = 5240 are

presented in fig. 5.7.
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Figure 5.7: Magnetic field calibration of the bias coil. In a) we plot the magnetic

field component Bz vs. the axial distance z from the centre of the coil body for a coil

current of Icoil = 10 mA. The blue line shows a fit of the model in eq. (5.2.2) and the

red dots represent the measured field strengths of the three Hall probes. Sub plot b)

displays the results of the Hall probe measurements for a sweep of the coil current,

illustrating the perfectly linear relation. The spacings d listed in the legend include a

correction factor with respect to the nominal values in fig. 5.6.

In fig. 5.7 a) we show a comparison of the magnetic field z-component measured

by the Hall probes for Icoil = 10 mA along with the prediction of ~Bcoil from eq. (5.2.2).

The latter was modified by an additional factor that takes a possible z-displacement

of the coil from its nominal position into account. A fit to the measured Hall probe

data determines this value to be ddev = −0.710(6) mm. Hence, the coil is placed a

little closer to the Hall probes than intended, a deviation of less than a millimetre

is however within the level of positioning accuracy that can be expected.

77



78 5.2. Bias coil

Figure 5.7 b) shows the magnetic field strength Bz measured by the three Hall probes

vs. the applied coil current Icoil. An offset in the Hall probe voltages is compensated

by a measurement with reversed coil current. The linear relation of field strength to

current in eq. (5.2.2) is clearly satisfied. In the legend, we list the corrected distance

d for each Hall probe measured from the centre of the coil body.

5.2.2 Current limitation

If we want to achieve a high magnetic field gradient in our experimental configura-

tion, also the magnitude of the created fields will have to be relatively large. The

limit for the highest magnetic field strength we can allow in our setup is the lower

critical field of niobium of Bcrit ≈ 140 mT [14]. For our first generation of the bias

coil, where we used a very thin 67 µm NbTi wire and wound a total number of

windings N = 5240 on the coil body, this magnetic field strength at the position of

the cantilever and SQUID chip is reached for a coil current of Icoil ≈ 750 mA.

In an initial attempt with our first generation bias coil, we achieved a maximum

coil current of only roughly 100 mA. The NbTi wire we used would however have

a current rating of a few A [34]. Due to the fact, that this wire type only carries a

single NbTi filament inside a copper cladding, we suspect that the superconducting

wire broke in some places during the coil winding procedure. At the position of a

defect, the current then has to be carried by the copper cladding, which would heat

up rapidly for such high currents and in turn warm up a larger section of the NbTi

wire, which leads to a breakdown of the superconductivity of the coil.

As a consequence, we decided to fabricate a second bias coil with fewer turns, but

with a much thicker multi-filament NbTi wire with a diameter of dwire = 254 µm.

This run resulted in a total number of N = 440 turns which were hand-wound in

order to avoid damaging the superconducting filaments and the fragile insulation

of the wire. The performance of this proof-of-principle attempt in a stress-test is

presented in fig. 5.8.
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Figure 5.8: Stress test of the second generation bias coil. The plot shows the

recordings of the voltage applied to the coil circuit Vcoil, the magnetic fieldBz measured

by a Hall probe and the coil current Icoil vs. time t. The measured quantities refer to

the axes on the left, the inner right and the outer right, respectively.

As we can see in the time log, the second generation coil survived a current of

Icoil = 1 A, continuously applied for a period of a full hour. Vcoil represents the

voltage drop across the normal conducting copper high current lines. We observe a

slow increase in the resistance of those wires as the large current heats up the copper.

This does not pose a problem however, as most of the heat load is deposited on the

upper plates of the cryostat, where sufficient cooling power is available. Finally, the

measured magnetic field strength Bz = 5.26(1) mT is in perfect agreement with the

predicted value from eq. (5.2.2). The nominal distance between the centre of the coil

and the position of the Hall probe in this experiment was d = 12.2 mm, for which

we calculate a value of Bz,coil = 5.32 mT.

The findings from those first two attempts resulted in a third generation for the bias

coil with an intermediate wire diameter of dwire = 127 µm and a total number of

windings of N = 1680. The current limitations for this coil have not been tested so

far, because the experiment had to move to another cryostat that was not equipped

with the high current wiring described in section 3.5.2. A maximum applied current

of 80 mA over a comparably long period did not cause any problems, however. To

achieve the desired field strength of 140 mT, either a more careful technique for the
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winding procedure with the very thin 67 µm wire has to be found, or a design change

in the experimental setup that allows for a bigger coil is necessary.

5.3 Quadrupole line

Besides the SQUID structures, our sample chip also carries superconducting lines

in the shape of a very narrow and long loop. Its main section is formed by two

close parallel wires with currents flowing in opposite directions. In combination

with the field of the bias coil, we create a quadrupole-like field configuration around

the location of the cantilever tip with zero magnetic field strength at the resting

position of the beam, cf. section 2.4.

In our experiment, we aim to create a large magnetic field gradient around the zero

position, which is favourable in multiple ways. On the one hand, this increases the

induced supercurrents (eddy currents in case of a normal conductor) in the strip on

the tip of the cantilever. The magnetic field that is created by those currents can be

detected by the SQUID. Larger induced currents lead to an increased signal strength,

which in turn allows for smaller displacements of the cantilever to be detected. On

the other hand, the effective magnetic moment of the cantilever tip is increased. This

improves the prospects for feedback- or parametric cooling techniques to reduce the

effective cantilever temperature in a later stage of the experiment.

As we have seen in section 5.2, we can apply a current of 1 A to a coil with N = 440

windings. In this case, the bias coil creates a magnetic field strength at the cantilever

position of Bz = 5.3 mT. If we want to move the point with zero magnetic field to

this location, we have to send a current of Iqp ≈ 350 mA through the quadrupole

line. We conducted a test measurement on our Tuebingen SQUID chip and applied

currents in a range of Iqp = −10 . . . 10 mA while monitoring the behaviour of SQUID

#1. The results are summarised in fig. 5.9.
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Figure 5.9: Quadrupole line stress test with SQUID monitoring. Fig. a) shows

the measured resistance of the quadrupole line for different currents Iqp, indicating

that the superconducting state is always preserved. In fig. b) we show the behaviour

of SQUID #1 during this test. Applying a current to the quadrupole line clearly

affects the SQUID, which would put the sensitive Josephson junctions at risk for

larger currents Iqp.

As one can see in fig. 5.9 a), we find that the resistance of the quadrupole line Rqp

stays constant through the course of the measurement. The current Iqp is applied

for 45 s continuously, which is also the duration we use to record a single SQUID I-V

curve. On this time scale, we do not observe heating processes as in section 5.2. The

increasing uncertainty in the resistance Rqp for small values of Iqp is a consequence

of an absolute uncertainty in the underlying voltage measurement. We determine a

mean value of R̄qp = 1.277(2) Ω, which is in good agreement with the wiring resis-

tance from the current source to the sample chip of Rwire = 1.2(1) Ω. Therefore, the

quadrupole line remains in the superconducting state for the whole measurement

series and we have not reached the critical current of the structure.

The reason why we limited the current range to such low values is illustrated in

fig. 5.9 b), where the SQUID I-V curve for selected Iqp is shown. We observe that

the behaviour of the SQUID is clearly affected by a current flow in the quadrupole

line, which should, by design, not be the case. An imperfect balance in the gradiome-

ter loops would explain a flux shift in the SQUID characteristics, which apparently

applies to the measurements in fig. 5.9 b). However, we also observe a voltage offset
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of the SQUID I-V curves that depends on the quadrupole line current. This means

that the two circuits of quadrupole line and SQUID are not galvanically isolated.

We therefore cannot apply large currents to the quadrupole line without taking the

risk of damaging the SQUIDs.

Consequently, we were not able to use the quadrupole line in our experiments on

the detection of a signal from the cantilever. It is likely that the origin of this faulty

connection between SQUID and quadrupole line circuit is related to the issue of the

shorted flux bias loops, cf. section 5.1.2. The minimum spacing between neighbour-

ing lines is comparable for those structures and as discussed in section 3.1.1 there

were problems in the fabrication that could explain those undesired connections.

5.4 Cantilever detection

After a series of optimizations on the performance and a careful characterisation of

our SQUID, we made an attempt to detect a signal from the micromechanical oscil-

lator. The change to the Tuebingen SQUID design required a compromise, though.

Our cantilever chips were designed to match the layout of the IBK SQUID chips.

The orientation and the positioning of the SQUIDs on the Tuebingen layout differed

from that, however. Therefore we could not make use of all 8 cantilevers on a chip,

but had to focus on the alignment of a single one. In our final experimental setup,

we placed two cantilever chips on top of a SQUID chip. We aligned a chromium-tip

cantilever to SQUID #1 and the cantilever covered with nanoparticles (see fig. 3.14

was placed on top of SQUID #5.

Unfortunately, SQUID #1 suffered an inexplicable breakdown before a measurement

was possible, so the tests could only be performed on SQUID #5.

5.4.1 SQUID bias current scan

The SQUID is connected to a spectrum analyser to possibly find an indication of

the cantilever. We record noise spectra of the SQUID output voltage V and try to

identify a signal in a reasonable frequency range for the fundamental mode of the

oscillator that stands out from the noise floor.
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From eq. (2.3.2) we can calculate a nominal resonance frequency of f0 = 553 kHz.

We acquired noise spectra for the frequency ranges 250−550 kHz and 50−1050 kHz

with a resolution bandwidth of 3 Hz and 2 Hz respectively. Each spectrum is an

average of 100 traces. Finally, we record such spectra for a range of SQUID bias

currents Ibias = 0 − 150 µA. With that, we tune the sensitivity of the SQUID,

which enables us to decide whether a noise peak is caused by a flux signal or by

electromagnetic interference (EMI) from which the output line is not sufficiently

shielded. The former would clearly depend on the SQUID sensitivity and should

thus vanish for bias currents where the SQUID is insensitive to flux, whereas the

latter would be present for any value of Ibias. The coil current is constantly kept at

Icoil = 350 µA. This was the value with the maximum flux sensitivity, obtained from

an analysis identical to section 5.1.2 right before the measurements were recorded.

In fig. 5.10 we show a comparison between three selected noise spectra for different

bias currents Ibias.
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Figure 5.10: Noise spectra for different SQUID bias currents Ibias. The spectral

noise density of the SQUID voltage SV V is plotted vs. frequency f for three values

of Ibias. The insets highlight interesting peaks, where the signal strength is greatly

enhanced if the SQUID is tuned to the configuration with the highest flux sensitivity.

We compare the case of Ibias = 0 µA, where the SQUID is completely insensi-

tive to a flux change, with a spectrum where the SQUID is tuned to the point of

maximum flux sensitivity for Ibias = 78 µA, see section 5.1.2. Also a third trace for
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Ibias = 150 µA is shown. At this point the SQUID is clearly in the normal conduct-

ing resistive state and should therefore also be completely flux insensitive.

It is obvious that some prominent peaks meet the described conditions to be identi-

fied as flux signals. Two particularly pronounced peaks are highlighted in the plot

insets. The signal around 443 kHz clearly rises about 10 dB from the noise floor and

the flux insensitive traces are completely flat. In contrast, the second feature at

approximately 332 kHz is visible in all three spectra, but still enhanced by about

5 dB for the measurement at the flux sensitive working point.

These first noise scans are a good indication, that our SQUID is able to sense AC

magnetic fields in the relevant frequency range, i.e. f ≤ 1 MHz. On the other hand,

the noise peaks we observed may originate from any magnetic field noise present

at the position of the SQUID and are not necessarily connected to the cantilever.

In the following, we switch to the noise scan of a broader frequency range to get a

better overview of sources of magnetic flux noise. Figure 5.11 illustrates the noise

spectra for the bias current sweep, along with some evaluations of characteristic

traces.

A first inspection of fig. 5.11 gives new insights on the noise peaks of fig. 5.10. We

can clearly see a series of harmonics with a frequency spacing of roughly 111 kHz

that the SQUID only picks up in the flux sensitive bias current region. In the colour

plot, these are represented by the horizontal lines that appear at approximately

25 µA and fade out at about 90 µA. The eigenmode frequencies of a cantilever do

not follow such a harmonic spectrum, cf. section 2.3.1. Therefore, we have to reject

the cantilever as the origin of the broad noise peaks. We can suspect a pulsed peri-

odic signal with a base frequency equal to the 111 kHz peak spacing as the source

of the observed noise. It is likely that the signal stems from some kind of switching

mode power supply and that it is carried into the cryostat via the ground connection

or couples to some signal lines that are routed in the vicinity of the SQUID.
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Figure 5.11: Compilation of the noise spectrum measurements with a broad fre-

quency range and a sweep of the SQUID bias current Ibias. The main plot shows

recorded spectra for different bias currents Ibias, where the magnitude of the noise

spectral density SV V of the SQUID voltage V is expressed by the colour coding. In

the sub plot on the right, we compare the spectrum for Ibias = 0 µA with the config-

uration with maximum flux sensitivity at Ibias = 78 µA. Arrows mark the position of

characteristic peaks. The associated noise rise in the flux sensitive bias current region

of the SQUID is illustrated in the bottom figure for some selected peaks.

In the bottom plot in fig. 5.11, we illustrate the spectral noise density SV V vs.

the bias current Ibias for three of the observed peaks. These lines represent cuts of

the main plot at selected frequencies. The deviation in the baseline of the curves

is a consequence of the varying noise floor for different frequencies, as can be seen

in the right plot in fig. 5.11. We obtain the characteristic behaviour that we expect

from a magnetic flux signal with a strong noise rise for bias currents with high flux
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sensitivity of the SQUID. Interestingly, the point with maximum sensitivity seems

to have shifted to a lower value of Ibias ≈ 60 µA. The reason for this is unknown.

The SQUID characteristics in section 5.1 was however determined for constant bias

flux signals. Possibly the dynamically changing flux causes a deviation from that

behaviour.

The sub plot in fig. 5.11 on the right compares the noise background, measured for

Ibias = 0, to the trace for which the SQUID is tuned to the maximum flux sensitivity,

cf. fig. 5.10. On the one hand, one can see the emergence of the broad noise peaks,

whose positions are marked with arrows. On the other hand, we can also find

additional peaks with a very narrow frequency profile, that are not present in the

background trace. In the main graph these features are not clearly visible, due to

the limited resolution and contrast of the colour plot. A thorough inspection finds

that some of those peaks also fulfil the above mentioned criterion to be identified as

a magnetic flux signal.

In order to get a better idea of what signal level and shape we should expect from

the nanoparticle cantilever, we perform a rough estimation in the following. Let us

assume that our mechanical oscillator has a resonance frequency of fR = 553 kHz.

From a typical quality factor of Q = 1× 104 [35], we would then obtain a FWHM

peak width of Γ = fR/Q ≈ 55 Hz. The feature will therefore have a quite narrow

frequency profile, assuming that the amplitude is small. On top of that, the lowest

frequency resolution in our scans is approximately 30 Hz, which means that the

signal might be confined to only a few points in the spectrum trace.

To estimate the noise magnitude, we start with calculating the effective mass m∗

for the fundamental mode of the oscillator. We can model the mass mbeam that is

distributed along the beam axis as a point mass attached to the end of a massless

beam. The latter is equivalent to the effective mass and one finds the relation [36,

37]

m∗ = 0.24 ·mbeam. (5.4.1)

With the cantilever dimensions of l = 100 µm, w = 50 µm and h = 4 µm, as well

as the density for silicon given in ref. [12], we determine the effective mass of the

cantilever to be m∗ = 1.1× 10−11 kg. According to eq. (2.3.12) and eq. (2.3.10) we
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can then calculate the RMS displacement due to the thermal motion of the oscillator,

urms =
√
〈u2〉 =

√
kBT

m∗ω2
R

= 0.32 pm. (5.4.2)

For this we assumed a temperature of T = 1 K.

To determine the magnitude of the magnetic flux noise caused by the cantilever

oscillation, we model the effect of the magnetite (Fe3O4) nanoparticles that sit on

the tip of the beam as a magnetic dipole. The crucial quantity that we need to

estimate is therefore the total magnetic moment of the ensemble of particles along

the oscillation direction ~ez. We can start with calculating the necessary magnetic

moment mmag for creating 1 Φ0 of static flux induced in the SQUID loop, according

to

Φnp(zdist) =

∫ dy/2

−dy/2

∫ dx/2

−dx/2
Bz,np(x, y, zdist)dxdy. (5.4.3)

Here dx = 13 µm and dy = 36 µm are the dimensions of one of the gradiometer

loops of the SQUID on top of which the cantilever tip is placed. The magnetic field

of a dipole with the magnetic moment along the oscillation direction ~m = m~ez is

described in spherical coordinates by

~Bnp =
µ0

4π

m

r3
[2 cos(θ)~er + sin(θ)~eθ] . (5.4.4)

If we assume a distance of d = 1 µm between cantilever tip and SQUID loop, we can

determine mmag from Φnp(d) = Φ0 to be

mmag = 3× 10−14 Am2. (5.4.5)

This is the total magnetic moment of the nanoparticles that is necessary to create

1 Φ0 of static induced flux in the SQUID loop. If we compare this value to the

magnetic moment of a single magnetite nanoparticle mmag,np = 1.7× 10−18 Am2 [18,

38], we calculate the net number of particles that are perfectly aligned along the

oscillation axis to be Nnp ≈ 18 000. From fig. 3.14 we estimate that a total volume

of 20 µm× 20 µm× 200 nm ≈ 0.1 pl is covered with nanoparticles. Compared to the

stated particle concentration in ref. [18] we would get a total number of deposited

particles of Nnp,tot = 74 000, meaning that the magnetic polarisation would have to

be relatively large, roughly 25 %.
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If we, on the other hand, consider an initially unpolarised ensemble of nanoparticles,

that we align by applying the bias field of our coil, the total magnetic moment is

substantially lower. In ref. [39], we find a normalized magnetic moment of m̃mag =

0.31 Am2/kg measured at a field strength of 3.8 mT. This article also shows that the

dependence of m̃mag on the externally applied magnetic field can be linearised for

small field strengths, to good approximation. We estimate the maximum externally

applied magnetic field with eq. (5.2.2) for Imax
coil = 40 mA to be Bz ≈ 2 mT. It is

assumed that the hysteresis effects of the nanoparticle magnetization at such low

temperatures preserve the magnetic polarisation to a large degree, cf. ref. [18].

Therefore we can determine the total magnetic moment, making use of the stated

particle mass concentration ρnp = 21.7 mg/ml [18], to be

mmag = m̃magρnpV
2 mT

3.8 mT
= 4× 10−16 Am2, (5.4.6)

where we again assumed a deposited volume of V = 0.1 pl. This magnetic moment

results in a static induced flux of Φnp(d) = 1.3× 10−2 Φ0.

If we now turn to the dynamic case and assume a harmonic oscillation of the can-

tilever with a displacement amplitude of urms, we can approximate the amplitude of

the change in magnetic flux as

∆Φnp =
Φnp(d− urms)− Φnp(d+ urms)

2
= 2.13× 10−10 Φ0. (5.4.7)

We can also express this result in terms of a variation of the SQUID output voltage

by using the flux-to-voltage transfer coefficient VΦ at maximum flux sensitivity from

section 5.1.2. This leads to a voltage amplitude of

∆Vnp = VΦ∆Φnp = 0.14 pV. (5.4.8)

Obviously, this value is extremely small. If we compare it with the noise floor level

in our spectra of −147 dBm =̂ 10 nV, we obtain that our signal is more than four

orders of magnitude smaller than the noise. With such a low SNR there is no chance

of measuring a signal from the cantilever. Hence, the improvised approach with

magnetic nanoparticles as a magnetised material for the cantilever tip did not prove

successful. A revised experimental setup will have to either rely on the Meissner

effect scheme of the initial proposal for the experiment, see section 2.4, or find a

way to increase the magnetic moment of the cantilever tip substantially.
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5.4.2 Bias coil current scan

We carried out a second measurement in the search for a signal from the cantilever,

where we varied the coil current Icoil while keeping the SQUID bias current constant

at Ibias = 60 µA, the value for which we observed the highest noise peak amplitudes in

section 5.4.1. The main motivation for this test is an expected shift in the cantilever

resonance frequency due to the force that is exerted on the magnetic material on

the tip of the beam. We can describe this force according to

~F = ~∇(~m · ~B) = ~∇ [mz(Bz) Bz] = χ~∇(B2
z ) =

= 2mz
~∇Bz = 2mz

(
∂Bz

∂ρ
~eρ +

∂Bz

∂z
~ez

)
≈ 2mz

∂Bz

∂z
~ez, (5.4.9)

where ~m = mz~ez is the magnetic moment of the nanoparticles and ~B is the magnetic

field generated by the bias coil. We used that the nanoparticle magnetisation is

linear in the magnetic field strength, mz(Bz) = χBz, and neglected the gradient

contribution of Bz along the radial direction, which is roughly 5 % of ∂Bz

∂z
at the

position of the cantilever.

The noise spectra that we recorded for different coil currents in a range of Icoil =

0−40 mA are shown in fig. 5.12. A detailed inspection of the visible noise peaks does

not provide any candidates for which the described resonance frequency shift could

be observed. Following the reasoning in section 5.4.1, this is another indication that

we are not able to sense a signal from the cantilever in the given configuration of

the experiment.
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Figure 5.12: Noise spectrum measurements for a sweep of the coil current Icoil. The

main plot is a representation of the recorded noise spectra with the frequency f on

the horizontal axis, the coil current Icoil on the vertical axis and the spectral noise

density of the SQUID output voltage SV V encoded in the colour of the points. Below,

a comparison between the Icoil = 0 mA and Icoil = 20 mA traces shows, that the noise

spectra are virtually identical. The arrows mark the position of the noise peaks, for

which a further analysis in terms of noise magnitude and peak position is carried out

in fig. 5.13.

Exemplary, the position and the magnitude of some selected peaks are presented

in fig. 5.13. We chose two of the peaks with the broad frequency profile that were

studied in section 5.4.1 and randomly selected two of the very narrow features. The

respective frequencies are marked with arrows in the sub figure in fig. 5.12. For

the broad peaks, position and magnitude were determined from a Lorentzian peak

fit, whereas for the narrow ones the determined frequency was constant within the
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scope of our measurement accuracy. Therefore, only the associated magnitude is

presented.
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Figure 5.13: Analysis of selected noise peaks in terms of magnitude and peak posi-

tion. The top plot shows the dependence of the noise magnitude on the coil current

Icoil. The maximum in the spectral noise density Smax
V V is determined from a Lorentzian

peak fit in the case of a noise peak with a broad frequency profile (red and blue line).

For a narrow peak we plot the maximum value. In the bottom figure, the centre fre-

quency of the Lorentzian peak fits for the broad noise signals are shown. We cannot

observe a clear trend in the peak position for increasing coil currents.

Even though no indication of a signal from the cantilever was found, we would

like to estimate the expected shift in the resonance frequency. For this, we model

the effect of the magnetic force in eq. (5.4.9) as an additional mass mF = F/g that is

attached to the cantilever tip, with g being the gravitational acceleration. Recalling

the result for the effective mass of the oscillator m∗ from eq. (5.4.1), one obtains the

resonance frequency for the loaded cantilever [36, 37]

floaded =
1

2π

√
k

m∗ +mF

= f0

√
m∗

m∗ +mF

, (5.4.10)

with k being the cantilever spring constant and f0 the unperturbed resonance fre-

quency.
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92 5.4. Cantilever detection

If we plug in the numbers from section 5.4.1, i.e. the magnetic moment of the

nanoparticlesmz = 4× 10−16 Am2 and the effective cantilever massm∗ = 1.1× 10−11 kg,

and we calculate the magnetic field gradient at the cantilever position from eq. (5.2.2)

for Icoil = 40 mA (see sections 3.4 and 5.1.2 for geometry parameters), we obtain a

maximum frequency shift of

floaded − f0 ≈ 2 Hz. (5.4.11)

This value is too low to resolve the shift in our noise spectra. However, the force on

the cantilever tip scales linearly with the magnetic moment mz. This means that by

increasing mz, which is a necessity to be able to detect a signal from the cantilever

as we have seen in section 5.4.1, we also increase the frequency shift. In an improved

experimental setup, this method could therefore be useful to discriminate a signal

from the mechanical oscillator from other sources of noise.
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Chapter 6

Conclusions and Outlook

The initial period of setting up our experiment was dominated by characterisation

procedures for our DC SQUID. In section 5.1, we describe various SQUID measure-

ments and determine characteristic parameters. We find that the modulation depth

for the critical current is substantially lower than intended, which is attributed to

issues in the fabrication process. This presents a major limitation for the detection

of a cantilever signal as it decreases the flux-to-voltage transfer coefficient VΦ.

Further, the flux tuning of our SQUIDs is problematic, due to shorts in the desig-

nated flux bias loops. We hence have to use the large bias coil to tune the SQUIDs,

which prevents the use of the flux-locked loop (FLL) readout technique. With FLL

we would expect a lower detection threshold for the cantilever signal, because the

SQUID can be constantly operated at the point with maximum flux sensitivity.

The numerical simulations for the SQUID I-Φ-V characteristic curve in section 5.1.4

lead to the conclusion, that improvements in noise filtering of the SQUID control

lines is urgently required. This will enhance the modulation depth of the critical

current and lower the noise floor, which will ease the cantilever detection.

Considering the setup described in section 2.4 and the proposal for our experi-

ment, we demonstrate the use of a current of 1 A in a cryostat, which supplies our

bias coil. A similar demonstration for the quadrupole line on the SQUID chip is not

possible, because we identify unwanted connections to the SQUIDs that would put

the sensitive JJs at risk for such high currents.
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94 Chapter 6. Conclusions and Outlook

The detection of a signal from the mechanical oscillator was not accomplished in

the first iteration of our experiment, as explained in section 5.4. We aligned two

cantilever beams to our SQUID structures, one with a strip of Cr and one with

magnetite Fe3O4 nanoparticles on its tip. The SQUID with the Cr cantilever failed

for an unknown reason. This left us with the nanoparticle cantilever, where we

attempted to deposit a material that can be magnetised on the tip of the beam. In

section 5.4.1, we find multiple peaks that can be identified as magnetic flux signals

in the noise spectrum of the SQUID output voltage. However, none of the peaks

can be related to the cantilever. We suspect a switching mode power supply as the

source of the noise.

We close the section with some estimates on the cantilever signal intensity. These

clearly support a noise amplitude below the detection limit. A substantial increase

in the magnetic moment of the beam tip by roughly four orders of magnitude would

be necessary for detecting the mechanical oscillator. This can either be achieved

with the Meissner effect method described in the proposal, or by polarising the

nanoparticles in a strong magnetic field during the application.

Finally, in section 5.4.2 we estimate the effect of an increasing bias field on the can-

tilever resonance frequency. In our current arrangement, we obtain a shift of only

2 Hz. This shift would be enhanced with an increased magnetic moment. Hence, in

an improved setup, this method could help in distinguishing a cantilever signal from

other sources of flux noise.

With fully functional SQUID samples and a cantilever with SC Nb on the tip, a

detection of the mechanical oscillator seems to be within reach. After that, one

can think about possible cooling mechanisms. Some of our SQUIDs were already

equipped with an additional feedback loop that could be used for direct feedback

cooling or parametric cooling. The major milestones for a future version of our

experiment will be cooling to the motional ground state and eventually tackling the

strong single photon coupling. This would open a wide range of possible quantum

mechanics experiments for our hybrid device.

94



Bibliography

[1] A. D. O’Connell et al. “Quantum ground state and single-phonon control of

a mechanical resonator”. In: Nature 464 (Mar. 2010), p. 697. url: http:

//dx.doi.org/10.1038/nature08967.

[2] T. A. Palomaki et al. “Entangling Mechanical Motion with Microwave Fields”.

In: Science 342.6159 (2013), pp. 710–713. issn: 0036-8075. doi: 10.1126/

science.1244563. url: http://science.sciencemag.org/content/342/

6159/710.
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Appendix A

SDE Numerical simulation code:

SQUID characteristics

In this appendix, I provide the code for the python library used to implement the

numerical model of the SQUID I-Φ-V characteristics. The optimization routine

follows at the end of the chapter.

1 import numpy as np
2 import s c ipy . cons tant s as scpconst
3 from mul t i p ro c e s s i ng import Pool
4 import parmap as pm
5 import tqdm as tqdm
6

7 Phi0 = scpconst . va lue ( ’mag . f l u x quantum ’ )
8

9 de f wIntOU( hStep , gamma, tau , wOld=None , f1Old=None , f2Old=None ) :
10 ”””
11 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 Desc r ip t i on :
13 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
14 Numerical implementation o f the Ornstein−Uhlenbeck no i s e i n t e g r a l .
15

16 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
17 Function arguments :
18 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
19 hStep : Float . Step s i z e o f numerica l s imu la t i on as a f r a c t i o n o f the
20 i n v e r s e o f the c h a r a c t e r i s t i c angular f requency
21 wc = 2 pi I0 R / Phi0 .
22 gamma: Float . Noise parameter gamma = 2 pi kB T / ( I0 Phi0 ) .
23 tau : Float . Ornstein−Uhlenbeck r e l a x a t i o n time . Normalised to wc .
24 tau = wc / fMax with fMax corner f requency in no i s e power
25 s p e c t r a l dens i ty −> fMax ˜ equ iva l en t no i s e bandwidth ’ENBW ’ .
26 wOld : Float . Resu l t ing value f o r wIntOU of former i t e r a t i o n .
27 ’None ’ f o r f i r s t f unc t i on c a l l / i n i t i a l i s a t i o n .
28 f1Old , f2Old : Float . Random ( c o r r e l a t e d ) v a r i a b l e s o f former i t e r a t i o n .
29 ’None ’ f o r f i r s t f unc t i on c a l l / i n i t i a l i s a t i o n .
30

31 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
32 Returns :
33 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
34 wNew: Float . New no i s e i n t e g r a l va lue f o r cur rent i t e r a t i o n .
35 f1New , f2New : Float . New random ( c o r r e l a t e d ) v a r i a b l e s o f cur r ent i t e r a t i o n .
36 ”””
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37 # determine Ornstein−Uhlenbeck d i f f u s i o n constant from given parameters
38 c = 2∗gamma/tau ∗∗2
39

40 # genera t i on o f c o r r e l a t e d random numbers f o r OU no i s e i n t e g r a l wh
41 p = np . exp(−hStep/ tau )
42 u , v = np . random . normal ( s i z e =2)
43

44 f1New = tau∗np . s q r t ( c∗hStep ) ∗u
45 f2New = (np . s q r t ( c/hStep ) ∗ tau ∗∗2∗(p − 1) ∗u +
46 np . s q r t ( c∗ tau ∗∗3∗(1 − p) /2∗(1 + p − 2∗ tau/hStep ∗(1 − p) ) ) ∗v )
47

48 i f wOld i s None :
49 # i n i t i a l i s a t i o n in f i r s t c a l l
50 wNew = np . s q r t ( c∗ tau ∗∗3/2) ∗(1 − p) ∗np . random . normal ( ) + f1New + f2New
51 e l s e :
52 # computation o f wh that f u l f i l s OU c o n d i t i o n s
53 wNew = p∗(wOld − f1Old ) + f1New − f2Old + f2New
54

55 r e turn wNew, f1New , f2New
56

57 de f wIntWhiteNoise ( hStep , gamma) :
58 ”””
59 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
60 Desc r ip t i on :
61 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
62 Numerical implementation o f the Gaussian white no i s e i n t e g r a l .
63

64 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
65 Function arguments :
66 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
67 hStep : Float . Step s i z e o f numerica l s imu la t i on as a f r a c t i o n o f the i n v e r s e o f
68 the c h a r a c t e r i s t i c angular f requency wc = 2 pi I0 R / Phi0 .
69 gamma: Float . Noise parameter gamma = 2 pi kB T / ( I0 Phi0 ) .
70

71 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
72 Returns :
73 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
74 wNew: Float . New no i s e i n t e g r a l va lue f o r cur rent i t e r a t i o n .
75 ”””
76 # Determine i n t e n s i t y o f Gaussian no i s e from given parameters .
77 D = 2.∗gamma
78

79 # genera t i on o f white no i s e i n t e g r a l gh
80 wNew = np . s q r t (D∗hStep ) ∗np . random . normal ( )
81

82 r e turn wNew
83

84 de f heunSDEsquid ( y In i t , hStep , tEnd , method , iBias , phiA , gamma, betaC , betaL ,
85 tau=None , a lphaI =0. , alphaR =0. , alphaC =0. , alphaL =0. ,
86 noiseCurrOutput=True ) :
87 ”””
88 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
89 Desc r ip t i on :
90 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
91 Routine that implements the numerica l Heun method as a s o l v e r o f a
92 s t o c h a s t i c numerica l equat ion f o r the example o f the SQUID RCSJ model .
93

94 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
95 Function arguments :
96 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
97 y I n i t : Float array . S ta r t va lue s f o r junc t i on phase ( de l t a ) and
98 vo l tage (d de l t a /dt ) v a r i a b l e s .
99 Struc ture : [ de l ta1 , de l ta1 , u1 , u2 ]

100 hStep : Float . Step s i z e o f numerica l s imu la t i on as a f r a c t i o n o f the i n v e r s e
101 o f the c h a r a c t e r i s t i c angular f requency wc = 2 pi I0 R / Phi0 .
102 tEnd : Float . Total s imu la t i on time . Normalised to wcˆ−1, tEnd = wc ∗ tTot .
103 method : S t r ing . Decides which no i s e model i s used . ’ Gauss ’ f o r Gaussian no i s e
104 and ’OU’ f o r Ornstein−Uhlenbeck no i s e . For other c h o i c e s the no i s e
105 f r e e case i s s imulated .
106 i B i a s : Float . SQUID b ia s cur rent . Normalised to average c r i t i c a l cur r ent I0
107 o f one SQUID junc t i on .
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108 phiA : Float . SQUID f l u x b ia s . Normalised to Phi0 .
109 gamma: Float . Noise parameter gamma = 2 pi kB T / ( I0 Phi0 ) .
110 betaC : Float . Steward−McCumber parameter . betaC = 2∗ pi ∗ I0 ∗Rˆ2∗C/Phi0
111 betaL : Float . Screen ing parameter . betaL = 2∗L∗ I0 /Phi0
112 tau : Float . Ornstein−Uhlenbeck r e l a x a t i o n time . Normalised to wc .
113 tau = wc / fMax with fMax corner f requency in no i s e power
114 s p e c t r a l dens i ty −> fMax ˜ equ iva l en t no i s e bandwidth ’ENBW ’ .
115 Not used , ’None ’ , in the case o f Gaussian no i s e .
116 a lphaI : Float . Asymmetry parameter f o r c r i t i c a l cu r r en t s o f the two
117 SQUID j u n c t i o n s . a lphaI = ( I0 , 2 − I0 , 1 ) /( I0 , 1 + I0 , 2 )
118 alphaR : Float . Asymmetry parameter f o r shunt r e s i s t a n c e s o f the two
119 SQUID j u n c t i o n s . alphaR = (R1 − R2) /(R1 + R2)
120 alphaC : Float . Asymmetry parameter f o r shunt capac i t ance s o f the two
121 SQUID j u n c t i o n s . alphaC = (C2 − C1) /(C1 + C2)
122 alphaL : Float . Asymmetry parameter f o r inductances o f the two
123 SQUID loop ha lve s . alphaL = (L2 − L1) /(L1 + L2)
124 noiseCurrOutput : Boolean . Decides whether the no i s e cur rent data ar rays are
125 i nc luded in the func t i on r e tu rn s . Used f o r the no i s e
126 c h a r a c t e r i s a t i o n . By d e f a u l t ’ True ’ .
127

128 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
129 Returns :
130 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
131 tArray : Float array . Array with time va lue s f o r the s imu la t i on o f the
132 evo lu t i on o f junc t i on phases and v o l t a g e s .
133 yArray : Float array . Data array with s imulated va lue s f o r the junc t i on phases
134 and v o l t a g e s . Each value in tArray r e f e r s to a data array o f the form :
135 [ de l ta1 , de l ta2 , u1 , u2 ]
136 iN1Array , iN2Array ( op t i ona l ) : Float ar rays . Simulated no i s e cur rent va lue s .
137 Only returned i f noiseCurrOutput == True .
138 ”””
139 # RESERVE MEMORY f o r s imu la t i on r e s u l t s
140 tArray = np . append (np . arange (0 , tEnd , hStep ) , np . c e i l ( tEnd/hStep ) ∗hStep )
141

142 i f noiseCurrOutput :
143 iN1Array = np . empty l ike ( tArray )
144 iN2Array = np . empty l ike ( tArray )
145

146 # c a l l subrout ine depending on no i s e model cho i c e
147 # f o r gene ra t i on o f no i s e v a r i a b l e s
148 i f method == ’OU’ :
149 wCurr iN1 , f1Curr iN1 , f2Curr iN1 = wIntOU( hStep , gamma, tau )
150 wCurr iN2 , f1Curr iN2 , f2Curr iN2 = wIntOU( hStep , gamma, tau )
151 e l i f method == ’ Gauss ’ :
152 wCurr iN1 = wIntWhiteNoise ( hStep , gamma)
153 wCurr iN2 = wIntWhiteNoise ( hStep , gamma)
154 e l s e : # no no i s e
155 wCurr iN1 , wCurr iN2 = np . z e r o s (2 )
156

157 # s p l i t arguments f o r d e t e r e m i n i s t i c d r i f t f unc t i on qDr i f t
158 # and s t o c h a s t i c d i f f u s i o n func t i on g D i f f
159 p q = [ iBias , phiA , betaC , betaL , alphaI , alphaR , alphaC , alphaL ]
160 p g = [gamma, betaC , betaL , alphaI , alphaR , alphaC , alphaL ]
161

162 i f betaC == None :
163 # RESERVE MEMORY f o r s imu la t i on r e s u l t s
164 yArray = np . empty ( ( np . a l en ( tArray ) , 2) )
165

166 # VARIABLE INITIALISATION
167 yArray [ 0 ] = np . array ( y I n i t ) [ : 2 ]
168 yOld = yArray [ 0 ]
169

170 i f noiseCurrOutput :
171 iN1Array [ 0 ] = 1 ./ hStep∗np . dot (np . array ( [ ( −1 . ) ∗(1 − alphaR ) , 0 ] ) ,
172 wCurr iN1∗gDiffRSJ (0 , y In i t , ∗p g ) )
173 iN2Array [ 0 ] = 1 ./ hStep∗np . dot (np . array ( [ 0 , (−1.) ∗(1 + alphaR ) ] ) ,
174 wCurr iN2∗gDiffRSJ (0 , y In i t , ∗p g ) )
175

176 # HEUN SDE CALCULATION
177 f o r tIdx , tCurr in enumerate ( tArray [ 0 : −1 ] ) :
178 # Runge−Kutta f a c t o r s
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179 k = hStep∗qDriftRSJ ( tCurr , yOld , ∗p q ) # d r i f t term k
180 # d i f f u s i o n term l
181 l = np . dot (np . array ( [ [ wCurr iN1 , 0 ] ,
182 [ 0 , wCurr iN2 ] ] ) , gDiffRSJ ( tCurr , yOld , ∗p g ) )
183

184 # c on t r i b u t i o n to d i f f u s i o n term from no i s e cu r r en t s
185 gContr = l /2 + np . dot (np . array ( [ [ wCurr iN1 /2 , 0 ] ,
186 [ 0 , wCurr iN2 / 2 ] ] ) ,
187 gDiffRSJ ( tCurr + hStep , yOld + k + l , ∗p g ) )
188

189 # c a l c u l a t e coo rd ina te vec to r y and no i s e cur rent magnitudes iN1 and
190 # iN2 f o r t i +1
191 yArray [ t Idx + 1 ] = ( yOld + k/2 + gContr +
192 hStep /2∗ qDriftRSJ ( tCurr + hStep , yOld + k + l , ∗p q ) )
193

194 i f noiseCurrOutput :
195 iN1Array [ t Idx + 1 ] = (−1.) ∗ ( 1 . − alphaR ) /hStep∗gContr [ 0 ]
196 iN2Array [ t Idx + 1 ] = (−1.) ∗ ( 1 . + alphaR ) /hStep∗gContr [ 1 ]
197

198 # s t o r e y value f o r next i t e r a t i o n and generate new random numbers
199 # f o r no i s e cu r r en t s
200 yOld = yArray [ t Idx + 1 ]
201

202 i f method == ’OU’ :
203 wCurr iN1 , f1Curr iN1 , f2Curr iN1 = wIntOU( hStep , gamma, tau ,
204 wCurr iN1 , f1Curr iN1 ,
205 f2Curr iN1 )
206 wCurr iN2 , f1Curr iN2 , f2Curr iN2 = wIntOU( hStep , gamma, tau ,
207 wCurr iN2 , f1Curr iN2 ,
208 f2Curr iN2 )
209 e l i f method == ’ Gauss ’ :
210 wCurr iN1 = wIntWhiteNoise ( hStep , gamma)
211 wCurr iN2 = wIntWhiteNoise ( hStep , gamma)
212 e l s e : # no no i s e
213 wCurr iN1 , wCurr iN2 = np . z e r o s (2 )
214

215 # c a l c u l a t e v o l t a g e s as d e r i v a t i v e o f phase va lue s
216 yArray = np . concatenate ( ( yArray ,
217 (np . r o l l ( yArray , −1, a x i s =0) −
218 np . r o l l ( yArray , 1 , a x i s =0) ) / ( 2 .∗ hStep ) ) , a x i s =1)
219 yArray [ 0 ] [ 2 : ] = ( yArray [ 1 ] [ : 2 ] − yArray [ 0 ] [ : 2 ] ) /hStep
220 yArray [ − 1 ] [ 2 : ] = ( yArray [ − 1 ] [ : 2 ] − yArray [ − 2 ] [ : 2 ] ) /hStep
221

222 e l s e : # betaC != 0
223 # RESERVE MEMORY f o r s imu la t i on r e s u l t s
224 yArray = np . empty ( ( np . a l en ( tArray ) , 4) )
225

226 # VARIABLE INITIALISATION
227 yArray [ 0 ] = y I n i t
228 yOld = y I n i t
229

230 i f noiseCurrOutput :
231 iN1Array [ 0 ] = 1 ./ hStep∗np . dot (np . array ( [ 0 , 0 , ( −1 . ) ∗betaC∗(1−alphaC ) , 0 ] ) ,
232 wCurr iN1∗ g D i f f (0 , y In i t , ∗p g ) )
233 iN2Array [ 0 ] = 1 ./ hStep∗np . dot (np . array ( [ 0 , 0 , 0 , ( −1 . ) ∗betaC∗(1+alphaC ) ] ) ,
234 wCurr iN2∗ g D i f f (0 , y In i t , ∗p g ) )
235

236 # HEUN SDE CALCULATION
237 f o r tIdx , tCurr in enumerate ( tArray [0 : −1 ] ) :
238 # Runge−Kutta f a c t o r s
239 k = hStep∗ qDr i f t ( tCurr , yOld , ∗p q ) # d r i f t term k
240 # d i f f u s i o n term l
241 l = np . dot (np . array ( [ [ 0 , 0 , 0 , 0 ] ,
242 [ 0 , 0 , 0 , 0 ] ,
243 [ 0 , 0 , wCurr iN1 , 0 ] ,
244 [ 0 , 0 , 0 , wCurr iN2 ] ] ) , g D i f f ( tCurr , yOld , ∗p g ) )
245

246 # c on t r i b u t i o n to d i f f u s i o n term from no i s e cu r r en t s
247 gContr = l /2 + np . dot (np . array ( [ [ 0 , 0 , 0 , 0 ] ,
248 [ 0 , 0 , 0 , 0 ] ,
249 [ 0 , 0 , wCurr iN1 /2 , 0 ] ,
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250 [ 0 , 0 , 0 , wCurr iN2 / 2 ] ] ) ,
251 g D i f f ( tCurr + hStep , yOld + k + l , ∗p g ) )
252

253 # c a l c u l a t e coo rd ina te vec to r y and no i s e cur rent magnitudes iN1 and
254 # iN2 f o r t i +1
255 yArray [ t Idx + 1 ] = ( yOld + k/2 + gContr +
256 hStep /2∗ qDr i f t ( tCurr + hStep , yOld + k + l , ∗p q ) )
257

258 i f noiseCurrOutput :
259 iN1Array [ t Idx + 1 ] = (−1.)∗betaC ∗ ( 1 . − alphaC ) /hStep∗gContr [ 2 ]
260 iN2Array [ t Idx + 1 ] = (−1.)∗betaC ∗ ( 1 . + alphaC ) /hStep∗gContr [ 3 ]
261

262 # s t o r e y value f o r next i t e r a t i o n and generate new random numbers
263 # f o r no i s e cu r r en t s
264 yOld = yArray [ t Idx + 1 ]
265

266 i f method == ’OU’ :
267 wCurr iN1 , f1Curr iN1 , f2Curr iN1 = wIntOU( hStep , gamma, tau ,
268 wCurr iN1 , f1Curr iN1 ,
269 f2Curr iN1 )
270 wCurr iN2 , f1Curr iN2 , f2Curr iN2 = wIntOU( hStep , gamma, tau ,
271 wCurr iN2 , f1Curr iN2 ,
272 f2Curr iN2 )
273 e l i f method == ’ Gauss ’ :
274 wCurr iN1 = wIntWhiteNoise ( hStep , gamma)
275 wCurr iN2 = wIntWhiteNoise ( hStep , gamma)
276 e l s e : # no no i s e
277 wCurr iN1 , wCurr iN2 = np . z e r o s (2 )
278

279

280 i f noiseCurrOutput :
281 r e turn tArray , yArray , iN1Array , iN2Array
282 e l s e :
283 r e turn tArray , yArray
284

285 de f qDr i f t ( t , y , iB ias , phiA , betaC , betaL , alphaI , alphaR , alphaC , alphaL ) :
286 ”””
287 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
288 Desc r ip t i on :
289 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
290 D r i f t term in the SDE f o r the RCSJ model .
291

292 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
293 Function arguments :
294 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
295 t : Float . Current t imestep t i . Normalised to wcˆ−1.
296 y : Float array . Current va lue s f o r junc t i on phase ( de l t a ) and vo l tage
297 (d d e l t a /dt ) v a r i a b l e s at t imestep t .
298 Struc ture : [ de l ta1 , de l ta2 , u1 , u2 ]
299 i B i a s : Float . SQUID b ia s cur rent . Normalised to average c r i t i c a l cur r ent I0
300 o f one SQUID junc t i on .
301 phiA : Float . SQUID f l u x b ia s . Normalised to Phi0 .
302 betaC : Float . Steward−McCumber parameter . betaC = 2∗ pi ∗ I0 ∗Rˆ2∗C/Phi0
303 betaL : Float . Screen ing parameter . betaL = 2∗L∗ I0 /Phi0
304 a lphaI : Float . Asymmetry parameter f o r c r i t i c a l cu r r en t s o f the two SQUID
305 j u n c t i o n s . a lphaI = ( I0 , 2 − I0 , 1 ) /( I0 , 1 + I0 , 2 )
306 alphaR : Float . Asymmetry parameter f o r shunt r e s i s t a n c e s o f the two SQUID
307 j u n c t i o n s . alphaR = (R1 − R2) /(R1 + R2)
308 alphaC : Float . Asymmetry parameter f o r shunt capac i t ance s o f the two SQUID
309 j u n c t i o n s . alphaC = (C2 − C1) /(C1 + C2)
310 alphaL : Float . Asymmetry parameter f o r inductances o f the two SQUID loop
311 ha lve s . alphaL = (L2 − L1) /(L1 + L2)
312

313 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
314 Returns :
315 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
316 q : Float array . D r i f t term eva luated at ( t i , y ( t i ) ) .
317 ”””
318 # a u x i l i a r y v a r i a b l e s
319 cL = 1 . / ( betaL∗np . p i )
320 cCm = 1 . / ( betaC ∗ ( 1 . − alphaC ) )
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321 cCp = 1 . / ( betaC ∗ ( 1 . + alphaC ) )
322

323 # Calcu la te d e t e r m i n i s t i c d r i f t c o n t r i b u t i o n q to
324 # new coord ina te vec to r y f o r t i +1
325 q = (np . array ( [ 0 ,
326 0 ,
327 cCm∗( i B i a s /2∗ ( 1 . + alphaL ) − 2∗phiA/betaL ) ,
328 cCp∗( i B i a s /2∗ ( 1 . − alphaL ) + 2∗phiA/betaL ) ] ) +
329 np . dot (np . array ( [ [ 0 , 0 , 1 , 0 ] ,
330 [ 0 , 0 , 0 , 1 ] ,
331 [(−cL ) ∗cCm, cL∗cCm, (−1.) ∗ ( 1 . − alphaR ) ∗cCm, 0 ] ,
332 [ cL∗cCp , (−cL ) ∗cCp , 0 , (−1.) ∗ ( 1 . + alphaR ) ∗cCp ] ] ) , y ) +
333 np . dot (np . array ( [ [ 0 , 0 , 0 , 0 ] ,
334 [ 0 , 0 , 0 , 0 ] ,
335 [ ( −1 . ) ∗ ( 1 . − a lphaI ) ∗cCm, 0 , 0 , 0 ] ,
336 [ 0 , (−1.) ∗ ( 1 . + alphaI ) ∗cCp , 0 , 0 ] ] ) , np . s i n ( y ) ) )
337 r e turn q
338

339 de f g D i f f ( t , y , gamma, betaC , betaL , alphaI , alphaR , alphaC , alphaL ) :
340 ”””
341 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
342 Desc r ip t i on :
343 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
344 D i f f u s i o n term in the SDE f o r the RCSJ model .
345

346 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
347 Function arguments :
348 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
349 t : Float . Current t imestep . Normalised to wcˆ−1.
350 y : Float array . Current va lue s f o r junc t i on phase ( de l t a ) and vo l tage
351 (d d e l t a /dt ) v a r i a b l e s at t imestep t .
352 Struc ture : [ de l ta1 , de l ta2 , u1 , u2 ]
353 gamma: Float . Noise parameter gamma = 2 pi kB T / ( I0 Phi0 ) .
354 betaC : Float . Steward−McCumber parameter . betaC = 2∗ pi ∗ I0 ∗Rˆ2∗C/Phi0
355 betaL : Float . Screen ing parameter . betaL = 2∗L∗ I0 /Phi0
356 a lphaI : Float . Asymmetry parameter f o r c r i t i c a l cu r r en t s o f the two
357 SQUID j u n c t i o n s . a lphaI = ( I0 , 2 − I0 , 1 ) /( I0 , 1 + I0 , 2 )
358 alphaR : Float . Asymmetry parameter f o r shunt r e s i s t a n c e s o f the two
359 SQUID j u n c t i o n s . alphaR = (R1 − R2) /(R1 + R2)
360 alphaC : Float . Asymmetry parameter f o r shunt capac i t ance s o f the two
361 SQUID j u n c t i o n s . alphaC = (C2 − C1) /(C1 + C2)
362 alphaL : Float . Asymmetry parameter f o r inductances o f the two
363 SQUID loop ha lve s . alphaL = (L2 − L1) /(L1 + L2)
364

365 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
366 Returns :
367 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
368 g : Float array . D i f f u s i o n term eva luated at ( t i , y ( t i ) ) .
369 ”””
370 # a u x i l i a r y v a r i a b l e s
371 cCm = 1 . / ( betaC ∗ ( 1 . − alphaC ) )
372 cCp = 1 . / ( betaC ∗ ( 1 . + alphaC ) )
373

374 # Calcu la te s t o c h a s t i c d i f f u s i o n c on t r i b u t i o n g to
375 # new coord ina te vec to r y f o r t i +1
376 g = np . array ( [ 0 ,
377 0 ,
378 (−1.)∗cCm∗np . s q r t ( 1 . − alphaR ) ,
379 (−1.)∗cCp∗np . s q r t ( 1 . + alphaR ) ] )
380 r e turn g
381

382 de f qDriftRSJ ( t , y , iB ias , phiA , betaC , betaL , alphaI , alphaR , alphaC , alphaL ) :
383 ”””
384 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
385 Desc r ip t i on :
386 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
387 D r i f t term in the SDE f o r the RSJ model ( no shunt capac i to r , betaC=0) .
388

389 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
390 Function arguments :
391 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

106



Appendix A. SDE Numerical simulation code: SQUID characteristics107

392 See ’ qDr i f t ’ documentation .
393

394 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
395 Returns :
396 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
397 q : Float array . D r i f t term eva luated at ( t i , y ( t i ) ) .
398 ”””
399 # a u x i l i a r y v a r i a b l e s
400 cL = 1 . / ( betaL∗np . p i )
401 cRm = 1 . / ( 1 . − alphaR )
402 cRp = 1 . / ( 1 . + alphaR )
403

404 # Calcu la te d e t e r m i n i s t i c d r i f t c o n t r i b u t i o n q to
405 # new coord ina te vec to r y f o r t i +1
406 q = (np . array ( [ cRm∗( i B i a s /2∗ ( 1 . + alphaL ) − 2∗phiA/betaL ) ,
407 cRp∗( i B i a s /2∗ ( 1 . − alphaL ) + 2∗phiA/betaL ) ] ) +
408 np . dot (np . array ( [ [ ( − cL ) ∗cRm, cL∗cRm] ,
409 [ cL∗cRp , (−cL ) ∗cRp ] ] ) , y ) +
410 np . dot (np . array ( [ [ ( −cRm) ∗ ( 1 . − a lphaI ) , 0 ] ,
411 [ 0 , (−cRp) ∗ ( 1 . + alphaI ) ] ] ) , np . s i n ( y ) ) )
412 r e turn q
413

414 de f gDiffRSJ ( t , y , gamma, betaC , betaL , alphaI , alphaR , alphaC , alphaL ) :
415 ”””
416 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
417 Desc r ip t i on :
418 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
419 D i f f u s i o n term in the SDE f o r the RSJ model ( no shunt capac i to r , betaC=0) .
420

421 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
422 Function arguments :
423 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
424 See ’ g D i f f ’ documentation .
425

426 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
427 Returns :
428 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
429 g : Float array . D i f f u s i o n term eva luated at ( t i , y ( t i ) ) .
430 ”””
431 # a u x i l i a r y v a r i a b l e s
432 cRm = 1 . / ( 1 . − alphaR )
433 cRp = 1 . / ( 1 . + alphaR )
434

435 # Calcu la te s t o c h a s t i c d i f f u s i o n c o n t r i b u t i o n g to
436 # new coord ina te vec to r y f o r t i +1
437 g = np . array ( [ ( −1 . ) ∗cRm∗np . s q r t ( 1 . − alphaR ) ,
438 (−1.)∗cRp∗np . s q r t ( 1 . + alphaR ) ] )
439 r e turn g
440

441 de f simSquidIVcurve ( iArray , y In i t , hStep , Ttot , Tin itSkip , method ,
442 phiA , gamma, betaC , betaL , tauOU=None ,
443 a lphaI =0. , alphaR =0. , alphaC =0. , alphaL =0.) :
444 ”””
445 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
446 Desc r ip t i on :
447 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
448 Simulates a SQUID I−V c h a r a c t e r i s t i c curve f o r the g iven s e t o f SQUID
449 parameters .
450

451 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
452 Function arguments :
453 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
454 iArray : Float array . SQUID b ia s cur rent . Normalised to average c r i t i c a l
455 cur rent I0 o f one SQUID junc t i on .
456 y I n i t : Float array . S ta r t va lue s f o r junc t i on phase ( d e l t a ) and vo l tage
457 (d de l t a /dt ) v a r i a b l e s in s imu la t i on f o r f i r s t va lue in b i a s
458 cur rent array iArray . St ruc ture : [ de l ta1 , de l ta2 , u1 , u2 ]
459 hStep : Float . Step s i z e o f numerica l s imu la t i on as a f r a c t i o n o f the
460 i n v e r s e o f the c h a r a c t e r i s t i c angular f requency wc=2 pi I0 R/Phi0 .
461 Ttot : Float . Total s imu la t i on time . Normalised to wcˆ−1.
462 Tin i tSk ip : Float . Time per iod during which t r a n s i e n t from s t a r t va lue s takes
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463 p lace . Wil l be d i s ca rded in the c a l c u l a t i o n o f the time averaged
464 j unc t i on vo l tage . Normalised to wcˆ−1.
465 method : S t r ing . Decides which no i s e model i s used . ’ Gauss ’ f o r Gaussian
466 no i s e and ’OU’ f o r Ornstein−Uhlenbeck no i s e . For other c h o i c e s the
467 no i s e f r e e case i s s imulated .
468 phiA : Float . SQUID f l u x b ia s . Normalised to Phi0 .
469 gamma: Float . Noise parameter gamma = 2 pi kB T / ( I0 Phi0 ) .
470 betaC : Float . Steward−McCumber parameter . betaC = 2∗ pi ∗ I0 ∗Rˆ2∗C/Phi0
471 betaL : Float . Screen ing parameter . betaL = 2∗L∗ I0 /Phi0
472 tauOU : Float . Ornstein−Uhlenbeck r e l a x a t i o n time . Normalised to wc .
473 tauOU = wc / fMax with fMax corner f requency in no i s e power
474 s p e c t r a l dens i ty −> fMax ˜ equ iva l en t no i s e bandwidth ’ENBW ’ .
475 Not used , ’None ’ , in the case o f Gaussian no i s e .
476 a lphaI : Float . Asymmetry parameter f o r c r i t i c a l cu r r en t s o f the two
477 SQUID j u n c t i o n s . By d e f a u l t 0 . a lphaI = ( I0 , 2 − I0 , 1 ) /( I0 , 1 + I0 , 2 )
478 alphaR : Float . Asymmetry parameter f o r shunt r e s i s t a n c e s o f the two
479 SQUID j u n c t i o n s . By d e f a u l t 0 . alphaR = (R1 − R2) /(R1 + R2)
480 alphaC : Float . Asymmetry parameter f o r shunt capac i t ance s o f the two
481 SQUID j u n c t i o n s . By d e f a u l t 0 . alphaC = (C2 − C1) /(C1 + C2)
482 alphaL : Float . Asymmetry parameter f o r inductances o f the two
483 SQUID loop ha lve s . By d e f a u l t 0 . alphaL = (L2 − L1) /(L1 + L2)
484

485 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
486 Returns :
487 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
488 uAvgArray : Float array . Data array o f the s imulated time averaged SQUID
489 v o l t a g e s f o r the s p e c i f i e d b i a s cur rent va lue s in iArray .
490 ”””
491 # r e s e r v e memory f o r s imu la t i on data
492 uAvgArray = np . empty l ike ( iArray )
493

494 # counter f o r 10 percent s t a t u s updates
495 n10p = 0
496

497 # use i n i t i a l guess as s t a r t va lue f o r numerica l s imu la t i on
498 # −−> c a l c u l a t e d va lue s in t r a n s i e n t phase Tin i tSk ip have to be excluded
499 yStart = y I n i t
500

501 f o r idx , iVal in enumerate ( iArray ) :
502 # run s imu la t i on f o r cur rent iVal
503 tCurr , dataCurr = heunSDEsquid ( yStart , hStep , Ttot , method , iVal ,
504 phiA , gamma, betaC , betaL , tauOU ,
505 alphaI , alphaR , alphaC , alphaL ,
506 noiseCurrOutput=False )
507

508 # c a l c u l a t e average vo l tage s i gna l , exc lude t r a n s i e n t per iod
509 mask = np . where ( tCurr > Tin i tSk ip )
510 uSQUID = ( ( 1 . + alphaL ) ∗np . array ( dataCurr [ : , 2 ] ) +
511 ( 1 . − alphaL ) ∗np . array ( dataCurr [ : , 3 ] ) ) /2 .
512 uAvgArray [ idx ] = np . t rapz (uSQUID[ mask ] , tCurr [ mask ] ) /( Ttot − Tin i tSk ip )
513

514 # update s t a r t va lue f o r numerica l s imu la t i on with f i n a l data vec to r
515 # f o r next i t e r a t i o n with d i f f e r e n t b i a s cur rent
516 yStart = dataCurr [−1]
517

518 # s t a t u s update
519 i f i n t ( idx /np . a l en ( iArray ) ∗10) != n10p :
520 n10p += 1
521 pr in t ( ’%d percent f i n i s h e d \n ’ % ( n10p ∗10) )
522

523 r e turn uAvgArray
524

525 de f simSquidPhiVcurve ( phiArray , y In i t , hStep , Ttot , Tin itSkip , method , i ,
526 gamma, betaC , betaL , tauOU=None ,
527 a lphaI =0. , alphaR =0. , alphaC =0. , alphaL =0.) :
528 ”””
529 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
530 Desc r ip t i on :
531 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
532 Simulates a SQUID Phi−V c h a r a c t e r i s t i c curve f o r the g iven s e t o f SQUID
533 parameters .
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534

535 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
536 Function arguments :
537 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
538 phiArray : Float array . SQUID f l u x b ia s . Normalised to Phi0 .
539 y I n i t : Float array . S ta r t va lue s f o r junc t i on phase ( d e l t a ) and vo l tage
540 (d de l t a /dt ) v a r i a b l e s in s imu la t i on f o r f i r s t va lue in f l u x b ia s
541 array phiArray . St ruc ture : [ de l ta1 , de l ta2 , u1 , u2 ]
542 hStep : Float . Step s i z e o f numerica l s imu la t i on as a f r a c t i o n o f the
543 i n v e r s e o f the c h a r a c t e r i s t i c angular f requency wc=2 pi I0 R/Phi0 .
544 Ttot : Float . Total s imu la t i on time . Normalised to wcˆ−1.
545 Tin i tSk ip : Float . Time per iod during which t r a n s i e n t from s t a r t va lue s takes
546 p lace . Wil l be d i s ca rded in the c a l c u l a t i o n o f the time averaged
547 j unc t i on vo l tage . Normalised to wcˆ−1.
548 method : S t r ing . Decides which no i s e model i s used . ’ Gauss ’ f o r Gaussian
549 no i s e and ’OU’ f o r Ornstein−Uhlenbeck no i s e . For other c h o i c e s the
550 no i s e f r e e case i s s imulated .
551 i : F loat . SQUID b ia s cur rent . Normalised to average c r i t i c a l cur r ent
552 I0 o f one SQUID junc t i on .
553 gamma: Float . Noise parameter gamma = 2 pi kB T / ( I0 Phi0 ) .
554 betaC : Float . Steward−McCumber parameter . betaC = 2 pi I0 Rˆ2 C/Phi0
555 betaL : Float . Screen ing parameter . betaL = 2 L I0 /Phi0
556 tauOU : Float . Ornstein−Uhlenbeck r e l a x a t i o n time . Normalised to wc .
557 tauOU = wc / fMax with fMax corner f requency in no i s e power
558 s p e c t r a l dens i ty −> fMax ˜ equ iva l en t no i s e bandwidth ’ENBW ’ .
559 Not used , ’None ’ , in the case o f Gaussian no i s e .
560 a lphaI : Float . Asymmetry parameter f o r c r i t i c a l cu r r en t s o f the two
561 SQUID j u n c t i o n s . By d e f a u l t 0 . a lphaI = ( I0 , 2 − I0 , 1 ) /( I0 , 1 + I0 , 2 )
562 alphaR : Float . Asymmetry parameter f o r shunt r e s i s t a n c e s o f the two
563 SQUID j u n c t i o n s . By d e f a u l t 0 . alphaR = (R1 − R2) /(R1 + R2)
564 alphaC : Float . Asymmetry parameter f o r shunt capac i t ance s o f the two
565 SQUID j u n c t i o n s . By d e f a u l t 0 . alphaC = (C2 − C1) /(C1 + C2)
566 alphaL : Float . Asymmetry parameter f o r inductances o f the two
567 SQUID loop ha lve s . By d e f a u l t 0 . alphaL = (L2 − L1) /(L1 + L2)
568

569 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
570 Returns :
571 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
572 uAvgArray : Float array . Data array o f the s imulated time averaged SQUID
573 v o l t a g e s f o r the s p e c i f i e d f l u x b ia s va lue s in phiArray .
574 ”””
575 # r e s e r v e memory f o r s imu la t i on data
576 uAvgArray = np . empty l ike ( phiArray )
577

578 # counter f o r 10 percent s t a t u s updates
579 n10p = 0
580

581 # use i n i t i a l guess as s t a r t va lue f o r numerica l s imu la t i on
582 # −−> c a l c u l a t e d va lues in t r a n s i e n t phase Tin i tSk ip have to be excluded
583 yStart = y I n i t
584

585 f o r idx , phiVal in enumerate ( phiArray ) :
586 # run s imu la t i on f o r cur rent phiVal
587 tCurr , dataCurr = heunSDEsquid ( yStart , hStep , Ttot , method , i ,
588 phiVal , gamma, betaC , betaL , tauOU ,
589 alphaI , alphaR , alphaC , alphaL ,
590 noiseCurrOutput=False )
591

592 # c a l c u l a t e average vo l tage s i gna l , exc lude t r a n s i e n t per iod
593 mask = np . where ( tCurr > Tin i tSk ip )
594 uSQUID = ( ( 1 . + alphaL ) ∗np . array ( dataCurr [ : , 2 ] ) +
595 ( 1 . − alphaL ) ∗np . array ( dataCurr [ : , 3 ] ) ) /2 .
596 uAvgArray [ idx ] = np . t rapz (uSQUID[ mask ] , tCurr [ mask ] ) /( Ttot − Tin i tSk ip )
597

598 # update s t a r t va lue f o r numerica l s imu la t i on with f i n a l data vec to r
599 # f o r next i t e r a t i o n with d i f f e r e n t b i a s cur rent
600 yStart = dataCurr [−1]
601

602 # s t a t u s update
603 i f i n t ( idx /np . a l en ( phiArray ) ∗10) != n10p :
604 n10p += 1
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605 pr in t ( ’%d percent f i n i s h e d \n ’ % ( n10p ∗10) )
606

607 r e turn uAvgArray
608

609 de f s imSquidIPhiVsurface ( iArray , phiArray , y In i t , hStep , Ttot , TinitSkip , method ,
610 gamma, betaC , betaL , tauOU=None ,
611 a lphaI =0. , alphaR =0. , alphaC =0. , alphaL =0.) :
612 ”””
613 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
614 Desc r ip t i on :
615 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
616 Simulates a SQUID I−Phi−V s u r f a c e o f c h a r a c t e r i s t i c curves f o r the g iven s e t o f
617 SQUID parameters .
618

619 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
620 Function arguments :
621 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
622 iArray : Float array . SQUID b ia s cur rent . Normalised to average c r i t i c a l
623 cur rent I0 o f one SQUID junc t i on .
624 phiArray : Float array . SQUID f l u x b ia s . Normalised to Phi0 .
625 y I n i t : Float array . S ta r t va lue s f o r junc t i on phase ( d e l t a ) and vo l tage
626 (d d e l t a /dt ) v a r i a b l e s in s imu la t i on . Used f o r f i r s t va lue in b i a s
627 cur rent array iArray f o r every value in f l u x b ia s array phiArray .
628 Struc ture : [ de l ta1 , de l ta2 , u1 , u2 ]
629 hStep : Float . Step s i z e o f numerica l s imu la t i on as a f r a c t i o n o f the
630 i n v e r s e o f the c h a r a c t e r i s t i c angular f requency wc=2 pi I0 R/Phi0 .
631 Ttot : Float . Total s imu la t i on time . Normalised to wcˆ−1.
632 Tin i tSk ip : Float . Time per iod during which t r a n s i e n t from s t a r t va lue s takes
633 p lace . Wil l be d i s ca rded in the c a l c u l a t i o n o f the time averaged
634 j unc t i on vo l tage . Normalised to wcˆ−1.
635 method : S t r ing . Decides which no i s e model i s used . ’ Gauss ’ f o r Gaussian
636 no i s e and ’OU’ f o r Ornstein−Uhlenbeck no i s e . For other c h o i c e s the
637 no i s e f r e e case i s s imulated .
638 gamma: Float . Noise parameter gamma = 2 pi kB T / ( I0 Phi0 ) .
639 betaC : Float . Steward−McCumber parameter . betaC = 2 pi I0 Rˆ2 C/Phi0
640 betaL : Float . Screen ing parameter . betaL = 2 L I0 /Phi0
641 tauOU : Float . Ornstein−Uhlenbeck r e l a x a t i o n time . Normalised to wc .
642 tauOU = wc / fMax with fMax corner f requency in no i s e power
643 s p e c t r a l dens i ty −> fMax ˜ equ iva l en t no i s e bandwidth ’ENBW ’ .
644 Not used , ’None ’ , in the case o f Gaussian no i s e .
645 a lphaI : Float . Asymmetry parameter f o r c r i t i c a l cu r r en t s o f the two
646 SQUID j u n c t i o n s . By d e f a u l t 0 . a lphaI = ( I0 , 2 − I0 , 1 ) /( I0 , 1 + I0 , 2 )
647 alphaR : Float . Asymmetry parameter f o r shunt r e s i s t a n c e s o f the two
648 SQUID j u n c t i o n s . By d e f a u l t 0 . alphaR = (R1 − R2) /(R1 + R2)
649 alphaC : Float . Asymmetry parameter f o r shunt capac i t ance s o f the two
650 SQUID j u n c t i o n s . By d e f a u l t 0 . alphaC = (C2 − C1) /(C1 + C2)
651 alphaL : Float . Asymmetry parameter f o r inductances o f the two
652 SQUID loop ha lve s . By d e f a u l t 0 . alphaL = (L2 − L1) /(L1 + L2)
653

654 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
655 Returns :
656 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
657 uAvgArray : Float array . Data array o f the s imulated time averaged SQUID
658 v o l t a g e s f o r the s p e c i f i e d range o f b i a s cur rent and f l u x b ia s
659 va lue s in iArray and phiArray . St ruc ture : uAvgArray [ idxPhi , i dx I ]
660 ”””
661 # r e s e r v e memory f o r s imu la t i on data
662 uAvgArray = np . empty ( ( np . a l en ( phiArray ) , np . a l en ( iArray ) ) )
663

664 # counter f o r 10 percent s t a t u s updates
665 n10p = 0
666

667 f o r idxPhi , phiVal in enumerate ( phiArray ) :
668 # use i n i t i a l guess as s t a r t va lue f o r numerica l s imu la t i on
669 # −−> c a l c u l a t e d va lue s in t r a n s i e n t phase Tin i tSk ip have to be excluded
670 yStart = y I n i t
671

672 f o r idxI , iVa l in enumerate ( iArray ) :
673 # run s imu la t i on f o r cur rent iVal and phiVal
674 tCurr , dataCurr = heunSDEsquid ( yStart , hStep , Ttot , method , iVal ,
675 phiVal , gamma, betaC , betaL , tauOU ,
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676 alphaI , alphaR , alphaC , alphaL ,
677 noiseCurrOutput=False )
678

679 # c a l c u l a t e average vo l tage s i gna l , exc lude t r a n s i e n t per iod
680 mask = np . where ( tCurr > Tin i tSk ip )
681 uSQUID = ( ( 1 . + alphaL ) ∗np . array ( dataCurr [ : , 2 ] ) +
682 ( 1 . − alphaL ) ∗np . array ( dataCurr [ : , 3 ] ) ) /2 .
683 uAvgArray [ idxPhi , i dx I ] = np . t rapz (uSQUID[ mask ] ,
684 tCurr [ mask ] ) /( Ttot − Tin i tSk ip )
685

686 # update s t a r t va lue f o r numerica l s imu la t i on with f i n a l data vec to r
687 # f o r next i t e r a t i o n with d i f f e r e n t b i a s cur rent
688 yStart = dataCurr [−1]
689

690 # s t a t u s update
691 i f i n t ( idxPhi /np . a l en ( phiArray ) ∗10) != n10p :
692 n10p += 1
693 pr in t ( ’%d percent f i n i s h e d \n ’ % ( n10p ∗10) )
694

695 r e turn uAvgArray
696

697 de f pa ra l l e l Squ id IV ( phiA , iArray , y In i t , hStep , Ttot , Tin itSkip , method ,
698 gamma, betaC , betaL , tauOU , alphaI , alphaR , alphaC , alphaL ) :
699 ”””
700 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
701 Desc r ip t i on :
702 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
703 Function wrapper f o r the p a r a l l e l i s e d computation o f the SQUID I−V curve used
704 f o r f i t t i n g procedures .
705

706 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
707 Function arguments :
708 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
709 See ’ simSquidIVcurve ’ documentation .
710

711 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
712 Returns :
713 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
714 Simulated I−V curve o f simSquidIVcurve f o r the s p e c i f i e d SQUID parameters .
715 ”””
716 r e turn simSquidIVcurve ( iArray , y In i t , hStep , Ttot , Tin itSkip , method ,
717 phiA , gamma, betaC , betaL , tauOU ,
718 alphaI , alphaR , alphaC , alphaL )
719

720 de f simSquidIPhiVsurfaceMP ( iArray , phiArray , y In i t , hStep , Ttot , Tin itSkip , method ,
721 gamma, betaC , betaL , tauOU=None ,
722 a lphaI =0. , alphaR =0. , alphaC =0. , alphaL =0.) :
723 ”””
724 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
725 Desc r ip t i on :
726 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
727 Multi−p r o c e s s i n g ve r s i o n o f s imSquidIPhiVSurface . S imulates a SQUID I−Phi−V
728 s u r f a c e o f c h a r a c t e r i s t i c curves f o r the g iven s e t o f SQUID parameters us ing
729 multi−core computation .
730

731 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
732 Function arguments :
733 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
734 See ’ s imSquidIPhiVsurface ’ documentation .
735

736 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
737 Returns :
738 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
739 uAvgArray : Float array . Data array o f the s imulated time averaged SQUID
740 v o l t a g e s f o r the s p e c i f i e d range o f b i a s cur rent and f l u x b ia s
741 va lue s in iArray and phiArray . St ruc ture : uAvgArray [ idxPhi , i dx I ]
742 ”””
743 # SQUID parameters
744 pars = ( iArray , y In i t , hStep , Ttot , Tin itSkip , method , gamma, betaC , betaL ,
745 tauOU , alphaI , alphaR , alphaC , alphaL )
746
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747 # use pa ra l l e l Squ id IV func t i on wrapper f o r p a r a l l e l i s e d computation
748 # order o f phiArray i s t r a n s l a t e d to uAvgArray
749 uAvgArray = pm.map( para l l e lSqu id IV , phiArray , ∗pars , pm chunksize =1,
750 pm processes =4, pm pbar=True )
751

752 r e turn uAvgArray
753

754 de f squidIVFit ( iArray , I0 , R0 , phiA , gamma, betaC , betaL , tauOU=None , a lphaI =0. ,
755 alphaR =0. , alphaC =0. , alphaL =0. , y I n i t =[1 . , 0 . 5 , 1e−4, 1e−4] ,
756 hStep =0.5 , Ttot=1e3 , T in i tSk ip=1e2 , method=’ Gauss ’ ) :
757 ”””
758 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
759 Desc r ip t i on :
760 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
761 Function wrapper f o r f i t t i n g the s imulated SQUID I−V model to an exper imenta l
762 data s e t . Trans la t e s cur rent and vo l tage from normal i sed va lue s in to p h y s i c a l
763 q u a n t i t i e s .
764

765 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
766 Function arguments :
767 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
768 I0 : Float . Average c r i t i c a l cur r ent o f the two Josephson j u n c t i o n s .
769 I0 = ( I0 , 1 + I0 , 2 ) /2
770 R0 : Float . Two times p a r a l l e l r e s i s t a n c e o f the junc t i on shunt r e s i s t o r s .
771 R0 = 2 R1 R2/(R1 + R2)
772 Rest : See ’ simSquidIVcurve ’ documentation .
773

774 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
775 Returns :
776 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
777 vArray : Float array . Data array o f the s imulated time averaged SQUID
778 v o l t a g e s f o r the s p e c i f i e d b i a s cur rent va lue s in iArray .
779 ”””
780 vArrayTemp = simSquidIVcurve ( iArray / I0 , y In i t , hStep , Ttot , Tin itSkip , method ,
781 phiA , gamma, betaC , betaL , tauOU , alphaI , alphaR ,
782 alphaC , alphaL )
783

784 vArray = I0 ∗R0∗vArrayTemp
785

786 r e turn vArray
787

788 de f squidPhiVFit ( iCoi lArray , cIPhi , phiCoi l0 , I0 , R0 , i , gamma, betaC , betaL ,
789 tauOU=None , a lphaI =0. , alphaR =0. , alphaC =0. , alphaL =0. ,
790 y I n i t =[1 . , 0 . 5 , 1e−4, 1e−4] , hStep =0.5 , Ttot=1e3 , T in i tSk ip=1e2 ,
791 method=’ Gauss ’ ) :
792 ”””
793 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
794 Desc r ip t i on :
795 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
796 Function wrapper f o r f i t t i n g the s imulated SQUID Phi−V model to an exper imenta l
797 data s e t . Trans la t e s cur rent and vo l tage from normal i sed va lue s in to p h y s i c a l
798 q u a n t i t i e s .
799

800 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
801 Function arguments :
802 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
803 iCo i lArray : Float array . Bias c o i l cur r ent .
804 cIPhi : Float . Trans la t i on f a c t o r between c o i l cur r ent and magnetic f l u x
805 phiA . phiArray = cIPhi ∗ iCo i lArray − ph iCo i l0
806 ph iCo i l0 : Float . Flux o f f s e t f o r 0 app l i ed c o i l cur r ent .
807 I0 : Float . Average c r i t i c a l cur r ent o f the two Josephson j u n c t i o n s .
808 I0 = ( I0 , 1 + I0 , 2 ) /2
809 R0 : Float . Two times p a r a l l e l r e s i s t a n c e o f the junc t i on shunt
810 r e s i s t o r s . R0 = 2 R1 R2/(R1 + R2)
811 Rest : See ’ simSquidPhiVcurve ’ documentation .
812

813 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
814 Returns :
815 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
816 vArray : Float array . Data array o f the s imulated time averaged SQUID
817 v o l t a g e s f o r the s p e c i f i e d c o i l cur r ent va lue s in iCo i lArray .
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818 ”””
819 vArrayTemp = simSquidPhiVcurve ( cIPhi ∗ iCo i lArray − phiCoi l0 , y In i t , hStep , Ttot ,
820 TinitSkip , method , i / I0 , gamma, betaC , betaL ,
821 tauOU , alphaI , alphaR , alphaC , alphaL )
822

823 vArray = I0 ∗R0∗vArrayTemp
824

825 r e turn vArray
826

827 de f squidIPhiVFit ( iArray , iCoi lArray , I0 , R0 , cIPhi , phiCoi l0 , gamma, betaC , betaL ,
828 tauOU=None , a lphaI =0. , alphaR =0. , alphaC =0. , alphaL =0. ,
829 y I n i t =[1 . , 0 . 5 , 1e−4, 1e−4] , hStep =0.5 , Ttot=1e3 , T in i tSk ip=1e2 ,
830 method=’ Gauss ’ ) :
831 ”””
832 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
833 Desc r ip t i on :
834 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
835 Function wrapper f o r f i t t i n g the s imulated SQUID I−Phi−V model to an
836 exper imenta l data set , us ing p a r a l l e l i s e d computation . Trans la t e s cur rent and
837 vo l tage from normal i sed va lue s in to p h y s i c a l q u a n t i t i e s .
838

839 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
840 Function arguments :
841 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
842 iArray : Float array . SQUID b ia s cur rent . Normalised to average c r i t i c a l
843 cur rent I0 o f one SQUID junc t i on .
844 iCo i lArray : Float array . Bias c o i l cur r ent .
845 I0 : Float . Average c r i t i c a l cur r ent o f the two Josephson j u n c t i o n s .
846 I0 = ( I0 , 1 + I0 , 2 ) /2
847 R0 : Float . Two times p a r a l l e l r e s i s t a n c e o f the junc t i on shunt
848 r e s i s t o r s . R0 = 2 R1 R2/(R1 + R2)
849 cIPhi : Float . Trans la t i on f a c t o r between c o i l cur r ent and magnetic f l u x
850 phiA . phiArray = cIPhi ∗ iCo i lArray − ph iCo i l0
851 ph iCo i l0 : Float . Flux o f f s e t f o r 0 app l i ed c o i l cur r ent .
852 Rest : See ’ s imSquidIPhiVsurface ’ documentation .
853

854 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
855 Returns :
856 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
857 vArray : Float array . Data array o f the s imulated time averaged SQUID
858 v o l t a g e s f o r the s p e c i f i e d range o f SQUID b ia s and b ia s c o i l
859 cur rent va lue s in iArray and iCo i lArray .
860 Struc ture : vArray [ idx ICo i l , i dx IB ia s ]
861 ”””
862 vArrayTemp = simSquidIPhiVsurfaceMP ( iArray / I0 , iCo i lArray / cIPhi − phiCoi l0 ,
863 yIn i t , hStep , Ttot , Tin itSkip , method ,
864 gamma, betaC , betaL , tauOU ,
865 alphaI , alphaR , alphaC , alphaL )
866

867 vArray = I0 ∗R0∗np . array (vArrayTemp)
868

869 r e turn vArray
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The following routine was used for fitting the SQUID I-Φ-V numerical model to

experimental data. In the optimization it is ensured that only physically meaningful

configurations are tested. To this end, the fit-parameters are implemented as relative

changes to the initial SQUID variables or restricted to the relevant parameter space.

1 import numpy as np
2 import s c ipy as scp
3 from sc ipy import opt imize
4

5 # import l i b r a r y f o r SQUID numerica l s imu la t i on s
6 from numSimSQUID import ∗
7

8 # IMPORT EXPERIMENTAL DATA:
9 # iBiasSample −> SQUID b ia s cu r r en t s

10 # iCoi lSample −> Bias c o i l cu r r en t s
11 # vSample −> SQUID output v o l t a g e s ( Shape : ( nICoi l , nIBias ) )
12

13 # c o n f i g u r e s imu la t i on and s e t i n i t i a l va lue s f o r SQUID parameters
14 y I n i t = [ 1 . , 0 . 5 , 1e−4, 1e−4] ; hStep = 0 . 2 ; Ttot = 1e4 ; T in i tSk ip = 1e3 ;
15 method = ’ Gauss ’
16

17 I 0 I n i t = 3 .80 e−05; R0Init = 1 6 . 6 8 ; c I P h i I n i t = 6 .85 e−4; p h i C o i l 0 I n i t = 0 . 0 9 5 ;
18 gammaInit = 3 .41 e−2; betaCIn i t = 1 . 0 4 3 ; be taLIn i t = 4 . 6 4 0 ;
19 a l p h a I I n i t = 0 . 2 0 2 ; a lphaRInit = 0 . 0 2 7 ; a lphaCIni t = 0 . 2 4 6 ; a lphaLIn i t = 0.167
20

21 de f varsRelToAbs ( x ) :
22 ””” Helper func t i on f o r t r a n s l a t i n g v a r i a b l e s from r e l a t i v e to abso lu t e ”””
23 ( I0Rel , R0Rel , gammaRel , betaCRel , betaLRel ,
24 tanAlphaI , tanAlphaR , tanAlphaC , tanAlphaL ) = x
25

26 I0 = I 0 I n i t ∗abs ( I0Rel )
27 R0 = R0Init ∗abs ( R0Rel )
28 gamma = gammaInit∗abs (gammaRel )
29 betaC = betaCIn i t ∗abs ( betaCRel )
30 betaL = betaLIn i t ∗abs ( betaLRel )
31 alphaI , alphaR , alphaC , alphaL = 2/np . p i ∗np . arctan (np . array ( [ tanAlphaI , tanAlphaR ,
32 tanAlphaC , tanAlphaL ] ) )
33

34 r e turn np . array ( [ I0 , R0 , gamma, betaC , betaL , alphaI , alphaR , alphaC , alphaL ] )
35

36 de f squidIPhiVFitLSWrapper (x , iBiasArray , iCoi lArray , vArray ) :
37 ””” Wrapper func t i on f o r l e a s t squares exp r e s s i on f o r minimizat ion ”””
38 # t r a n s l a t e v a r i a b l e s from r e l a t i v e to abso lu t e
39 I0 , R0 , gamma, betaC , betaL , alphaI , alphaR , alphaC , alphaL = varsRelToAbs ( x )
40

41 # sum of squared r e s i d u a l s
42 r e turn np . l i n a l g . norm( vArray − squidIPhiVFit ( iBiasArray , iCoi lArray , I0 , R0 ,
43 c IPh i In i t , p h i C o i l 0 I n i t , gamma, betaC , betaL ,
44 a lphaI=alphaI , alphaR=alphaR ,
45 alphaC=alphaC , alphaL=alphaL , hStep=hStep ,
46 Ttot=Ttot , T in i tSk ip=TinitSkip , method=method ) )
47

48 i f name == ’ ma in ’ : # nece s sa ry f o r multi−p r o c e s s i n g l i b r a r y
49 # use r e l a t i v e parameters wrt . i n i t i a l va lue s f o r opt imiza t i on to circumvent
50 # unphys i ca l r e s u l t s
51 I0Curr , R0Curr , gammaCurr , betaCCurr , betaLCurr = np . ones (5 )
52 alphaICurr , alphaRCurr , alphaCCurr , alphaLCurr = np . tan (np . p i /2∗
53 np . array ( [ a l p h a I I n i t , a lphaRInit , a lphaCInit , a lphaLIn i t ] ) )
54

55 # Nelder−Mead minimizat ion
56 # r e s = scp . opt imize . minimize ( squidIPhiVFitLSWrapper ,
57 # np . array ( [ I0Curr , R0Curr , gammaCurr , betaCCurr , betaLCurr ,
58 # alphaICurr , alphaRCurr , alphaCCurr , alphaLCurr ] ) ,
59 # args=(iBiasSample , iCoi lSample , vSample ) , c a l l b a c k=pr int ,
60 # method=’Nelder−Mead ’ , opt i ons ={ ’ d i sp ’ : True , ’ maxiter ’ : 5 0 ,
61 # ’ maxfev ’ : 1 0 0 , ’ f a t o l ’ : 5 e−6})
62
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63 # Basinhopping minimizat ion with Nelder−Mead
64 r e s = scp . opt imize . bas inhopping ( squidIPhiVFitLSWrapper ,
65 np . array ( [ I0Curr , R0Curr , gammaCurr , betaCCurr , betaLCurr ,
66 alphaICurr , alphaRCurr , alphaCCurr , alphaLCurr ] ) ,
67 n i t e r =10, s t e p s i z e =0.2 , i n t e r v a l =3, c a l l b a c k=pr int , d i sp=True ,
68 minimizer kwargs={ ’ method ’ : ’ Nelder−Mead ’ ,
69 ’ a rgs ’ : ( iBiasSample , iCoi lSample , vSample ) ,
70 ’ opt i ons ’ :{ ’ d i sp ’ : True , ’ maxiter ’ : 5 0 ,
71 ’ maxfev ’ : 100 , ’ f a t o l ’ : 5 e−6}})
72

73 # t r a n s l a t e v a r i a b l e s from r e l a t i v e to abso lu t e
74 [ I0Curr , R0Curr , gammaCurr , betaCCurr , betaLCurr ,
75 alphaICurr , alphaRCurr , alphaCCurr , alphaLCurr ] = varsRelToAbs ( r e s . x )
76

77 # Calcu la te s imu la t i on r e s u l t
78 simSqArray = squidIPhiVFit ( iBiasSample , iCoi lSample , I0Curr , R0Curr ,
79 c IPh i In i t , p h i C o i l 0 I n i t , gammaCurr , betaCCurr ,
80 betaLCurr , a lphaI=alphaICurr , alphaR=alphaRCurr ,
81 alphaC=alphaCCurr , alphaL=alphaLCurr , hStep=hStep ,
82 Ttot=Ttot , T in i tSk ip=Tin i tSk ip )
83

84 # SAVE SIMULATION DATA
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